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Forewords

As my co-founder at Hugging Face, Clement Delangue, and I often say, AI is becoming the default 

way of building technology.

Over the past 3 years, LLMs have already had a profound impact on technology, and they are 

bound to have an even greater impact in the coming 5 years. They will be embedded in more and 

more products and, I believe, at the center of any human activity based on knowledge or creativity.

For instance, coders are already leveraging LLMs and changing the way they work, focusing on 

higher-order thinking and tasks while collaborating with machines. Studio musicians rely on 

AI-powered tools to explore the musical creativity space faster. Lawyers are increasing their impact 

through retrieval-augmented generation (RAG) and large databases of case law.

At Hugging Face, we’ve always advocated for a future where not just one company or a small 

number of scientists control the AI models used by the rest of the population, but instead for a 

future where as many people as possible—from as many different backgrounds as possible—are 

capable of diving into how cutting-edge machine learning models actually work.

Maxime Labonne and Paul Iusztin have been instrumental in this movement to democratize 

LLMs by writing this book and making sure that as many people as possible can not only use 

them but also adapt them, fine-tune them, quantize them, and make them efficient enough to 

actually deploy in the real world.

Their work is essential, and I’m glad they are making this resource available to the community. 

This expands the convex hull of human knowledge.

Julien Chaumond

Co-founder and CTO, Hugging Face
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As someone deeply immersed in the world of machine learning operations, I’m thrilled to en-

dorse The LLM Engineer’s Handbook. This comprehensive guide arrives at a crucial time when the 

demand for LLM expertise is skyrocketing across industries.

What sets this book apart is its practical, end-to-end approach. By walking readers through the 

creation of an LLM Twin, it bridges the often daunting gap between theory and real-world ap-

plication. From data engineering and model fine-tuning to advanced topics like RAG pipelines 

and inference optimization, the authors leave no stone unturned.

I’m particularly impressed by the emphasis on MLOps and LLMOps principles. As organizations 

increasingly rely on LLMs, understanding how to build scalable, reproducible, and robust systems 

is paramount. The inclusion of orchestration strategies and cloud integration showcases the 

authors’ commitment to equipping readers with truly production-ready skills.

Whether you’re a seasoned ML practitioner looking to specialize in LLMs or a software engineer 

aiming to break into this exciting field, this handbook provides the perfect blend of foundational 

knowledge and cutting-edge techniques. The clear explanations, practical examples, and focus on 

best practices make it an invaluable resource for anyone serious about mastering LLM engineering.

In an era where AI is reshaping industries at breakneck speed, The LLM Engineer’s Handbook stands 

out as an essential guide for navigating the complexities of large language models. It’s not just 

a book; it’s a roadmap to becoming a proficient LLM engineer in today’s AI-driven landscape.

Hamza Tahir

Co-founder and CTO, ZenML
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Preface

The field of LLM engineering has rapidly emerged as a critical area in artificial intelligence and 

machine learning. As LLMs continue to revolutionize natural language processing and genera-

tion, the demand for professionals who can effectively implement, optimize, and deploy these 

models in real-world scenarios has grown exponentially. LLM engineering encompasses a wide 

range of disciplines, from data preparation and model fine-tuning to inference optimization and 

production deployment, requiring a unique blend of software engineering, machine learning 

expertise, and domain knowledge.

Machine Learning Operations (MLOps) plays a crucial role in the successful implementation of 

LLMs in production environments. MLOps extends the principles of DevOps to machine learning 

projects, focusing on automating and streamlining the entire ML lifecycle. For LLMs, MLOps is 

particularly important due to the complexity and scale of these models. It addresses challeng-

es such as managing large datasets, handling model versioning, ensuring reproducibility, and 

maintaining model performance over time. By incorporating MLOps practices, LLM projects can 

achieve greater efficiency, reliability, and scalability, ultimately leading to more successful and 

impactful deployments.

The LLM Engineer’s Handbook is a comprehensive guide to applying best practices to the new 

field of LLM engineering. Throughout the chapters, readers will find simplified key concepts, 

practical techniques, and experts tips for every stage of the LLM lifecycle. The book covers topics 

such as data engineering, supervised fine-tuning, model evaluation, inference optimization, and 

Retrieval-Augmented Generation (RAG) pipeline development.

To illustrate these concepts in action, an end-to-end project called the LLM Twin will be developed 

throughout the book., with the goal of imitating someone’s writing style and personality. This 

use case will demonstrate how to build a minimum viable product to solve a specific problem, 

using various aspects of LLM engineering and MLOps.
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Readers can expect to gain a deeper understanding of how to collect and prepare data for LLMs, 

fine-tune models for specific tasks, optimize inference performance, and implement RAG pipelines. 

They will learn how to evaluate LLM performance, align models with human preferences, and 

deploy LLM-based applications. The book also covers essential MLOps principles and practices, 

enabling readers to build scalable, reproducible, and robust LLM applications.

Who this book is for
This book is intended for a wide range of technology professionals and enthusiasts interested 

in the practical applications of LLMs. It’s ideal for software engineers aiming to transition into 

AI projects. While some familiarity with software development is beneficial, the book explains 

many concepts from the ground up, making it accessible even to those who are new to AI and 

machine learning.

For those already working with machine learning , this book will enhance your skills in imple-

menting and deploying LLM-based systems. We provide a deep dive into the fundamentals of 

MLOps, guiding you through the process of creating a minimum viable product using an open-

source LLM to solve real-world problems.

What this book covers
Chapter 1, Understanding the LLM Twin Concept and Architecture, introduces the LLM Twin project, 

which is used throughout the book as an end-to-end example of a production-level LLM appli-

cation, and defines the FTI architecture for building scalable ML systems and applies it to the 

LLM Twin use case.

Chapter 2, Tooling and Installation, presents Python, MLOps, and cloud tools used to build re-

al-world LLM applications, such as an orchestrator, experiment tracker, prompt monitoring and 

LLM evaluation tool. It shows how to use and install them locally for testing and development.

Chapter 3, Data Engineering, shows the implementation of a data collection pipeline that scrapes 

multiple sites, such as Medium, GitHub and Substack and stores the raw data in a data warehouse. 

It emphasizes collecting raw data from dynamic sources over static datasets for real-world ML 

applications. 

Chapter 4, RAG Feature Pipeline, introduces RAG fundamental concepts, such as embeddings, the 

vanilla RAG framework, vector databases, and how to optimize RAG applications. It applies the 

RAG theory by architecting and implementing LLM Twin’s RAG feature pipeline using software 

best practices.
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Chapter 5, Supervised Fine-Tuning, explores the process of refining pre-trained language models 

for specific tasks using instruction-answer pairs. It covers creating high-quality datasets, imple-

menting fine-tuning techniques like full fine-tuning, LoRA, and QLoRA, and provides a practical 

demonstration of fine-tuning a Llama 3.1 8B model on a custom dataset.

Chapter 6, Fine-Tuning with Preference Alignment, introduces techniques for aligning language 

models with human preferences, focusing on Direct Preference Optimization (DPO). It covers 

creating custom preference datasets, implementing DPO, and provides a practical demonstration 

of aligning the TwinLlama-3.1-8B model using the Unsloth library.

Chapter 7, Evaluating LLMs, details various methods for assessing the performance of language 

models and LLM systems. It introduces general-purpose and domain-specific evaluations and dis-

cusses popular benchmarks. The chapter includes a practical evaluation of the TwinLlama-3.1-8B 

model using multiple criteria.

Chapter 8, Inference Optimization, covers key optimization strategies such as speculative decoding, 

model parallelism, and weight quantization. It discusses how to improve inference speed, reduce 

latency, and minimize memory usage, introducing popular inference engines and comparing 

their features.

Chapter 9, RAG Inference Pipeline, explores advanced RAG techniques by implementing methods 

such as self-query, reranking, and filtered vector search from scratch. It covers designing and 

implementing the LLM Twin’s RAG inference pipeline and a custom retrieval module similar to 

what you see in popular frameworks such as LangChain.

Chapter 10, Inference Pipeline Deployment, introduces ML deployment strategies, such as online, 

asynchronous and batch inference, which will help in architecting and deploying the LLM Twin 

fine-tuned model to AWS SageMaker and building a FastAPI microservice to expose the RAG 

inference pipeline as a RESTful API.

Chapter 11, MLOps and LLMOps, presents what LLMOps is, starting with its roots in DevOps and 

MLOps. This chapter explains how to deploy the LLM Twin project to the cloud, such as the ML 

pipelines to AWS and shows how to containerize the code using Docker and build a CI/CD/CT 

pipeline. It also adds a prompt monitoring layer on top of LLM Twin’s inference pipeline.

Appendix, MLOps Principles, covers the six MLOps principles used to build scalable, reproducible, 

and robust ML applications.
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To get the most out of this book
To maximize your learning experience, you are expected to have, at the very least, a foundational 

understanding of software development principles and practices. Familiarity with Python pro-

gramming is particularly beneficial, as the book’s examples and code snippets are predominantly 

in Python. While prior experience with machine learning concepts is advantageous, it is not 

strictly necessary, as the book provides explanations for many fundamental AI and ML concepts. 

However, you should be comfortable with basic data structures, algorithms, and have some ex-

perience working with APIs and cloud services. 

Familiarity with version control systems like Git is assumed, as this book has a GitHub reposi-

tory for code examples. While this book is designed to be accessible to those who are new to AI 

and LLMs, if you have some background in these areas, you will find it easier to grasp the more 

advanced concepts and techniques we present.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

LLM-Engineers-Handbook. We also have other code bundles from our rich catalog of books and 

videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. 

You can download it here: https://packt.link/gbp/9781836200079.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file 

extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “In the 

format_samples function, we apply the Alpaca chat template to each individual message.”

A block of code is set as follows:

def format_samples(example):

    example["prompt"] = alpaca_template.format(example["prompt"])

    example["chosen"] = example['chosen'] + EOS_TOKEN

    example["rejected"] = example['rejected'] + EOS_TOKEN

    return {"prompt": example["prompt"], "chosen": example["chosen"], 
"rejected": example["rejected"]}

https://github.com/PacktPublishing/LLM-Engineers-Handbook
https://github.com/PacktPublishing/LLM-Engineers-Handbook
https://github.com/PacktPublishing/
https://packt.link/gbp/9781836200079
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When we wish to draw your attention to a particular part of a code block, the relevant lines or 

items are set in bold:

def format_samples(example):

    example["prompt"] = alpaca_template.format(example["prompt"])

    example["chosen"] = example['chosen'] + EOS_TOKEN

    example["rejected"] = example['rejected'] + EOS_TOKEN

    return {"prompt": example["prompt"], "chosen": example["chosen"], 
"rejected": example["rejected"]}

Any command-line input or output is written as follows:

poetry install --without aws

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance, 

words in menus or dialog boxes appear in the text like this. For example: “To do so, go to the Set-

tings tab at the top of the forked repository in GitHub. In the left panel, in the Security section, 

click on the Secrets and Variables toggle and, finally, click on Actions.”

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of 

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do 

happen. If you have found a mistake in this book, we would be grateful if you reported this to us. 

Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Warnings or important notes appear like this.

Tips and tricks appear like this.

http://www.packtpub.com/submit-errata
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Piracy: If you come across any illegal copies of our works in any form on the internet, we would 

be grateful if you would provide us with the location address or website name. Please contact us 

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com.

Share your thoughts
Once you’ve read LLM Engineer’s Handbook, First Edition, we’d love to hear your thoughts! Please 

click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1836200072
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Understanding the LLM Twin 
Concept and Architecture

By the end of this book, we will have walked you through the journey of building an end-to-end 

large language model (LLM) product. We firmly believe that the best way to learn about LLMs 

and production machine learning (ML) is to get your hands dirty and build systems. This book 

will show you how to build an LLM Twin, an AI character that learns to write like a particular 

person by incorporating its style, voice, and personality into an LLM. Using this example, we will 

walk you through the complete ML life cycle, from data gathering to deployment and monitoring. 

Most of the concepts learned while implementing your LLM Twin can be applied in other LLM-

based or ML applications.

When starting to implement a new product, from an engineering point of view, there are three 

planning steps we must go through before we start building. First, it is critical to understand the 

problem we are trying to solve and what we want to build. In our case, what exactly is an LLM Twin, 

and why build it? This step is where we must dream and focus on the “Why.” Secondly, to reflect 

a real-world scenario, we will design the first iteration of a product with minimum functionality. 

Here, we must clearly define the core features required to create a working and valuable product. 

The choices are made based on the timeline, resources, and team’s knowledge. This is where we 

bridge the gap between dreaming and focusing on what is realistic and eventually answer the 

following question: “What are we going to build?”.

Finally, we will go through a system design step, laying out the core architecture and design choices 

used to build the LLM system. Note that the first two components are primarily product-related, 

while the last one is technical and focuses on the “How.”
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These three steps are natural in building a real-world product. Even if the first two do not require 

much ML knowledge, it is critical to go through them to understand “how” to build the product 

with a clear vision. In a nutshell, this chapter covers the following topics:

• Understanding the LLM Twin concept

• Planning the MVP of the LLM Twin product

• Building ML systems with feature/training/inference pipelines

• Designing the system architecture of the LLM Twin

By the end of this chapter, you will have a clear picture of what you will learn to build throughout 

the book.

Understanding the LLM Twin concept
The first step is to have a clear vision of what we want to create and why it’s valuable to build it. 

The concept of an LLM Twin is new. Thus, before diving into the technical details, it is essential 

to understand what it is, what we should expect from it, and how it should work. Having a solid 

intuition of your end goal makes it much easier to digest the theory, code, and infrastructure 

presented in this book.

What is an LLM Twin?
In a few words, an LLM Twin is an AI character that incorporates your writing style, voice, and 

personality into an LLM, which is a complex AI model. It is a digital version of yourself projected

into an LLM. Instead of a generic LLM trained on the whole internet, an LLM Twin is fine-tuned 

on yourself. Naturally, as an ML model reflects the data it is trained on, this LLM will incorporate 

your writing style, voice, and personality. We intentionally used the word “projected.” As with 

any other projection, you lose a lot of information along the way. Thus, this LLM will not be you; 

it will copy the side of you reflected in the data it was trained on.

It is essential to understand that an LLM reflects the data it was trained on. If you feed it Shake-

speare, it will start writing like him. If you train it on Billie Eilish, it will start writing songs in 

her style. This is also known as style transfer. This concept is prevalent in generating images, too. 

For example, let’s say you want to create a cat image using Van Gogh’s style. We will leverage the 

style transfer strategy, but instead of choosing a personality, we will do it on our own persona.

To adjust the LLM to a given style and voice along with fine-tuning, we will also leverage various 

advanced retrieval-augmented generation (RAG) techniques to condition the autoregressive 

process with previous embeddings of ourselves. 
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We will explore the details in Chapter 5 on fine-tuning and Chapters 4 and 9 on RAG, but for now, 

let’s look at a few examples to intuitively understand what we stated previously.

Here are some scenarios of what you can fine-tune an LLM on to become your twin:

• LinkedIn posts and X threads: Specialize the LLM in writing social media content.

• Messages with your friends and family: Adapt the LLM to an unfiltered version of yourself.

• Academic papers and articles: Calibrate the LLM in writing formal and educative content.

• Code: Specialize the LLM in implementing code as you would.

All the preceding scenarios can be reduced to one core strategy: collecting your digital data (or 

some parts of it) and feeding it to an LLM using different algorithms. Ultimately, the LLM reflects 

the voice and style of the collected data. Easy, right?

Unfortunately, this raises many technical and moral issues. First, on the technical side, how can 

we access this data? Do we have enough digital data to project ourselves into an LLM? What kind 

of data would be valuable? Secondly, on the moral side, is it OK to do this in the first place? Do 

we want to create a copycat of ourselves? Will it write using our voice and personality, or just try 

to replicate it?

Remember that the role of this section is not to bother with the “What” and “How” but with the 

“Why.” Let’s understand why it makes sense to have your LLM Twin, why it can be valuable, and 

why it is morally correct if we frame the problem correctly.

Why building an LLM Twin matters
As an engineer (or any other professional career), building a personal brand is more valuable than 

a standard CV. The biggest issue with creating a personal brand is that writing content on plat-

forms such as LinkedIn, X, or Medium takes a lot of time. Even if you enjoy writing and creating 

content, you will eventually run out of inspiration or time and feel like you need assistance. We 

don’t want to transform this section into a pitch, but we have to understand the scope of this 

product/project clearly.

We want to build an LLM Twin to write personalized content on LinkedIn, X, Instagram, Sub-

stack, and Medium (or other blogs) using our style and voice. It will not be used in any immoral 

scenarios, but it will act as your writing co-pilot. Based on what we will teach you in this book, 

you can get creative and adapt it to various use cases, but we will focus on the niche of generating 

social media content and articles. Thus, instead of writing the content from scratch, we can feed 

the skeleton of our main idea to the LLM Twin and let it do the grunt work. 
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Ultimately, we will have to check whether everything is correct and format it to our liking (more 

on the concrete features in the Planning the MVP of the LLM Twin product section). Hence, we proj-

ect ourselves into a content-writing LLM Twin that will help us automate our writing process. It 

will likely fail if we try to use this particular LLM in a different scenario, as this is where we will 

specialize the LLM through fine-tuning, prompt engineering, and RAG.

So, why does building an LLM Twin matter? It helps you do the following:

• Create your brand

• Automate the writing process

• Brainstorm new creative ideas

Also, it is critical to understand that building an LLM Twin is entirely moral. The LLM will be 

fine-tuned only on our personal digital data. We won’t collect and use other people’s data to try 

to impersonate anyone’s identity. We have a clear goal in mind: creating our personalized writing 

copycat. Everyone will have their own LLM Twin with restricted access.

Of course, many security concerns are involved, but we won’t go into that here as it could be a 

book in itself.

What’s the difference between a co-pilot and an LLM Twin?

A co-pilot and digital twin are two different concepts that work together and can be 

combined into a powerful solution:

• The co-pilot is an AI assistant or tool that augments human users in various 

programming, writing, or content creation tasks.

• The twin serves as a 1:1 digital representation of a real-world entity, often 

using AI to bridge the gap between the physical and digital worlds. For in-

stance, an LLM Twin is an LLM that learns to mimic your voice, personality, 

and writing style.

With these definitions in mind, a writing and content creation AI assistant who 

writes like you is your LLM Twin co-pilot.
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Why not use ChatGPT (or another similar chatbot)?

We have already provided the answer. ChatGPT is not personalized to your writing style and voice. 

Instead, it is very generic, unarticulated, and wordy. Maintaining an original voice is critical for 

long-term success when building your brand. Thus, directly using ChatGPT or Gemini will not 

yield the most optimal results. Even if you are OK with sharing impersonalized content, mindlessly 

using ChatGPT can result in the following:

• Misinformation due to hallucination: Manually checking the results for hallucinations or 

using third-party tools to evaluate your results is a tedious and unproductive experience.

• Tedious manual prompting: You must manually craft your prompts and inject external 

information, which is a tiresome experience. Also, the generated answers will be hard to 

replicate between multiple sessions as you don’t have complete control over your prompts 

and injected data. You can solve part of this problem using an API and a tool such as 

LangChain, but you need programming experience to do so.

From our experience, if you want high-quality content that provides real value, you will spend 

more time debugging the generated text than writing it yourself.

The key of the LLM Twin stands in the following:

• What data we collect

• How we preprocess the data

• How we feed the data into the LLM

• How we chain multiple prompts for the desired results

• How we evaluate the generated content

The LLM itself is important, but we want to highlight that using ChatGPT’s web interface is 

exceptionally tedious in managing and injecting various data sources or evaluating the outputs. 

The solution is to build an LLM system that encapsulates and automates all the following steps 

(manually replicating them each time is not a long-term and feasible solution):

• Data collection

• Data preprocessing

This subsection will refer to using ChatGPT (or another similar chatbot) just in the 

context of generating personalized content.
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• Data storage, versioning, and retrieval

• LLM fine-tuning

• RAG

• Content generation evaluation

Note that we never said not to use OpenAI’s GPT API, just that the LLM framework we will pres-

ent is LLM-agnostic. Thus, if it can be manipulated programmatically and exposes a fine-tuning 

interface, it can be integrated into the LLM Twin system we will learn to build. The key to most 

successful ML products is to be data-centric and make your architecture model-agnostic. Thus, 

you can quickly experiment with multiple models on your specific data.

Planning the MVP of the LLM Twin product
Now that we understand what an LLM Twin is and why we want to build it, we must clearly define 

the product’s features. In this book, we will focus on the first iteration, often labeled the minimum 

viable product (MVP), to follow the natural cycle of most products. Here, the main objective is 

to align our ideas with realistic and doable business objectives using the available resources to 

produce the product. Even as an engineer, as you grow up in responsibilities, you must go through 

these steps to bridge the gap between the business needs and what can be implemented.

What is an MVP?
An MVP is a version of a product that includes just enough features to draw in early users and test 

the viability of the product concept in the initial stages of development. Usually, the purpose of 

the MVP is to gather insights from the market with minimal effort.

An MVP is a powerful strategy because of the following reasons:

• Accelerated time-to-market: Launch a product quickly to gain early traction

• Idea validation: Test it with real users before investing in the full development of the 

product

• Market research: Gain insights into what resonates with the target audience

• Risk minimization: Reduces the time and resources needed for a product that might not 

achieve market success

Sticking to the V in MVP is essential, meaning the product must be viable. The product must 

provide an end-to-end user journey without half-implemented features, even if the product is 

minimal. It must be a working product with a good user experience that people will love and 

want to keep using to see how it evolves to its full potential.
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Defining the LLM Twin MVP
As a thought experiment, let’s assume that instead of building this project for this book, we want 

to make a real product. In that case, what are our resources? Well, unfortunately, not many:

• We are a team of three people with two ML engineers and one ML researcher

• Our laptops

• Personal funding for computing, such as training LLMs

• Our enthusiasm

As you can see, we don’t have many resources. Even if this is just a thought experiment, it reflects 

the reality for most start-ups at the beginning of their journey. Thus, we must be very strategic 

in defining our LLM Twin MVP and what features we want to pick. Our goal is simple: we want 

to maximize the product’s value relative to the effort and resources poured into it.

To keep it simple, we will build the features that can do the following for the LLM Twin:

• Collect data from your LinkedIn, Medium, Substack, and GitHub profiles

• Fine-tune an open-source LLM using the collected data

• Populate a vector database (DB) using our digital data for RAG

• Create LinkedIn posts leveraging the following:

• User prompts

• RAG to reuse and reference old content

• New posts, articles, or papers as additional knowledge to the LLM

• Have a simple web interface to interact with the LLM Twin and be able to do the following:

• Configure your social media links and trigger the collection step

• Send prompts or links to external resources

That will be the LLM Twin MVP. Even if it doesn’t sound like much, remember that we must make 

this system cost effective, scalable, and modular.

Even if we focus only on the core features of the LLM Twin defined in this section, we 

will build the product with the latest LLM research and best software engineering 

and MLOps practices in mind. We aim to show you how to engineer a cost-effective 

and scalable LLM application.
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Until now, we have examined the LLM Twin from the users’ and businesses’ perspectives. The last 

step is to examine it from an engineering perspective and define a development plan to under-

stand how to solve it technically. From now on, the book’s focus will be on the implementation 

of the LLM Twin.

Building ML systems with feature/training/inference 
pipelines
Before diving into the specifics of the LLM Twin architecture, we must understand an ML system 

pattern at the core of the architecture, known as the feature/training/inference (FTI) architecture. 

This section will present a general overview of the FTI pipeline design and how it can structure 

an ML application.

Let’s see how we can apply the FTI pipelines to the LLM Twin architecture.

The problem with building ML systems
Building production-ready ML systems is much more than just training a model. From an en-

gineering point of view, training the model is the most straightforward step in most use cases. 

However, training a model becomes complex when deciding on the correct architecture and 

hyperparameters. That’s not an engineering problem but a research problem.

At this point, we want to focus on how to design a production-ready architecture. Training a 

model with high accuracy is extremely valuable, but just by training it on a static dataset, you 

are far from deploying it robustly. We have to consider how to do the following:

• Ingest, clean, and validate fresh data

• Training versus inference setups

• Compute and serve features in the right environment

• Serve the model in a cost-effective way

• Version, track, and share the datasets and models

• Monitor your infrastructure and models

• Deploy the model on a scalable infrastructure

• Automate the deployments and training

These are the types of problems an ML or MLOps engineer must consider, while the research or 

data science team is often responsible for training the model.
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Figure 1.1: Common elements from an ML system

The preceding figure shows all the components the Google Cloud team suggests that a mature ML 

and MLOps system requires. Along with the ML code, there are many moving pieces. The rest of 

the system comprises configuration, automation, data collection, data verification, testing and 

debugging, resource management, model analysis, process and metadata management, serving 

infrastructure, and monitoring. The point is that there are many components we must consider 

when productionizing an ML model.

Thus, the critical question is this: How do we connect all these components into a single homog-

enous system? We must create a boilerplate for clearly designing ML systems to answer that 

question.

Similar solutions exist for classic software. For example, if you zoom out, most software appli-

cations can be split between a DB, business logic, and UI layer. Every layer can be as complex as 

needed, but at a high-level overview, the architecture of standard software can be boiled down 

to the previous three components.

Do we have something similar for ML applications? The first step is to examine previous solutions 

and why they are unsuitable for building scalable ML systems.
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The issue with previous solutions
In Figure 1.2, you can observe the typical architecture present in most ML applications. It is based 

on a monolithic batch architecture that couples the feature creation, model training, and infer-

ence into the same component. By taking this approach, you quickly solve one critical problem in 

the ML world: the training-serving skew. The training-serving skew happens when the features 

passed to the model are computed differently at training and inference time.

In this architecture, the features are created using the same code. Hence, the training-serving 

skew issue is solved by default. This pattern works fine when working with small data. The 

pipeline runs on a schedule in batch mode, and the predictions are consumed by a third-party 

application such as a dashboard.

Figure 1.2: Monolithic batch pipeline architecture

Unfortunately, building a monolithic batch system raises many other issues, such as the following:

• Features are not reusable (by your system or others)

• If the data increases, you have to refactor the whole code to support PySpark or Ray

• It’s hard to rewrite the prediction module in a more efficient language such as C++, Java, 

or Rust
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• It’s hard to share the work between multiple teams between the features, training, and 

prediction modules

• It’s impossible to switch to streaming technology for real-time training

In Figure 1.3, we can see a similar scenario for a real-time system. This use case introduces an-

other issue in addition to what we listed before. To make the predictions, we have to transfer the 

whole state through the client request so the features can be computed and passed to the model.

Consider the scenario of computing movie recommendations for a user. Instead of simply pass-

ing the user ID, we must transmit the entire user state, including their name, age, gender, movie 

history, and more. This approach is fraught with potential errors, as the client must understand 

how to access this state, and it’s tightly coupled with the model service.

Another example would be when implementing an LLM with RAG support. The documents we add 

as context along the query represent our external state. If we didn’t store the records in a vector 

DB, we would have to pass them with the user query. To do so, the client must know how to query 

and retrieve the documents, which is not feasible. It is an antipattern for the client application 

to know how to access or compute the features. If you don’t understand how RAG works, we will 

explain it in detail in Chapters 8 and 9.

Figure 1.3: Stateless real-time architecture
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In conclusion, our problem is accessing the features to make predictions without passing them at 

the client’s request. For example, based on our first user movie recommendation example, how 

can we predict the recommendations solely based on the user’s ID? Remember these questions, 

as we will answer them shortly.

Ultimately, on the other spectrum, Google Cloud provides a production-ready architecture, as 

shown in Figure 1.4. Unfortunately, even if it’s a feasible solution, it’s very complex and not intu-

itive. You will have difficulty understanding this if you are not highly experienced in deploying 

and keeping ML models in production. Also, it is not straightforward to understand how to start 

small and grow the system in time.

The following image is reproduced from work created and shared by Google and used according 

to terms described in the Creative Commons 4.0 Attribution License:

Figure 1.4: ML pipeline automation for CT (source: https://cloud.google.com/architecture/
mlops-continuous-delivery-and-automation-pipelines-in-machine-learning)
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But here is where the FTI pipeline architectures kick in. The following section will show you how 

to solve these fundamental issues using an intuitive ML design.

The solution – ML pipelines for ML systems
The solution is based on creating a clear and straightforward mind map that any team or person 

can follow to compute the features, train the model, and make predictions. Based on these three 

critical steps that any ML system requires, the pattern is known as the FTI pipeline. So, how does 

this differ from what we presented before?

The pattern suggests that any ML system can be boiled down to these three pipelines: feature, 

training, and inference (similar to the DB, business logic, and UI layers from classic software). 

This is powerful, as we can clearly define the scope and interface of each pipeline. Also, it’s easier 

to understand how the three components interact. Ultimately, we have just three instead of 20 

moving pieces, as suggested in Figure 1.4, which is much easier to work with and define.

As shown in Figure 1.5, we have the feature, training, and inference pipelines. We will zoom in on 

each of them and understand their scope and interface.

Figure 1.5: FTI pipelines architecture
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Before going into the details, it is essential to understand that each pipeline is a different com-

ponent that can run on a different process or hardware. Thus, each pipeline can be written using 

a different technology, by a different team, or scaled differently. The key idea is that the design 

is very flexible to the needs of your team. It acts as a mind map for structuring your architecture.

The feature pipeline
The feature pipeline takes raw data as input, processes it, and outputs the features and labels 

required by the model for training or inference. Instead of directly passing them to the model, the 

features and labels are stored inside a feature store. Its responsibility is to store, version, track, and 

share the features. By saving the features in a feature store, we always have a state of our features. 

Thus, we can easily send the features to the training and inference pipelines.

As the data is versioned, we can always ensure that the training and inference time features match. 

Thus, we avoid the training-serving skew problem.

The training pipeline
The training pipeline takes the features and labels from the features stored as input and outputs 

a train model or models. The models are stored in a model registry. Its role is similar to that of 

feature stores, but this time, the model is the first-class citizen. Thus, the model registry will store, 

version, track, and share the model with the inference pipeline.

Also, most modern model registries support a metadata store that allows you to specify essential 

aspects of how the model was trained. The most important are the features, labels, and their 

version used to train the model. Thus, we will always know what data the model was trained on.

The inference pipeline
The inference pipeline takes as input the features and labels from the feature store and the trained 

model from the model registry. With these two, predictions can be easily made in either batch 

or real-time mode.

As this is a versatile pattern, it is up to you to decide what you do with your predictions. If it’s a 

batch system, they will probably be stored in a DB. If it’s a real-time system, the predictions will 

be served to the client who requested them. Additionally, the features, labels, and models are 

versioned. We can easily upgrade or roll back the deployment of the model. For example, we will 

always know that model v1 uses features F1, F2, and F3, and model v2 uses F2, F3, and F4. Thus, 

we can quickly change the connections between the model and features.



Chapter 1 15

Benefits of the FTI architecture
To conclude, the most important thing you must remember about the FTI pipelines is their in-

terface:

• The feature pipeline takes in data and outputs the features and labels saved to the feature 

store.

• The training pipeline queries the features store for features and labels and outputs a 

model to the model registry.

• The inference pipeline uses the features from the feature store and the model from the 

model registry to make predictions.

It doesn’t matter how complex your ML system gets, these interfaces will remain the same.

Now that we understand better how the pattern works, we want to highlight the main benefits 

of using this pattern:

• As you have just three components, it is intuitive to use and easy to understand.

• Each component can be written into its tech stack, so we can quickly adapt them to specific 

needs, such as big or streaming data. Also, it allows us to pick the best tools for the job.

• As there is a transparent interface between the three components, each one can be de-

veloped by a different team (if necessary), making the development more manageable 

and scalable.

• Every component can be deployed, scaled, and monitored independently.

The final thing you must understand about the FTI pattern is that the system doesn’t have to 

contain only three pipelines. In most cases, it will include more. For example, the feature pipeline 

can be composed of a service that computes the features and one that validates the data. Also, the 

training pipeline can be composed of the training and evaluation components.

The FTI pipelines act as logical layers. Thus, it is perfectly fine for each to be complex and contain 

multiple services. However, what is essential is to stick to the same interface on how the FTI pipe-

lines interact with each other through the feature store and model registries. By doing so, each 

FTI component can evolve differently, without knowing the details of each other and without 

breaking the system on new changes.
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Now that we understand the FTI pipeline architecture, the final step of this chapter is to see how 

it can be applied to the LLM Twin use case.

Designing the system architecture of the LLM Twin
In this section, we will list the concrete technical details of the LLM Twin application and under-

stand how we can solve them by designing our LLM system using the FTI architecture. However, 

before diving into the pipelines, we want to highlight that we won’t focus on the tooling or the 

tech stack at this step. We only want to define a high-level architecture of the system, which is 

language-, framework-, platform-, and infrastructure-agnostic at this point. We will focus on 

each component’s scope, interface, and interconnectivity. In future chapters, we will cover the 

implementation details and tech stack.

Listing the technical details of the LLM Twin architecture
Until now, we defined what the LLM Twin should support from the user’s point of view. Now, 

let’s clarify the requirements of the ML system from a purely technical perspective:

• On the data side, we have to do the following:

• Collect data from LinkedIn, Medium, Substack, and GitHub completely autono-

mously and on a schedule

• Standardize the crawled data and store it in a data warehouse

• Clean the raw data

• Create instruct datasets for fine-tuning an LLM

• Chunk and embed the cleaned data. Store the vectorized data into a vector DB 

for RAG.

• For training, we have to do the following:

• Fine-tune LLMs of various sizes (7B, 14B, 30B, or 70B parameters)

• Fine-tune on instruction datasets of multiple sizes

• Switch between LLM types (for example, between Mistral, Llama, and GPT)

• Track and compare experiments

To learn more about the FTI pipeline pattern, consider reading From MLOps to ML 

Systems with Feature/Training/Inference Pipelines by Jim Dowling, CEO and co-founder 

of Hopsworks: https://www.hopsworks.ai/post/mlops-to-ml-systems-with-

fti-pipelines. His article inspired this section.

https://www.hopsworks.ai/post/mlops-to-ml-systems-with-fti-pipelines
https://www.hopsworks.ai/post/mlops-to-ml-systems-with-fti-pipelines
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• Test potential production LLM candidates before deploying them

• Automatically start the training when new instruction datasets are available.

• The inference code will have the following properties:

• A REST API interface for clients to interact with the LLM Twin

• Access to the vector DB in real time for RAG

• Inference with LLMs of various sizes

• Autoscaling based on user requests

• Automatically deploy the LLMs that pass the evaluation step.

• The system will support the following LLMOps features:

• Instruction dataset versioning, lineage, and reusability

• Model versioning, lineage, and reusability

• Experiment tracking

• Continuous training, continuous integration, and continuous delivery (CT/

CI/CD)

• Prompt and system monitoring

The preceding list is quite comprehensive. We could have detailed it even more, but at this point, 

we want to focus on the core functionality. When implementing each component, we will look 

into all the little details. But for now, the fundamental question we must ask ourselves is this: 

How can we apply the FTI pipeline design to implement the preceding list of requirements?

How to design the LLM Twin architecture using the FTI 
pipeline design
We will split the system into four core components. You will ask yourself this: “Four? Why not 

three, as the FTI pipeline design clearly states?” That is a great question. Fortunately, the answer 

is simple. We must also implement the data pipeline along the three feature/training/inference 

pipelines. According to best practices:

• The data engineering team owns the data pipeline

• The ML engineering team owns the FTI pipelines.

If any technical requirement doesn’t make sense now, bear with us. To avoid repe-

tition, we will examine the details in their specific chapter.
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Given our goal of building an MVP with a small team, we must implement the entire application. 

This includes defining the data collection and FTI pipelines. Tackling a problem end to end is 

often encountered in start-ups that can’t afford dedicated teams. Thus, engineers have to wear 

many hats, depending on the state of the product. Nevertheless, in any scenario, knowing how 

an end-to-end ML system works is valuable for better understanding other people’s work.

Figure 1.6 shows the LLM system architecture. The best way to understand it is to review the four 

components individually and explain how they work.

Figure 1.6: LLM Twin high-level architecture
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Data collection pipeline
The data collection pipeline involves crawling your personal data from Medium, Substack, Linke-

dIn, and GitHub. As a data pipeline, we will use the extract, load, transform (ETL) pattern to 

extract data from social media platforms, standardize it, and load it into a data warehouse.

The output of this component will be a NoSQL DB, which will act as our data warehouse. As we 

work with text data, which is naturally unstructured, a NoSQL DB fits like a glove.

Even though a NoSQL DB, such as MongoDB, is not labeled as a data warehouse, from our point 

of view, it will act as one. Why? Because it stores standardized raw data gathered by various ETL 

pipelines that are ready to be ingested into an ML system.

The collected digital data is binned into three categories:

• Articles (Medium, Substack)

• Posts (LinkedIn)

• Code (GitHub)

We want to abstract away the platform where the data was crawled. For example, when feeding 

an article to the LLM, knowing it came from Medium or Substack is not essential. We can keep 

the source URL as metadata to give references. However, from the processing, fine-tuning, and 

RAG points of view, it is vital to know what type of data we ingested, as each category must be 

processed differently. For example, the chunking strategy between a post, article, and piece of 

code will look different.

Also, by grouping the data by category, not the source, we can quickly plug data from other plat-

forms, such as X into the posts or GitLab into the code collection. As a modular system, we must 

attach an additional ETL in the data collection pipeline, and everything else will work without 

further code modifications.

Feature pipeline
The feature pipeline’s role is to take raw articles, posts, and code data points from the data ware-

house, process them, and load them into the feature store. 

It is critical to highlight that the data collection pipeline is designed to crawl data 

only from your social media platform. It will not have access to other people. As an 

example for this book, we agreed to make our collected data available for learning 

purposes. Otherwise, using other people’s data without their consent is not moral.
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The characteristics of the FTI pattern are already present.

Here are some custom properties of the LLM Twin’s feature pipeline:

• It processes three types of data differently: articles, posts, and code

• It contains three main processing steps necessary for fine-tuning and RAG: cleaning, 

chunking, and embedding

• It creates two snapshots of the digital data, one after cleaning (used for fine-tuning) and 

one after embedding (used for RAG)

• It uses a logical feature store instead of a specialized feature store

Let’s zoom in on the logical feature store part a bit. As with any RAG-based system, one of the 

central pieces of the infrastructure is a vector DB. Instead of integrating another DB, more con-

cretely, a specialized feature store, we used the vector DB, plus some additional logic to check all 

the properties of a feature store our system needs.

The vector DB doesn’t offer the concept of a training dataset, but it can be used as a NoSQL DB. 

This means we can access data points using their ID and collection name. Thus, we can easily 

query the vector DB for new data points without any vector search logic. Ultimately, we will 

wrap the retrieved data into a versioned, tracked, and shareable artifact—more on artifacts in 

Chapter 2. For now, you must know it is an MLOps concept used to wrap data and enrich it with 

the properties listed before.

How will the rest of the system access the logical feature store? The training pipeline will use the 

instruct datasets as artifacts, and the inference pipeline will query the vector DB for additional 

context using vector search techniques.

For our use case, this is more than enough because of the following reasons:

• The artifacts work great for offline use cases such as training

• The vector DB is built for online access, which we require for inference.

In future chapters, however, we will explain how the three data categories (articles, posts, and 

code) are cleaned, chunked, and embedded.

To conclude, we take in raw article, post, or code data points, process them, and store them in 

a feature store to make them accessible to the training and inference pipelines. Note that trim-

ming all the complexity away and focusing only on the interface is a perfect match with the FTI 

pattern. Beautiful, right?
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Training pipeline
The training pipeline consumes instruct datasets from the feature store, fine-tunes an LLM with 

it, and stores the tuned LLM weights in a model registry. More concretely, when a new instruct 

dataset is available in the logical feature store, we will trigger the training pipeline, consume the 

artifact, and fine-tune the LLM.

In the initial stages, the data science team owns this step. They run multiple experiments to find 

the best model and hyperparameters for the job, either through automatic hyperparameter tuning 

or manually. To compare and pick the best set of hyperparameters, we will use an experiment 

tracker to log everything of value and compare it between experiments. Ultimately, they will pick 

the best hyperparameters and fine-tuned LLM and propose it as the LLM production candidate. 

The proposed LLM is then stored in the model registry. After the experimentation phase is over, 

we store and reuse the best hyperparameters found to eliminate the manual restrictions of the 

process. Now, we can completely automate the training process, known as continuous training.

The testing pipeline is triggered for a more detailed analysis than during fine-tuning. Before 

pushing the new model to production, assessing it against a stricter set of tests is critical to see 

that the latest candidate is better than what is currently in production. If this step passes, the 

model is ultimately tagged as accepted and deployed to the production inference pipeline. Even 

in a fully automated ML system, it is recommended to have a manual step before accepting a new 

production model. It is like pushing the red button before a significant action with high conse-

quences. Thus, at this stage, an expert looks at a report generated by the testing component. If 

everything looks good, it approves the model, and the automation can continue.

The particularities of this component will be on LLM aspects, such as the following:

• How do you implement an LLM agnostic pipeline?

• What fine-tuning techniques should you use?

• How do you scale the fine-tuning algorithm on LLMs and datasets of various sizes?

• How do you pick an LLM production candidate from multiple experiments?

• How do you test the LLM to decide whether to push it to production or not?

By the end of this book, you will know how to answer all these questions.

One last aspect we want to clarify is CT. Our modular design allows us to quickly leverage an ML 

orchestrator to schedule and trigger different system parts. For example, we can schedule the 

data collection pipeline to crawl data every week. 
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Then, we can trigger the feature pipeline when new data is available in the data warehouse and 

the training pipeline when new instruction datasets are available.

Inference pipeline
The inference pipeline is the last piece of the puzzle. It is connected to the model registry and log-

ical feature store. It loads a fine-tuned LLM from the model registry, and from the logical feature 

store, it accesses the vector DB for RAG. It takes in client requests through a REST API as queries. 

It uses the fine-tuned LLM and access to the vector DB to carry out RAG and answer the queries.

All the client queries, enriched prompts using RAG, and generated answers are sent to a prompt 

monitoring system to analyze, debug, and better understand the system. Based on specific require-

ments, the monitoring system can trigger alarms to take action either manually or automatically.

At the interface level, this component follows exactly the FTI architecture, but when zooming in, 

we can observe unique characteristics of an LLM and RAG system, such as the following:

• A retrieval client used to do vector searches for RAG

• Prompt templates used to map user queries and external information to LLM inputs

• Special tools for prompt monitoring

Final thoughts on the FTI design and the LLM Twin 
architecture
We don’t have to be highly rigid about the FTI pattern. It is a tool used to clarify how to design 

ML systems. For example, instead of using a dedicated features store just because that is how 

it is done, in our system, it is easier and cheaper to use a logical feature store based on a vector 

DB and artifacts. What was important to focus on were the required properties a feature store 

provides, such as a versioned and reusable training dataset.

Ultimately, we will explain the computing requirements of each component briefly. The data 

collection and feature pipeline are mostly CPU-based and do not require powerful machines. The 

training pipeline requires powerful GPU-based machines that could load an LLM and fine-tune it. 

The inference pipeline is somewhere in the middle. It still needs a powerful machine but is less 

compute-intensive than the training step. However, it must be tested carefully, as the inference 

pipeline directly interfaces with the user. Thus, we want the latency to be within the required 

parameters for a good user experience. However, using the FTI design is not an issue. We can pick 

the proper computing requirements for each component.
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Also, each pipeline will be scaled differently. The data and feature pipelines will be scaled horizon-

tally based on the CPU and RAM load. The training pipeline will be scaled vertically by adding more 

GPUs. The inference pipeline will be scaled horizontally based on the number of client requests.

To conclude, the presented LLM architecture checks all the technical requirements listed at the 

beginning of the section. It processes the data as requested, and the training is modular and can 

be quickly adapted to different LLMs, datasets, or fine-tuning techniques. The inference pipeline 

supports RAG and is exposed as a REST API. On the LLMOps side, the system supports dataset and 

model versioning, lineage, and reusability. The system has a monitoring service, and the whole 

ML architecture is designed with CT/CI/CD in mind.

This concludes the high-level overview of the LLM Twin architecture.

Summary
This first chapter was critical to understanding the book’s goal. As a product-oriented book that 

will walk you through building an end-to-end ML system, it was essential to understand the 

concept of an LLM Twin initially. Afterward, we walked you through what an MVP is and how 

to plan our LLM Twin MVP based on our available resources. Following this, we translated our 

concept into a practical technical solution with specific requirements. In this context, we intro-

duced the FTI design pattern and showcased its real-world application in designing systems that 

are both modular and scalable. Ultimately, we successfully applied the FTI pattern to design the 

architecture of the LLM Twin to fit all our technical requirements.

Having a clear vision of the big picture is essential when building systems. Understanding how 

a single component will be integrated into the rest of the application can be very valuable when 

working on it. We started with a more abstract presentation of the LLM Twin architecture, fo-

cusing on each component’s scope, interface, and interconnectivity.

The following chapters will explore how to implement and deploy each component. On the 

MLOps side, we will walk you through using a computing platform, orchestrator, model registry, 

artifacts, and other tools and concepts to support all MLOps best practices.
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2
Tooling and Installation

This chapter presents all the essential tools that will be used throughout the book, especially in 

implementing and deploying the LLM Twin project. At this point in the book, we don’t plan to 

present in-depth LLM, RAG, MLOps, or LLMOps concepts. We will quickly walk you through our 

tech stack and prerequisites to avoid repeating ourselves throughout the book on how to set up 

a particular tool and why we chose it. Starting with Chapter 3, we will begin exploring our LLM 

Twin use case by implementing a data collection ETL that crawls data from the internet.

In the first part of the chapter, we will present the tools within the Python ecosystem to manage 

multiple Python versions, create a virtual environment, and install the pinned dependencies re-

quired for our project to run. Alongside presenting these tools, we will also show how to install 

the LLM-Engineers-Handbook repository on your local machine (in case you want to try out the 

code yourself): https://github.com/PacktPublishing/LLM-Engineers-Handbook.

Next, we will explore all the MLOps and LLMOps tools we will use, starting with more generic tools, 

such as a model registry, and moving on to more LLM-oriented tools, such as LLM evaluation and 

prompt monitoring tools. We will also understand how to manage a project with multiple ML 

pipelines using ZenML, an orchestrator bridging the gap between ML and MLOps. Also, we will 

quickly explore what databases we will use for NoSQL and vector storage. We will show you how 

to run all these components on your local machine using Docker. Lastly, we will quickly review 

AWS and show you how to create an AWS user and access keys and install and configure the AWS 

CLI to manipulate your cloud resources programmatically. We will also explore SageMaker and 

why we use it to train and deploy our open-source LLMs.

https://github.com/PacktPublishing/LLM-Engineers-Handbook
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If you are familiar with these tools, you can safely skip this chapter. We also explain how to in-

stall the project and set up all the necessary components in the repository’s README. Thus, you 

also have the option to use that as more concise documentation if you plan to run the code while 

reading the book.

To sum all that up, in this chapter, we will explore the following topics:

• Python ecosystem and project installation

• MLOps and LLMOps tooling

• Databases for storing unstructured and vector data

• Preparing for AWS

By the end of this chapter, you will be aware of all the tools we will use across the book. Also, you 

will have learned how to install the LLM-Engineers-Handbook repository, set up the rest of the 

tools, and use them if you run the code while reading the book.

Python ecosystem and project installation
Any Python project needs three fundamental tools: the Python interpreter, dependency manage-

ment, and a task execution tool. The Python interpreter executes your Python project as expected. 

All the code within the book is tested with Python 3.11.8. You can download the Python interpreter 

from here: https://www.python.org/downloads/. We recommend installing the exact Python 

version (Python 3.11.8) to run the LLM Twin project using pyenv, making the installation process 

straightforward.

Instead of installing multiple global Python versions, we recommend managing them using pyenv, 

a Python version management tool that lets you manage multiple Python versions between 

projects. You can install it using this link: https://github.com/pyenv/pyenv?tab=readme-ov-

file#installation.

After you have installed pyenv, you can install the latest version of Python 3.11, using pyenv, as 

follows:

pyenv install 3.11.8

Now list all installed Python versions to see that it was installed correctly:

pyenv versions

You should see something like this:

# * system

https://www.python.org/downloads/
https://github.com/pyenv/pyenv?tab=readme-ov-file#installation
https://github.com/pyenv/pyenv?tab=readme-ov-file#installation
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#   3.11.8

To make Python 3.11.8 the default version across your entire system (whenever you open a new 

terminal), use the following command:

pyenv global 3.11.8

However, we aim to use Python 3.11.8 locally only in our repository. To achieve that, first, we have 

to clone the repository and navigate to it:

git clone https://github.com/PacktPublishing/LLM-Engineers-Handbook.git 

cd LLM-Engineers-Handbook

Because we defined a .python-version file within the repository, pyenv will know to pick up 

the version from that file and use it locally whenever you are working within that folder. To 

double-check that, run the following command while you are in the repository:

python --version

It should output:

# Python 3.11.8

To create the .python-version file, you must run pyenv local 3.11.8 once. Then, pyenv will 

always know to use that Python version while working within a specific directory.

Now that we have installed the correct Python version using pyenv, let’s move on to Poetry, which 

we will use as our dependency and virtual environment manager.

Poetry: dependency and virtual environment management
Poetry is one of the most popular dependency and virtual environment managers within the 

Python ecosystem. But let’s start by clarifying what a dependency manager is. In Python, a depen-

dency manager allows you to specify, install, update, and manage external libraries or packages 

(dependencies) that a project relies on. For example, this is a simple Poetry requirements file that 

uses Python 3.11 and the requests and numpy Python packages.

[tool.poetry.dependencies]

python = "^3.11"

requests = "^2.25.1"

numpy = "^1.19.5"

[build-system]
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requires = ["poetry-core"]

build-backend = "poetry.core.masonry.api"

By using Poetry to pin your dependencies, you always ensure that you install the correct version 

of the dependencies that your projects work with. Poetry, by default, saves all its requirements in 

pyproject.toml files, which are stored at the root of your repository, as you can see in the cloned 

LLM-Engineers-Handbook repository.

Another massive advantage of using Poetry is that it creates a new Python virtual environment in 

which it installs the specified Python version and requirements. A virtual environment allows you 

to isolate your project’s dependencies from your global Python dependencies and other projects. 

By doing so, you ensure there are no version clashes between projects. For example, let’s assume 

that Project A needs numpy == 1.19.5, and Project B needs numpy == 1.26.0. If you keep both 

projects in the global Python environment, that will not work, as Project B will override Project A’s 

numpy installation, which will corrupt Project A and stop it from working. Using Poetry, you can 

isolate each project in its own Python environment with its own Python dependencies, avoiding 

any dependency clashes.

You can install Poetry from here: https://python-poetry.org/docs/. We use Poetry 1.8.3 

throughout the book. Once Poetry is installed, navigate to your cloned LLM-Engineers-Hand-

book repository and run the following command to install all the necessary Python dependencies:

poetry install --without aws

This command knows to pick up all the dependencies from your repository that are listed in 

the pyproject.toml and poetry.lock files. After the installation, you can activate your Poetry 

environment by running poetry shell in your terminal or by prefixing all your CLI commands 

as follows: poetry run <your command>.

One final note on Poetry is that it locks down the exact versions of the dependency tree in the 

poetry.lock file based on the definitions added to the project.toml file. While the pyproject.

toml file may specify version ranges (e.g., requests = "^2.25.1"), the poetry.lock file records 

the exact version (e.g., requests = "2.25.1") that was installed. It also locks the versions of 

sub-dependencies (dependencies of your dependencies), which may not be explicitly listed in 

your pyproject.toml file. By locking all the dependencies and sub-dependencies to specific 

versions, the poetry.lock file ensures that all project installations use the same versions of each 

package. This consistency leads to predictable behavior, reducing the likelihood of encountering 

“works on my machine” issues.

https://python-poetry.org/docs/
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Other tools similar to Poetry are Venv and Conda for creating virtual environments. Still, they lack 

the dependency management option. Thus, you must do it through Python’s default requirements.

txt files, which are less powerful than Poetry’s lock files. Another option is Pipenv, which fea-

ture-wise is more like Poetry but slower, and uv, which is a replacement for Poetry built in Rust, 

making it blazing fast. uv has lots of potential to replace Poetry, making it worthwhile to test out: 

https://github.com/astral-sh/uv.

The final piece of the puzzle is to look at the task execution tool we used to manage all our CLI 

commands.

Poe the Poet: task execution tool
Poe the Poet is a plugin on top of Poetry that is used to manage and execute all the CLI commands 

required to interact with the project. It helps you define and run tasks within your Python proj-

ect, simplifying automation and script execution. Other popular options are Makefile, Invoke, or 

shell scripts, but Poe the Poet eliminates the need to write separate shell scripts or Makefiles for 

managing project tasks, making it an elegant way to manage tasks using the same configuration 

file that Poetry already uses for dependencies.

When working with Poe the Poet, instead of having all your commands documented in a README 

file or other document, you can add them directly to your pyproject.toml file and execute them 

in the command line with an alias. For example, using Poe the Poet, we can define the following 

tasks in a pyproject.toml file:

[tool.poe.tasks]

test = "pytest"

format = "black ."

start = "python main.py"

You can then run these tasks using the poe command:

poetry poe test

poetry poe format

poetry poe start

You can install Poe the Poet as a Poetry plugin, as follows:

poetry self add 'poethepoet[poetry_plugin]'

https://github.com/astral-sh/uv
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To conclude, using a tool as a façade over all your CLI commands is necessary to run your appli-

cation. It significantly simplifies the application’s complexity and enhances collaboration as it 

acts as out-of-the-box documentation.

Assuming you have pyenv and Poetry installed, here are all the commands you need to run to 

clone the repository and install the dependencies and Poe the Poet as a Poetry plugin:

git clone https://github.com/PacktPublishing/LLM-Engineers-Handbook.gitcd 
LLM-Engineers-Handbook

poetry install --without aws

poetry self add 'poethepoet[poetry_plugin]'

To make the project fully operational, there are still a few steps to follow, such as filling out a 

.env file with your credentials and getting tokens from OpenAI and Hugging Face. But this book 

isn’t an installation guide, so we’ve moved all these details into the repository’s README as 

they are useful only if you plan to run the repository: https://github.com/PacktPublishing/

LLM-Engineers-Handbook.

Now that we have installed our Python project, let’s present the MLOps tools we will use in the 

book. If you are already familiar with these tools, you can safely skip the following tooling section 

and move on to the Databases for storing unstructured and vector data section.

MLOps and LLMOps tooling
This section will quickly present all the MLOps and LLMOps tools we will use throughout the 

book and their role in building ML systems using MLOps best practices. At this point in the 

book, we don’t aim to detail all the MLOps components we will use to implement the LLM Twin 

use case, such as model registries and orchestrators, but only provide a quick idea of what they 

are and how to use them. As we develop the LLM Twin project throughout the book, you will 

see hands-on examples of how we use all these tools. In Chapter 11, we will dive deeply into the 

theory of MLOps and LLMOps and connect all the dots. As the MLOps and LLMOps fields are 

highly practical, we will leave the theory of these aspects to the end, as it will be much easier to 

understand it after you go through the LLM Twin use case implementation.

Also, this section is not dedicated to showing you how to set up each tool. It focuses primarily on 

what each tool is used for and highlights the core features used throughout this book.

Still, using Docker, you can quickly run the whole infrastructure locally. If you want to run the 

steps within the book yourself, you can host the application locally with these three simple steps:

1. Have Docker 27.1.1 (or higher) installed.

https://github.com/PacktPublishing/LLM-Engineers-Handbook
https://github.com/PacktPublishing/LLM-Engineers-Handbook
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2. Fill your .env file with all the necessary credentials as explained in the repository README.

3. Run poetry poe local-infrastructure-up to locally spin up ZenML (http://127.0.0.1:8237/) 

and the MongoDB and Qdrant databases.

You can read more details on how to run everything locally in the LLM-Engineers-Handbook re-

pository README: https://github.com/PacktPublishing/LLM-Engineers-Handbook. Within 

the book, we will also show you how to deploy each component to the cloud.

Hugging Face: model registry
A model registry is a centralized repository that manages ML models throughout their lifecycle. 

It stores models along with their metadata, version history, and performance metrics, serving 

as a single source of truth. In MLOps, a model registry is crucial for tracking, sharing, and docu-

menting model versions, facilitating team collaboration. Also, it is a fundamental element in the 

deployment process as it integrates with continuous integration and continuous deployment

(CI/CD) pipelines.

We used Hugging Face as our model registry, as we can leverage its ecosystem to easily share our 

fine-tuned LLM Twin models with anyone who reads the book. Also, by following the Hugging 

Face model registry interface, we can easily integrate the model with all the frameworks around 

the LLMs ecosystem, such as Unsloth for fine-tuning and SageMaker for inference.

Our fine-tuned LLMs are available on Hugging Face at:

• TwinLlama 3�1 8B (after fine-tuning): https://huggingface.co/mlabonne/TwinLlama-

3.1-8B

• TwinLlama 3�1 8B DPO (after preference alignment): https://huggingface.co/

mlabonne/TwinLlama-3.1-8B-DPO

Figure 2.1: Hugging Face model registry example

https://github.com/PacktPublishing/LLM-Engineers-Handbook
https://huggingface.co/mlabonne/TwinLlama-3.1-8B
https://huggingface.co/mlabonne/TwinLlama-3.1-8B
https://huggingface.co/mlabonne/TwinLlama-3.1-8B-DPO
https://huggingface.co/mlabonne/TwinLlama-3.1-8B-DPO
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For a quick demo, we have them available on Hugging Face Spaces:

• TwinLlama 3�1 8B: https://huggingface.co/spaces/mlabonne/TwinLlama-3.1-8B

• TwinLlama 3�1 8B DPO: https://huggingface.co/spaces/mlabonne/TwinLlama-3.1-

8B-DPO

Most ML tools provide model registry features. For example, ZenML, Comet, and SageMaker, which 

we will present in future sections, also offer their own model registries. They are good options, 

but we picked Hugging Face solely because of its ecosystem, which provides easy shareability and 

integration throughout the open-source environment. Thus, you will usually select the model 

registry that integrates the most with your project’s tooling and requirements.

ZenML: orchestrator, artifacts, and metadata
ZenML acts as the bridge between ML and MLOps. Thus, it offers multiple MLOps features that 

make your ML pipeline traceability, reproducibility, deployment, and maintainability easier. At 

its core, it is designed to create reproducible workflows in machine learning. It addresses the 

challenge of transitioning from exploratory research in Jupyter notebooks to a production-ready 

ML environment. It tackles production-based replication issues, such as versioning difficulties, 

reproducing experiments, organizing complex ML workflows, bridging the gap between train-

ing and deployment, and tracking metadata. Thus, ZenML’s main features are orchestrating ML 

pipelines, storing and versioning ML pipelines as outputs, and attaching metadata to artifacts 

for better observability.

Instead of being another ML platform, ZenML introduced the concept of a stack, which allows 

you to run ZenML on multiple infrastructure options. A stack will enable you to connect ZenML 

to different cloud services, such as:

• An orchestrator and compute engine (for example, AWS SageMaker or Vertex AI)

• Remote storage (for instance, AWS S3 or Google Cloud Storage buckets)

• A container registry (for example, Docker Registry or AWS ECR)

Thus, ZenML acts as a glue that brings all your infrastructure and tools together in one place 

through its stack feature, allowing you to quickly iterate through your development processes and 

easily monitor your entire ML system. The beauty of this is that ZenML doesn’t vendor-lock you 

into any cloud platform. It completely abstracts away the implementation of your Python code 

from the infrastructure it runs on. For example, in our LLM Twin use case, we used the AWS stack:

• SageMaker as our orchestrator and compute

https://huggingface.co/spaces/mlabonne/TwinLlama-3.1-8B
https://huggingface.co/spaces/mlabonne/TwinLlama-3.1-8B-DPO
https://huggingface.co/spaces/mlabonne/TwinLlama-3.1-8B-DPO
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• S3 as our remote storage used to store and track artifacts

• ECR as our container registry

However, the Python code contains no S3 or ECR particularities, as ZenML takes care of them. 

Thus, we can easily switch to other providers, such as Google Cloud Storage or Azure. For more 

details on ZenML stacks, you can start here: https://docs.zenml.io/user-guide/production-

guide/understand-stacks.

The local version of the ZenML server comes installed as a Python package. Thus, when running 

poetry install, it installs a ZenML debugging server that you can use locally. In Chapter 11, we 

will show you how to use their cloud serverless option to deploy the ML pipelines to AWS.

Orchestrator
An orchestrator is a system that automates, schedules, and coordinates all your ML pipelines. It 

ensures that each pipeline—such as data ingestion, preprocessing, model training, and deploy-

ment—executes in the correct order and handles dependencies efficiently. By managing these 

processes, an orchestrator optimizes resource utilization, handles failures gracefully, and enhances 

scalability, making complex ML pipelines more reliable and easier to manage.

How does ZenML work as an orchestrator? It works with pipelines and steps. A pipeline is a 

high-level object that contains multiple steps. A function becomes a ZenML pipeline by being 

decorated with @pipeline, and a step when decorated with @step. This is a standard pattern 

when using orchestrators: you have a high-level function, often called a pipeline, that calls mul-

tiple units/steps/tasks.

Let’s explore how we can implement a ZenML pipeline with one of the ML pipelines implemented 

for the LLM Twin project. In the code snippet below, we defined a ZenML pipeline that queries 

the database for a user based on its full name and crawls all the provided links under that user:

from zenml import pipeline

from steps.etl import crawl_links, get_or_create_user

@pipeline

We will focus only on the ZenML features used throughout the book, such as orches-

trating, artifacts, and metadata. For more details on ZenML, check out their starter 

guide: https://docs.zenml.io/user-guide/starter-guide.

https://docs.zenml.io/user-guide/production-guide/understand-stacks
https://docs.zenml.io/user-guide/production-guide/understand-stacks
https://docs.zenml.io/user-guide/starter-guide


Tooling and Installation34

def digital_data_etl(user_full_name: str, links: list[str]) -> None:

    user = get_or_create_user(user_full_name)

    crawl_links(user=user, links=links)

You can run the pipeline with the following CLI command: poetry poe run-digital-data-etl. 

To visualize the pipeline run, you can go to your ZenML dashboard (at http://127.0.0.1:8237/) 

and, on the left panel, click on the Pipelines tab and then on the digital_data_etl pipeline, as 

illustrated in Figure 2.2:

Figure 2.2: ZenML Pipelines dashboard

After clicking on the digital_data_etl pipeline, you can visualize all the previous and current 

pipeline runs, as seen in Figure 2.3. You can see which one succeeded, failed, or is still running. 

Also, you can see the stack used to run the pipeline, where the default stack is the one used to 

run your ML pipelines locally.
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Figure 2.3: ZenML digital_data_etl pipeline dashboard. Example of a specific pipeline

Now, after clicking on the latest digital_data_etl pipeline run (or any other run that succeeded or 

is still running), we can visualize the pipeline’s steps, outputs, and insights, as illustrated in Figure 

2.4. This structure is often called a directed acyclic graph (DAG). More on DAGs in Chapter 11.

Figure 2.4: ZenML digital_data_etl pipeline run dashboard (example of a specific pipeline run)
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By clicking on a specific step, you can get more insights into its code and configuration. It even 

aggregates the logs output by that specific step to avoid switching between tools, as shown in 

Figure 2.5.

Figure 2.5: Example of insights from a specific step of the digital_data_etl pipeline run

Now that we understand how to define a ZenML pipeline and how to look it up in the dashboard, 

let’s quickly look at how to define a ZenML step. In the code snippet below, we defined the get_

or_create_user() step, which works just like a normal Python function but is decorated with 

@step. We won’t go into the details of the logic, as we will cover the ETL logic in Chapter 3. For 

now, we will focus only on the ZenML functionality.

from loguru import logger

from typing_extensions import Annotated

from zenml import get_step_context, step

from llm_engineering.application import utils
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from llm_engineering.domain.documents import UserDocument

@step

def get_or_create_user(user_full_name: str) -> Annotated[UserDocument, 
"user"]:

    logger.info(f"Getting or creating user: {user_full_name}")

    first_name, last_name = utils.split_user_full_name(user_full_name)

    user = UserDocument.get_or_create(first_name=first_name, last_
name=last_name)

    return user

Within a ZenML step, you can define any Python logic your use case needs. In this simple example, 

we are just creating or retrieving a user, but we could replace that code with anything, starting 

from data collection to feature engineering and training. What is essential to notice is that to 

integrate ZenML with your code, you have to write modular code, where each function does just 

one thing. The modularity of your code makes it easy to decorate your functions with @step and 

then glue multiple steps together within a main function decorated with @pipeline. One design 

choice that will impact your application is deciding the granularity of each step, as each will run 

as a different unit on a different machine when deployed in the cloud.

To decouple our code from ZenML, we encapsulated all the application and domain logic into 

the llm_engineering Python module. We also defined the pipelines and steps folders, where 

we defined our ZenML logic. Within the steps module, we only used what we needed from the 

llm_engineering Python module (similar to how you use a Python package). In the pipelines

module, we only aggregated ZenML steps to glue them into the final pipeline. Using this de-

sign, we can easily swap ZenML with another orchestrator or use our application logic in other 

use cases, such as a REST API. We only have to replace the ZenML code without touching the 

llm_engineering module where all our logic resides. 
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This folder structure is reflected at the root of the LLM-Engineers-Handbook repository, as il-

lustrated in Figure 2.6:

Figure 2.6: LLM-Engineers-Handbook repository folder structure

One last thing to consider when writing ZenML steps is that if you return a value, it should be se-

rializable. ZenML can serialize most objects that can be reduced to primitive data types, but there 

are a few exceptions. For example, we used UUID types as IDs throughout the code, which aren’t 

natively supported by ZenML. Thus, we had to extend ZenML’s materializer to support UUIDs. 

We raised this issue to ZenML. Hence, in future ZenML versions, UUIDs will be supported, but it 

was an excellent example of the serialization aspect of transforming function outputs in artifacts.
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Artifacts and metadata
As mentioned in the previous section, ZenML transforms any step output into an artifact. First, 

let’s quickly understand what an artifact is. In MLOps, an artifact is any file(s) produced during 

the machine learning lifecycle, such as datasets, trained models, checkpoints, or logs. Artifacts 

are crucial for reproducing experiments and deploying models. We can transform anything into 

an artifact. For example, the model registry is a particular use case for an artifact. Thus, artifacts 

have these unique properties: they are versioned, sharable, and have metadata attached to them 

to understand what’s inside quickly. For example, when wrapping your dataset with an artifact, 

you can add to its metadata the size of the dataset, the train-test split ratio, the size, types of labels, 

and anything else useful to understand what’s inside the dataset without actually downloading it.

Let’s circle back to our digital_data_etl pipeline example, where we had as a step output an ar-

tifact, the crawled links, which are an artifact, as seen in Figure 2.7

Figure 2.7: ZenML artifact example using the digital_data_etl pipeline as an example
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By clicking on the crawled_links artifact and navigating to the Metadata tab, we can quickly 

see all the domains we crawled for a particular author, the number of links we crawled for each 

domain, and how many were successful, as illustrated in Figure 2.8:

Figure 2.8: ZenML metadata example using the digital_data_etl pipeline as an example

A more interesting example of an artifact and its metadata is the generated dataset artifact. In 

Figure 2.9, we can visualize the metadata of the instruct_datasets artifact, which was auto-

matically generated and will be used to fine-tune the LLM Twin model. More details on the 

instruction datasets are in Chapter 5. For now, we want to highlight that within the dataset’s 

metadata, we have precomputed a lot of helpful information about it, such as how many data 

categories it contains, its storage size, and the number of samples per training and testing split. 
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Figure 2.9: ZenML metadata example for the instruct_datasets artifact

The metadata is manually added to the artifact, as shown in the code snippet below. Thus, you 

can precompute and attach to the artifact’s metadata anything you consider helpful for dataset 

discovery across your business and projects:

… # More imports

from zenml import ArtifactConfig, get_step_context, step

@step

def generate_intruction_dataset(

    prompts: Annotated[dict[DataCategory, 
list[GenerateDatasetSamplesPrompt]], "prompts"]) -> Annotated[
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    InstructTrainTestSplit,

    ArtifactConfig(

        name="instruct_datasets",

        tags=["dataset", "instruct", "cleaned"],

    ),

]:

    datasets = … # Generate datasets

    step_context = get_step_context()

    step_context.add_output_metadata(output_name="instruct_datasets", 
metadata=_get_metadata_instruct_dataset(datasets))

    return datasets

def _get_metadata_instruct_dataset(datasets: InstructTrainTestSplit) -> 
dict[str, Any]:

    instruct_dataset_categories = list(datasets.train.keys())

    train_num_samples = {

        category: instruct_dataset.num_samples for category, instruct_
dataset in datasets.train.items()

    }

    test_num_samples = {category: instruct_dataset.num_samples for 
category, instruct_dataset in datasets.test.items()}

    return {

        "data_categories": instruct_dataset_categories,

        "test_split_size": datasets.test_split_size,

        "train_num_samples_per_category": train_num_samples,

        "test_num_samples_per_category": test_num_samples,

    }

Also, you can easily download and access a specific version of the dataset using its Universally 

Unique Identifier (UUID), which you can find using the ZenML dashboard or CLI:

from zenml.client import Client

artifact = Client().get_artifact_version('8bba35c4-8ff9-4d8f-a039-
08046efc9fdc')

loaded_artifact = artifact.load()
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The last step in exploring ZenML is understanding how to run and configure a ZenML pipeline.

How to run and configure a ZenML pipeline
All the ZenML pipelines can be called from the run.py file, accessed at tools/run.py in our GitHub 

repository. Within the run.py file, we implemented a simple CLI that allows you to specify what 

pipeline to run. For example, to call the digital_data_etl pipeline to crawl Maxime’s content, 

you have to run:

python -m tools.run --run-etl --no-cache --etl-config-filename digital_
data_etl_maxime_labonne.yaml

Or, to crawl Paul’s content, you can run:

python -m tools.run --run-etl --no-cache --etl-config-filename digital_
data_etl_paul_iusztin.yaml

As explained when introducing Poe the Poet, all our CLI commands used to interact with the proj-

ect will be executed through Poe to simplify and standardize the project. Thus, we encapsulated 

these Python calls under the following poe CLI commands:

poetry poe run-digital-data-etl-maxime

poetry poe run-digital-data-etl-paul

We only change the ETL config file name when scraping content for different people. ZenML 

allows us to inject specific configuration files at runtime as follows:

config_path = root_dir / "configs" / etl_config_filename

assert config_path.exists(), f"Config file not found: { config_path }"

run_args_etl = {

"config_path": config_path,

"run_name": f"digital_data_etl_run_{dt.now().
strftime('%Y_%m_%d_%H_%M_%S')}"

}

 digital_data_etl.with_options()(**run_args_etl)

In the config file, we specify all the parameters that will input the pipeline as parameters. For ex-

ample, the configs/digital_data_etl_maxime_labonne.yaml configuration file looks as follows:

parameters:

  user_full_name: Maxime Labonne # [First Name(s)] [Last Name]

  links:

    # Personal Blog
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    - https://mlabonne.github.io/blog/posts/2024-07-29_Finetune_Llama31.
html

    - https://mlabonne.github.io/blog/posts/2024-07-15_The_Rise_of_
Agentic_Data_Generation.html

    # Substack

    - https://maximelabonne.substack.com/p/uncensor-any-llm-with-
abliteration-d30148b7d43e

    … # More links

Where the digital_data_etl function signature looks like this:

@pipeline

def digital_data_etl(user_full_name: str, links: list[str]) -> str:

This approach allows us to configure each pipeline at runtime without modifying the code. We 

can also clearly track the inputs for all our pipelines, ensuring reproducibility. As seen in Figure 

2.10, we have one or more configs for each pipeline.

Figure 2.10: ZenML pipeline configs
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Other popular orchestrators similar to ZenML that we’ve personally tested and consider powerful 

are Airflow, Prefect, Metaflow, and Dagster. Also, if you are a heavy user of Kubernetes, you can 

opt for Agro Workflows or Kubeflow, the latter of which works only on top of Kubernetes. We still 

consider ZenML the best trade-off between ease of use, features, and costs. Also, none of these 

tools offer the stack feature that is offered by ZenML, which allows it to avoid vendor-locking 

you in to any cloud ecosystem.

In Chapter 11, we will explore in more depth how to leverage an orchestrator to implement MLOps 

best practices. But now that we understand ZenML, what it is helpful for, and how to use it, let’s 

move on to the experiment tracker.

Comet ML: experiment tracker
Training ML models is an entirely iterative and experimental process. Unlike traditional software 

development, it involves running multiple parallel experiments, comparing them based on pre-

defined metrics, and deciding which one should advance to production. An experiment tracking 

tool allows you to log all the necessary information, such as metrics and visual representations 

of your model predictions, to compare all your experiments and quickly select the best model. 

Our LLM project is no exception.

As illustrated in Figure 2.11, we used Comet to track metrics such as training and evaluation loss 

or the value of the gradient norm across all our experiments.

Figure 2.11: Comet ML training metrics example
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Using an experiment tracker, you can go beyond training and evaluation metrics and log your 

training hyperparameters to track different configurations between experiments. 

It also logs out-of-the-box system metrics such as GPU, CPU, or memory utilization to give you 

a clear picture of what resources you need during training and where potential bottlenecks slow 

down your training, as seen in Figure 2.12.

Figure 2.12: Comet ML system metrics example

You don’t have to set up Comet locally. We will use their online version for free without any 

constraints throughout this book. Also, if you want to look more in-depth into the Comet ML 

experiment tracker, we made the training experiments tracked with Comet ML public while 

fine-tuning our LLM Twin models. You can access them here: https://www.comet.com/mlabonne/

llm-twin-training/view/new/panels.

Other popular experiment trackers are W&B, MLflow, and Neptune. We’ve worked with all of 

them and can state that they all have mostly the same features, but Comet ML differentiates it-

self through its ease of use and intuitive interface. Let’s move on to the final piece of the MLOps 

puzzle: Opik for prompt monitoring.

Opik: prompt monitoring
You cannot use standard tools and techniques when logging and monitoring prompts. The reason 

for this is complicated. We will dig into it in Chapter 11. However, to quickly give you some under-

standing, you cannot use standard logging tools as prompts are complex and unstructured chains. 

https://www.comet.com/mlabonne/llm-twin-training/view/new/panels
https://www.comet.com/mlabonne/llm-twin-training/view/new/panels
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When interacting with an LLM application, you chain multiple input prompts and the generated 

output into a trace, where one prompt depends on previous prompts. 

Thus, instead of plain text logs, you need an intuitive way to group these traces into a specialized 

dashboard that makes debugging and monitoring traces of prompts easier.

We used Opik, an open-source tool made by Comet, as our prompt monitoring tool because it fol-

lows Comet’s philosophy of simplicity and ease of use, which is currently relatively rare in the LLM 

landscape. Other options offering similar features are Langfuse (open source, https://langfuse.

com), Galileo (not open source, rungalileo.io), and LangSmith (not open source, https://www.

langchain.com/langsmith), but we found their solutions more cumbersome to use and imple-

ment. Opik, along with its serverless option, also provides a free open-source version that you 

have complete control over. You can read more on Opik at https://github.com/comet-ml/opik.

Databases for storing unstructured and vector data
We also want to present the NoSQL and vector databases we will use within our examples. When 

working locally, they are already integrated through Docker. Thus, when running poetry poe 

local-infrastructure-up, as instructed a few sections above, local images of Docker for both 

databases will be pulled and run on your machine. Also, when deploying the project, we will 

show you how to use their serverless option and integrate it with the rest of the LLM Twin project.

MongoDB: NoSQL database
MongoDB is one of today’s most popular, robust, fast, and feature-rich NoSQL databases. It 

integrates well with most cloud ecosystems, such as AWS, Google Cloud, Azure, and Databricks. 

Thus, using MongoDB as our NoSQL database was a no-brainer.

When we wrote this book, MongoDB was used by big players such as Novo Nordisk, Delivery 

Hero, Okta, and Volvo. This widespread adoption suggests that MongoDB will remain a leading 

NoSQL database for a long time.

We use MongoDB as a NoSQL database to store the raw data we collect from the internet before 

processing it and pushing it into the vector database. As we work with unstructured text data, 

the flexibility of the NoSQL database fits like a charm.

Qdrant: vector database
Qdrant (https://qdrant.tech/) is one of the most popular, robust, and feature-rich vector 

databases. We could have used almost any vector database for our small MVP, but we wanted to 

pick something light and likely to be used in the industry for many years to come. 

https://langfuse.com
https://langfuse.com
rungalileo.io
https://www.langchain.com/langsmith
https://www.langchain.com/langsmith
https://github.com/comet-ml/opik
https://qdrant.tech/
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We will use Qdrant to store the data from MongoDB after it’s processed and transformed for 

GenAI usability.

Qdrant is used by big players such as X (formerly Twitter), Disney, Microsoft, Discord, and John-

son & Johnson. Thus, it is highly probable that Qdrant will remain in the vector database game 

for a long time.

While writing the book, other popular options were Milvus, Redis, Weaviate, Pinecone, Chroma, 

and pgvector (a PostgreSQL plugin for vector indexes). We found that Qdrant offers the best 

trade-off between RPS, latency, and index time, making it a solid choice for many generative AI 

applications.

Comparing all the vector databases in detail could be a chapter in itself. We don’t want to do 

that here. Still, if curious, you can check the Vector DB Comparison resource from Superlinked at 

https://superlinked.com/vector-db-comparison, which compares all the top vector databases 

in terms of everything you can think about, from the license and release year to database features, 

embedding models, and frameworks supported.

Preparing for AWS
This last part of the chapter will focus on setting up an AWS account (if you don’t already have 

one), an AWS access key, and the CLI. Also, we will look into what SageMaker is and why we use it.

We picked AWS as our cloud provider because it’s the most popular out there and the cloud in 

which we (the writers) have the most experience. The reality is that other big cloud providers, 

such as GCP or Azure, offer similar services. Thus, depending on your specific application, there is 

always a trade-off between development time (in which you have the most experience), features, 

and costs. But for our MVP, AWS, it’s the perfect option as it provides robust features for every-

thing we need, such as S3 (object storage), ECR (container registry), and SageMaker (compute 

for training and inference).

Setting up an AWS account, an access key, and the CLI
As AWS could change its UI/UX, the best way to instruct you on how to create an AWS account is 

by redirecting you to their official tutorial: https://docs.aws.amazon.com/accounts/latest/

reference/manage-acct-creating.html.

After successfully creating an AWS account, you can access the AWS console at http://console.

aws.amazon.com. Select Sign in using root user email (found under the Sign in button), then 

enter your account’s email address and password.

https://superlinked.com/vector-db-comparison
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-creating.html
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-creating.html
http://console.aws.amazon.com
http://console.aws.amazon.com
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Next, we must generate access keys to access AWS programmatically. The best option to do so is 

first to create an IAM user with administrative access as described in this AWS official tutorial: 

https://docs.aws.amazon.com/streams/latest/dev/setting-up.html

For production accounts, it is best practice to grant permissions with a policy of least privilege, 

giving each user only the permissions they require to perform their role. However, to simplify the 

setup of our test account, we will use the AdministratorAccess managed policy, which gives our 

user full access, as explained in the tutorial above and illustrated in Figure 2.13.

Figure 2.13: IAM user permission policies example

Next, you have to create an access key for the IAM user you just created using the following tutorial: 

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html.

The access keys will look as follows:

aws_access_key_id = <your_access_key_id>

aws_secret_access_key = <your_secret_access_key>

Just be careful to store them somewhere safe, as you won’t be able to access them after you cre-

ate them. Also, be cautious with who you share them, as they could be used to access your AWS 

account and manipulate various AWS resources.

The last step is to install the AWS CLI and configure it with your newly created access keys. You 

can install the AWS CLI using the following link: https://docs.aws.amazon.com/cli/latest/

userguide/getting-started-install.html.

After installing the AWS CLI, you can configure it by running aws configure. Here is an example 

of our AWS configuration:

[default]

aws_access_key_id = *************

aws_secret_access_key = ************

https://docs.aws.amazon.com/streams/latest/dev/setting-up.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
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region = eu-central-1

output = json

For more details on how to configure the AWS CLI, check out the following tutorial: https://

docs.aws.amazon.com/cli/v1/userguide/cli-configure-files.html.

Also, to configure the project with your AWS credentials, you must fill in the following variables 

within your .env file:

AWS_REGION="eu-central-1" # Change it with your AWS region. By default, we 
use "eu-central-1".

AWS_ACCESS_KEY="<your_aws_access_key>"

AWS_SECRET_KEY="<your_aws_secret_key>"

SageMaker: training and inference compute
The last topic of this chapter is understanding SageMaker and why we decided to use it. SageMaker 

is an ML platform used to train and deploy ML models. An official definition is as follows: AWS 

SageMaker is a fully managed machine learning service by AWS that enables developers and data 

scientists to build, train, and deploy machine learning models at scale. It simplifies the process 

by handling the underlying infrastructure, allowing users to focus on developing high-quality 

models efficiently.

An important note about costs associated with hands-on tasks in this book

All the cloud services used across the book stick to their freemium option, except AWS. 

Thus, if you use a personal AWS account, you will be responsible for AWS costs as you 

follow along in this book. While some services may fall under AWS Free Tier usage, 

others will not. Thus, you are responsible for checking your billing console regularly.

Most of the costs will come when testing SageMaker for training and inference. Based 

on our tests, the AWS costs can vary between $50 and $100 using the specifications 

provided in this book and repository.

See the AWS documentation on setting up billing alarms to monitor your costs 

at https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

monitor_estimated_charges_with_cloudwatch.html.

https://docs.aws.amazon.com/cli/v1/userguide/cli-configure-files.html
https://docs.aws.amazon.com/cli/v1/userguide/cli-configure-files.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/monitor_estimated_charges_with_cloudwatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/monitor_estimated_charges_with_cloudwatch.html
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We will use SageMaker to fine-tune and operationalize our training pipeline on clusters of GPUs 

and to deploy our custom LLM Twin model as a REST API that can be accessed in real time from 

anywhere in the world.

Why AWS SageMaker?
We must also discuss why we chose AWS SageMaker over simpler and more cost-effective options, 

such as AWS Bedrock. First, let’s explain Bedrock and its benefits.

Amazon Bedrock is a serverless solution for deploying LLMs. Serverless means that there are no 

servers or infrastructure to manage. It provides pre-trained models, which you can access directly 

through API calls. When we wrote this book, they provided support only for Mistral, Flan, Llama 

2, and Llama 3 (quite a limited list of options). You can send input data and receive predictions 

from the models without managing the underlying infrastructure or software. This approach sig-

nificantly reduces the complexity and time required to integrate AI capabilities into applications, 

making it more accessible to developers with limited machine learning expertise. However, this 

ease of integration comes at the cost of limited customization options, as you’re restricted to the 

pre-trained models and APIs provided by Amazon Bedrock. In terms of pricing, Bedrock uses a 

simple pricing model based on the number of API calls. This straightforward pricing structure 

makes it more efficient to estimate and control costs.

Meanwhile, SageMaker provides a comprehensive platform for building, training, and deploying 

machine learning models. It allows you to customize your ML processes entirely or even use 

the platform for research. That’s why SageMaker is mainly used by data scientists and machine 

learning experts who know how to program, understand machine learning concepts, and are 

comfortable working with cloud platforms such as AWS. SageMaker is a double-edged sword 

regarding costs, following a pay-as-you-go pricing model similar to most AWS services. This 

means you have to pay for the usage of computing resources, storage, and any other services 

required to build your applications.

In contrast to Bedrock, even if the SageMaker endpoint is not used, you will still pay for the 

deployed resources on AWS, such as online EC2 instances. Thus, you have to design autoscaling 

systems that delete unused resources. To conclude, Bedrock offers an out-of-the-box solution 

that allows you to quickly deploy an API endpoint powered by one of the available foundation 

models. Meanwhile, SageMaker is a multi-functional platform enabling you to customize your 

ML logic fully.
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So why did we choose SageMaker over Bedrock? Bedrock would have been an excellent solution 

for quickly prototyping something, but this is a book on LLM engineering, and our goal is to dig 

into all the engineering aspects that Bedrock tries to mask away. Thus, we chose SageMaker 

because of its high level of customizability, allowing us to show you all the engineering required 

to deploy a model.

In reality, even SageMaker isn’t fully customizable. If you want complete control over your de-

ployment, use EKS, AWS’s Kubernetes self-managed service. In this case, you have direct access 

to the virtual machines, allowing you to fully customize how you build your ML pipelines, how 

they interact, and how you manage your resources. You could do the same thing with AWS ECS, 

AWS’s version of Kubernetes. Using EKS or ECS, you could also reduce the costs, as these services 

cost considerably less.

To conclude, SageMaker strikes a balance between complete control and customization and a fully 

managed service that hides all the engineering complexity behind the scenes. This balance ensures 

that you have the control you need while also benefiting from the managed service’s convenience.

Summary
In this chapter, we reviewed the core tools used across the book. First, we understood how to 

install the correct version of Python that supports our repository. Then, we looked over how to 

create a virtual environment and install all the dependencies using Poetry. Finally, we understood 

how to use a task execution tool like Poe the Poet to aggregate all the commands required to run 

the application.

The next step was to review all the tools used to ensure MLOps best practices, such as a model 

registry to share our models, an experiment tracker to manage our training experiments, an 

orchestrator to manage all our ML pipelines and artifacts, and metadata to manage all our files 

and datasets. We also understood what type of databases we need to implement the LLM Twin 

use case. Finally, we explored the process of setting up an AWS account, generating an access 

key, and configuring the AWS CLI for programmatic access to the AWS cloud. We also gained a 

deep understanding of AWS SageMaker and the reasons behind choosing it to build our LLM 

Twin application.

In the next chapter, we will explore the implementation of the LLM Twin project by starting with 

the data collection ETL that scrapes posts, articles, and repositories from the internet and stores 

them in a data warehouse.
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Join our book’s Discord space
Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/llmeng
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3
Data Engineering

This chapter will begin exploring the LLM Twin project in more depth. We will learn how to 

design and implement the data collection pipeline to gather the raw data we will use in all our 

LLM use cases, such as fine-tuning or inference. As this is not a book on data engineering, we 

will keep this chapter short and focus only on what is strictly necessary to collect the required 

raw data. Starting with Chapter 4, we will concentrate on LLMs and GenAI, exploring its theory 

and concrete implementation details.

When working on toy projects or doing research, you usually have a static dataset with which 

you work. But in our LLM Twin use case, we want to mimic a real-world scenario where we must 

gather and curate the data ourselves. Thus, implementing our data pipeline will connect the dots 

regarding how an end-to-end ML project works. This chapter will explore how to design and 

implement an Extract, Transform, Load (ETL) pipeline that crawls multiple social platforms, 

such as Medium, Substack, or GitHub, and aggregates the gathered data into a MongoDB data 

warehouse. We will show you how to implement various crawling methods, standardize the data, 

and load it into a data warehouse.

We will begin by designing the LLM Twin’s data collection pipeline and explaining the architecture 

of the ETL pipeline. Afterward, we will move directly to implementing the pipeline, starting with 

ZenML, which will orchestrate the entire process. We will investigate the crawler implementation 

and understand how to implement a dispatcher layer that instantiates the right crawler class 

based on the domain of the provided link while following software best practices. Next, we will 

learn how to implement each crawler individually. Also, we will show you how to implement 

a data layer on top of MongoDB to structure all our documents and interact with the database.
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Finally, we will explore how to run the data collection pipeline using ZenML and query the col-

lected data from MongoDB.

Thus, in this chapter, we will study the following topics:

• Designing the LLM Twin’s data collection pipeline

• Implementing the LLM Twin’s data collection pipeline

• Gathering raw data into the data warehouse

By the end of this chapter, you will know how to design and implement an ETL pipeline to extract, 

transform, and load raw data ready to be ingested into the ML application.

Designing the LLM Twin’s data collection pipeline
Before digging into the implementation, we must understand the LLM Twin’s data collection ETL 

architecture, illustrated in Figure 3.1. We must explore what platforms we will crawl to extract 

data from and how we will design our data structures and processes. However, the first step is 

understanding how our data collection pipeline maps to an ETL process.

An ETL pipeline involves three fundamental steps:

1. We extract data from various sources. We will crawl data from platforms like Medium, 

Substack, and GitHub to gather raw data.

2. We transform this data by cleaning and standardizing it into a consistent format suitable 

for storage and analysis.

3. We load the transformed data into a data warehouse or database.

For our project, we use MongoDB as our NoSQL data warehouse. Although this is not a standard 

approach, we will explain the reasoning behind this choice shortly.
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Figure 3.1: LLM Twin’s data collection ETL pipeline architecture

We want to design an ETL pipeline that inputs a user and a list of links as input. Afterward, it 

crawls each link individually, standardizes the collected content, and saves it under that specific 

author in a MongoDB data warehouse. 
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Hence, the signature of the data collection pipeline will look as follows:

• Input: A list of links and their associated user (the author)

• Output: A list of raw documents stored in the NoSQL data warehouse

We will use user and author interchangeably, as in most scenarios across the ETL pipeline, a 

user is the author of the extracted content. However, within the data warehouse, we have only 

a user collection.

The ETL pipeline will detect the domain of each link, based on which it will call a specialized 

crawler. We implemented four different crawlers for three different data categories, as seen in 

Figure 3.2. First, we will explore the three fundamental data categories we will work with across 

the book. All our collected documents can be boiled down to an article, repository (or code), and 

post. It doesn’t matter where the data comes from. We are primarily interested in the document’s 

format. In most scenarios, we will have to process these data categories differently. Thus, we 

created a different domain entity for each, where each entity will have its class and collection 

in MongoDB. As we save the source URL within the document’s metadata, we will still know its 

source and can reference it in our GenAI use cases.

Figure 3.2: The relationship between the crawlers and the data categories
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Our codebase supports four different crawlers:

• Medium crawler: Used to collect data from Medium. It outputs an article document. It 

logs in to Medium and crawls the HTML of the article’s link. Then, it extracts, cleans, and 

normalizes the text from the HTML and loads the standardized text of the article into the 

NoSQL data warehouse.

• Custom article crawler: It performs similar steps to the Medium crawler but is a more 

generic implementation for collecting articles from various sites. Thus, as it doesn’t im-

plement any particularities of any platform, it doesn’t perform the login step and blindly 

gathers all the HTML from a particular link. This is enough for articles freely available 

online, which you can find on Substack and people’s blogs. We will use this crawler as a 

safety net when the link’s domain isn’t associated with the other supported crawlers. For 

example, when providing a Substack link, it will default to the custom article crawler, but 

when providing a Medium URL, it will use the Medium crawler.

• GitHub crawler: This collects data from GitHub. It outputs a repository document. It 

clones the repository, parses the repository file tree, cleans and normalizes the files, and 

loads them to the database.

• LinkedIn crawler: This is used to collect data from LinkedIn. It outputs multiple post 

documents. It logs in to LinkedIn, navigates to the user’s feed, and crawls all the user’s 

latest posts. For each post, it extracts its HTML, cleans and normalizes it, and loads it to 

MongoDB.

In the next section, we will examine each crawler’s implementation in detail. For now, note that 

each crawler accesses a specific platform or site in a particular way and extracts HTML from it. 

Afterward, all the crawlers parse the HTML, extract the text from it, and clean and normalize it 

so it can be stored in the data warehouse under the same interface.

By reducing all the collected data to three data categories and not creating a new data category 

for every new data source, we can easily extend this architecture to multiple data sources with 

minimal effort. For example, if we want to start collecting data from X, we only have to imple-

ment a new crawler that outputs a post document, and that’s it. The rest of the code will remain 

untouched. Otherwise, if we introduced the source dimension in the class and document struc-

ture, we would have to add code to all downstream layers to support any new data source. For 

example, we would have to implement a new document class for each new source and adapt the 

feature pipeline to support it.
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For our proof of concept, crawling a few hundred documents is enough, but if we want to scale it 

to a real-world product, we would probably need more data sources to crawl from. LLMs are da-

ta-hungry. Thus, you need thousands of documents for ideal results instead of just a few hundred. 

But in many projects, it’s an excellent strategy to implement an end-to-end project version that 

isn’t the most accurate and iterate through it later. Thus, by using this architecture, you can easily 

add more data sources in future iterations to gather a larger dataset. More on LLM fine-tuning 

and dataset size will be covered in the next chapter.

How is the ETL process connected to the feature pipeline? The feature pipeline ingests the raw 

data from the MongoDB data warehouse, cleans it further, processes it into features, and stores it 

in the Qdrant vector DB to make it accessible for the LLM training and inference pipelines. Chap-

ter 4 provides more information on the feature pipeline. The ETL process is independent of the 

feature pipeline. The two pipelines communicate with each other strictly through the MongoDB 

data warehouse. Thus, the data collection pipeline can write data for MongoDB, and the feature 

pipeline can read from it independently and on different schedules.

Why did we use MongoDB as a data warehouse? Using a transactional database, such as Mon-

goDB, as a data warehouse is uncommon. However, in our use case, we are working with small 

amounts of data, which MongoDB can handle. Even if we plan to compute statistics on top of our 

MongoDB collections, it will work fine at the scale of our LLM Twin’s data (hundreds of docu-

ments). We picked MongoDB to store our raw data primarily because of the nature of our unstruc-

tured data: text crawled from the internet. By mainly working with unstructured text, selecting 

a NoSQL database that doesn’t enforce a schema made our development easier and faster. Also, 

MongoDB is stable and easy to use. Their Python SDK is intuitive. They provide a Docker image 

that works out of the box locally and a cloud freemium tier that is perfect for proofs of concept, 

such as the LLM Twin. Thus, we can freely work with it locally and in the cloud. However, when 

working with big data (millions of documents or more), using a dedicated data warehouse such 

as Snowflake or BigQuery will be ideal.

Now that we’ve understood the architecture of the LLM Twin’s data collection pipeline, let’s 

move on to its implementation.
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Implementing the LLM Twin’s data collection pipeline
As we presented in Chapter 2, the entry point to each pipeline from our LLM Twin project is a 

ZenML pipeline, which can be configured at runtime through YAML files and run through the 

ZenML ecosystem. Thus, let’s start by looking into the ZenML digital_data_etl pipeline. You’ll 

notice that this is the same pipeline we used as an example in Chapter 2 to illustrate ZenML. But 

this time, we will dig deeper into the implementation, explaining how the data collection works 

behind the scenes. After understanding how the pipeline works, we will explore the implemen-

tation of each crawler used to collect data from various sites and the MongoDB documents used 

to store and query data from the data warehouse.

ZenML pipeline and steps
In the code snippet below, we can see the implementation of the ZenML digital_data_etl

pipeline, which inputs the user’s full name and a list of links that will be crawled under that user 

(considered the author of the content extracted from those links). Within the function, we call two 

steps. In the first one, we look up the user in the database based on its full name. Then, we loop 

through all the links and crawl each independently. The pipeline’s implementation is available 

in our repository at pipelines/digital_data_etl.py.

from zenml import pipeline

from steps.etl import crawl_links, get_or_create_user

@pipeline

def digital_data_etl(user_full_name: str, links: list[str]) -> str:

    user = get_or_create_user(user_full_name)

    last_step = crawl_links(user=user, links=links)

    return last_step.invocation_id
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Figure 3.3 shows a run of the digital_data_etl pipeline on the ZenML dashboard. The next 

phase is to explore the get_or_create_user and crawl_links ZenML steps individually. The 

step implementation is available in our repository at steps/etl.

Figure 3.3: Example of a digital_data_etl pipeline run from ZenML’s dashboard

We will start with the get_or_create_user ZenML step. We begin by importing the necessary 

modules and functions used throughout the script.

from loguru import logger

from typing_extensions import Annotated

from zenml import get_step_context, step

from llm_engineering.application import utils

from llm_engineering.domain.documents import UserDocument

Next, we define the function’s signature, which takes a user’s full name as input and retrieves an 

existing user or creates a new one in the MongoDB database if it doesn’t exist:

@step

def get_or_create_user(user_full_name: str) -> Annotated[UserDocument, 
"user"]:
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Using a utility function, we split the full name into first and last names. Then, we attempt to 

retrieve the user from the database or create a new one if it doesn’t exist. We also retrieve the 

current step context and add metadata about the user to the output, which will be reflected in 

the metadata of the user ZenML output artifact:

    logger.info(f"Getting or creating user: {user_full_name}")

    first_name, last_name = utils.split_user_full_name(user_full_name)

    user = UserDocument.get_or_create(first_name=first_name, last_
name=last_name)

    step_context = get_step_context()

    step_context.add_output_metadata(output_name="user", metadata=_get_
metadata(user_full_name, user))

    return user

Additionally, we define a helper function called _get_metadata(), which builds a dictionary 

containing the query parameters and the retrieved user information, which will be added as 

metadata to the user artifact:

def _get_metadata(user_full_name: str, user: UserDocument) -> dict:

    return {

        "query": {

            "user_full_name": user_full_name,

        },

        "retrieved": {

            "user_id": str(user.id),

            "first_name": user.first_name,

            "last_name": user.last_name,

        },

    }

We will move on to the crawl_links ZenML step, which collects the data from the provided links. 

The code begins by importing essential modules and libraries for web crawling:

from urllib.parse import urlparse

from loguru import logger
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from tqdm import tqdm

from typing_extensions import Annotated

from zenml import get_step_context, step

from llm_engineering.application.crawlers.dispatcher import 
CrawlerDispatcher

from llm_engineering.domain.documents import UserDocument

Following the imports, the main function inputs a list of links written by a specific author. Within 

this function, a crawler dispatcher is initialized and configured to handle specific domains such 

as LinkedIn, Medium, and GitHub:

@step

def crawl_links(user: UserDocument, links: list[str]) -> 
Annotated[list[str], "crawled_links"]:

    dispatcher = CrawlerDispatcher.build().register_linkedin().register_
medium().register_github()

    logger.info(f"Starting to crawl {len(links)} link(s).")

The function initializes variables to store the output metadata and count successful crawls. It then 

iterates over each link. It attempts to crawl and extract data for each link, updating the count of 

successful crawls and accumulating metadata about each URL:

    metadata = {}

    successfull_crawls = 0

    for link in tqdm(links):

        successfull_crawl, crawled_domain = _crawl_link(dispatcher, link, 
user)

        successfull_crawls += successfull_crawl

        metadata = _add_to_metadata(metadata, crawled_domain, successfull_
crawl)

After processing all links, the function attaches the accumulated metadata to the output artifact:

    step_context = get_step_context()

    step_context.add_output_metadata(output_name="crawled_links", 
metadata=metadata)

    logger.info(f"Successfully crawled {successfull_crawls} / {len(links)} 
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links.")

    return links

The code includes a helper function that attempts to extract information from each link using the 

appropriate crawler based on the link’s domain. It handles any exceptions that may occur during 

extraction and returns a tuple indicating the crawl’s success and the link’s domain:

def _crawl_link(dispatcher: CrawlerDispatcher, link: str, user: 
UserDocument) -> tuple[bool, str]:

    crawler = dispatcher.get_crawler(link)

    crawler_domain = urlparse(link).netloc

    try:

        crawler.extract(link=link, user=user)

        return (True, crawler_domain)

    except Exception as e:

        logger.error(f"An error occurred while crawling: {e!s}")

        return (False, crawler_domain)

Another helper function is provided to update the metadata dictionary with the results of each 

crawl:

def _add_to_metadata(metadata: dict, domain: str, successfull_crawl: bool) 
-> dict:

    if domain not in metadata:

        metadata[domain] = {}

    metadata[domain]["successful"] = metadata.get(domain, {}).
get("successful", 0) + successfull_crawl

    metadata[domain]["total"] = metadata.get(domain, {}).get("total", 0) + 
1

    return metadata

As seen in the abovementioned _crawl_link() function, the CrawlerDispatcher class knows 

what crawler to initialize based on each link’s domain. The logic is then abstracted away under 

the crawler’s extract() method. Let’s zoom in on the CrawlerDispatcher class to understand 

how this works fully.
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The dispatcher: How do you instantiate the right crawler?
The entry point to our crawling logic is the CrawlerDispatcher class. As illustrated in Figure 

3.4, the dispatcher acts as the intermediate layer between the provided links and the crawlers. It 

knows what crawler to associate with each URL.

The CrawlerDispatcher class knows how to extract the domain of each link and initialize the 

proper crawler that collects the data from that site. For example, if it detects the https://medium.

com domain when providing a link to an article, it will build an instance of the MediumCrawler

used to crawl that particular platform. With that in mind, let’s explore the implementation of 

the CrawlerDispatcher class.

Figure 3.4: The relationship between the provided links, the CrawlerDispatcher, and the 
crawlers

All the crawling logic is available in the GitHub repository at llm_engineering/

application/crawlers.

https://medium.com
https://medium.com
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We begin by importing the necessary Python modules for URL handling and regex, along with 

importing our crawler classes:

import re

from urllib.parse import urlparse

from loguru import logger

from .base import BaseCrawler

from .custom_article import CustomArticleCrawler

from .github import GithubCrawler

from .linkedin import LinkedInCrawler

from .medium import MediumCrawler

The CrawlerDispatcher class is defined to manage and dispatch appropriate crawler instances 

based on given URLs and their domains. Its constructor initializes a registry to store the regis-

tered crawlers.

class CrawlerDispatcher:

    def __init__(self) -> None:

        self._crawlers = {}

As we are using the builder creational pattern to instantiate and configure the dispatcher, we 

define a build() class method that returns an instance of the dispatcher:

    @classmethod

    def build(cls) -> "CrawlerDispatcher":

        dispatcher = cls()

        return dispatcher

The dispatcher includes methods to register crawlers for specific platforms like Medium, Linke-

dIn, and GitHub. These methods use a generic register() method under the hood to add each 

crawler to the registry. By returning self, we follow the builder creational pattern (more on the 

builder pattern: https://refactoring.guru/design-patterns/builder). We can chain mul-

tiple register_*() methods when instantiating the dispatcher as follows: CrawlerDispatcher.

build().register_linkedin().register_medium().

    def register_medium(self) -> "CrawlerDispatcher":

        self.register("https://medium.com", MediumCrawler)

https://refactoring.guru/design-patterns/builder
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        return self

    def register_linkedin(self) -> "CrawlerDispatcher":

        self.register("https://linkedin.com", LinkedInCrawler)

        return self

    def register_github(self) -> "CrawlerDispatcher":

        self.register("https://github.com", GithubCrawler)

        return self

The generic register() method normalizes each domain to ensure its format is consistent be-

fore it’s added as a key to the self._crawlers registry of the dispatcher. This is a critical step, as 

we will use the key of the dictionary as the domain pattern to match future links with a crawler:

    def register(self, domain: str, crawler: type[BaseCrawler]) -> None:

        parsed_domain = urlparse(domain)

        domain = parsed_domain.netloc

        self._crawlers[r"https://(www\.)?{}/*".format(re.escape(domain))] 
= crawler

Finally, the get_crawler() method determines the appropriate crawler for a given URL by match-

ing it against the registered domains. If no match is found, it logs a warning and defaults to using 

the CustomArticleCrawler.

    def get_crawler(self, url: str) -> BaseCrawler:

        for pattern, crawler in self._crawlers.items():

            if re.match(pattern, url):

                return crawler()

        else:

            logger.warning(f"No crawler found for {url}. Defaulting to 
CustomArticleCrawler.")

            return CustomArticleCrawler()

The next step in understanding how the data collection pipeline works is analyzing each crawler 

individually.
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The crawlers
Before exploring each crawler’s implementation, we must present their base class, which defines 

a unified interface for all the crawlers. As shown in Figure 3.4, we can implement the dispatcher 

layer because each crawler follows the same signature. Each class implements the extract()

method, allowing us to leverage OOP techniques such as polymorphism, where we can work with 

abstract objects without knowing their concrete subclass. For example, in the _crawl_link()

function from the ZenML steps, we had the following code:

crawler = dispatcher.get_crawler(link)

crawler.extract(link=link, user=user)

Note how we called the extract() method without caring about what specific type of crawler 

we instantiated. To conclude, working with abstract interfaces ensures core reusability and ease 

of extension.

Base classes
Now, let’s explore the BaseCrawler interface, which can be found in the repository at https://
github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/

application/crawlers/base.py.

from abc import ABC, abstractmethod

class BaseCrawler(ABC):

    model: type[NoSQLBaseDocument]

    @abstractmethod

    def extract(self, link: str, **kwargs) -> None: ...

As mentioned above, the interface defines an extract() method that takes as input a link. Also, it 

defines a model attribute at the class level that represents the data category document type used 

to save the extracted data into the MongoDB data warehouse. Doing so allows us to customize 

each subclass with different data categories while preserving the same attributes at the class 

level. We will soon explore the NoSQLBaseDocument class when digging into the document entities.

We also extend the BaseCrawler class with a BaseSeleniumCrawler class, which implements 

reusable functionality that uses Selenium to crawl various sites, such as Medium or LinkedIn. 

Selenium is a tool for automating web browsers. It’s used to interact with web pages program-

matically (like logging into LinkedIn, navigating through profiles, etc.). 

https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/crawlers/base.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/crawlers/base.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/crawlers/base.py
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Selenium can programmatically control various browsers such as Chrome, Firefox, or Brave. For 

these specific platforms, we need Selenium to manipulate the browser programmatically to log in 

and scroll through the newsfeed or article before being able to extract the entire HTML. For other 

sites, where we don’t have to go through the login step or can directly load the whole page, we 

can extract the HTML from a particular URL using more straightforward methods than Selenium.

The code begins by setting up the necessary imports and configurations for web crawling using 

Selenium and the ChromeDriver initializer. The chromedriver_autoinstaller ensures that 

the appropriate version of ChromeDriver is installed and added to the system path, maintain-

ing compatibility with the installed version of your Google Chrome browser (or other Chromi-

um-based browser). Selenium will use the ChromeDriver to communicate with the browser 

and open a headless session, where we can programmatically manipulate the browser to access 

various URLs, click on specific elements, such as buttons, or scroll through the newsfeed. Using 

the chromedriver_autoinstaller, we ensure we always have the correct ChromeDriver version 

installed that matches our machine’s Chrome browser version.

import time

from tempfile import mkdtemp

import chromedriver_autoinstaller

from selenium import webdriver

from selenium.webdriver.chrome.options import Options

from llm_engineering.domain.documents import NoSQLBaseDocument

# Check if the current version of chromedriver exists

# and if it doesn't exist, download it automatically,

# then add chromedriver to path

chromedriver_autoinstaller.install()

Next, we define the BaseSeleniumCrawler class for use cases where we need Selenium to collect 

the data, such as collecting data from Medium or LinkedIn. 

For the Selenium-based crawlers to work, you must install Chrome on your machine 

(or a Chromium-based browser such as Brave).
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Its constructor initializes various Chrome options to optimize performance, enhance security, and 

ensure a headless browsing environment. These options disable unnecessary features like GPU 

rendering, extensions, and notifications, which can interfere with automated browsing. These 

are standard configurations when crawling in headless mode:

class BaseSeleniumCrawler(BaseCrawler, ABC):

    def __init__(self, scroll_limit: int = 5) -> None:

        options = webdriver.ChromeOptions()

       

        options.add_argument("--no-sandbox")

        options.add_argument("--headless=new")

        options.add_argument("--disable-dev-shm-usage")

        options.add_argument("--log-level=3")

        options.add_argument("--disable-popup-blocking")

        options.add_argument("--disable-notifications")

        options.add_argument("--disable-extensions")

        options.add_argument("--disable-background-networking")

        options.add_argument("--ignore-certificate-errors")

        options.add_argument(f"--user-data-dir={mkdtemp()}")

        options.add_argument(f"--data-path={mkdtemp()}")

        options.add_argument(f"--disk-cache-dir={mkdtemp()}")

        options.add_argument("--remote-debugging-port=9226")

After configuring the Chrome options, the code allows subclasses to set any additional driver 

options by calling the set_extra_driver_options() method. It then initializes the scroll limit 

and creates a new instance of the Chrome driver with the specified options:

        self.set_extra_driver_options(options)

        self.scroll_limit = scroll_limit

        self.driver = webdriver.Chrome(

            options=options,

        )

The BaseSeleniumCrawler class includes placeholder methods for set_extra_driver_options()

and login(), which subclasses can override to provide specific functionality. This ensures mod-

ularity, as every platform has a different login page with a different HTML structure:

    def set_extra_driver_options(self, options: Options) -> None:
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        pass

    def login(self) -> None:

        pass

Finally, the scroll_page() method implements a scrolling mechanism to navigate through pages, 

such as LinkedIn, up to a specified scroll limit. It scrolls to the bottom of the page, waits for new 

content to load, and repeats the process until it reaches the end of the page or the scroll limit is 

exceeded. This method is essential for feeds where the content appears as the user scrolls:

    def scroll_page(self) -> None:

        """Scroll through the LinkedIn page based on the scroll limit."""

        current_scroll = 0

        last_height = self.driver.execute_script("return document.body.
scrollHeight")

        while True:

            self.driver.execute_script("window.scrollTo(0, document.body.
scrollHeight);")

            time.sleep(5)

            new_height = self.driver.execute_script("return document.body.
scrollHeight")

            if new_height == last_height or (self.scroll_limit and 
current_scroll >= self.scroll_limit):

                break

            last_height = new_height

            current_scroll += 1

We’ve understood what the base classes of our crawlers look like. Next, we will look into the 

implementation of the following specific crawlers:

• GitHubCrawler(BaseCrawler)

• CustomArticleCrawler(BaseCrawler)

• MediumCrawler(BaseSeleniumCrawler)

You can find the implementation of the above crawlers in the GitHub repository at 
https://github.com/PacktPublishing/LLM-Engineers-Handbook/tree/main 

/llm_engineering/application/crawlers.

https://github.com/PacktPublishing/LLM-Engineers-Handbook/tree/main/llm_engineering/application/crawlers
https://github.com/PacktPublishing/LLM-Engineers-Handbook/tree/main/llm_engineering/application/crawlers
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GitHubCrawler class
The GithubCrawler class is designed to scrape GitHub repositories, extending the functionality 

of the BaseCrawler. We don’t have to log in to GitHub through the browser, as we can leverage 

Git’s clone functionality. Thus, we don’t have to leverage any Selenium functionality. Upon ini-

tialization, it sets up a list of patterns to ignore standard files and directories found in GitHub 

repositories, such as .git, .toml, .lock, and .png, ensuring that unnecessary files are excluded 

from the scraping process:

class GithubCrawler(BaseCrawler):

    model = RepositoryDocument

    def __init__(self, ignore=(".git", ".toml", ".lock", ".png")) -> None:

        super().__init__()

        self._ignore = ignore

Next, we implement the extract() method, where the crawler first checks if the repository has 

already been processed and stored in the database. If it exists, it exits the method to prevent 

storing duplicates:

def extract(self, link: str, **kwargs) -> None:

    old_model = self.model.find(link=link)

    if old_model is not None:

        logger.info(f"Repository already exists in the database: {link}")

        return

If the repository is new, the crawler extracts the repository name from the link. Then, it creates 

a temporary directory to clone the repository to ensure that the cloned repository is cleaned up 

from the local disk after it’s processed:

    logger.info(f"Starting scrapping GitHub repository: {link}")

    repo_name = link.rstrip("/").split("/")[-1]

    local_temp = tempfile.mkdtemp()

Within a try block, the crawler changes the current working directory to the temporary directory 

and executes the git clone command in a different process:

    try:
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        os.chdir(local_temp)

        subprocess.run(["git", "clone", link])

After successfully cloning the repository, the crawler constructs the path to the cloned repository. 

It initializes an empty dictionary used to aggregate the content of the files in a standardized way. 

It walks through the directory tree, skipping over any directories or files that match the ignore 

patterns. For each relevant file, it reads the content, removes any spaces, and stores it in the dic-

tionary with the file path as the key:

        repo_path = os.path.join(local_temp, os.listdir(local_temp)[0])  # 

        tree = {}

        for root, _, files in os.walk(repo_path):

            dir = root.replace(repo_path, "").lstrip("/")

            if dir.startswith(self._ignore):

                continue

            for file in files:

                if file.endswith(self._ignore):

                    continue

                file_path = os.path.join(dir, file)

                with open(os.path.join(root, file), "r", errors="ignore") 
as f:

                    tree[file_path] = f.read().replace(" ", "")

It then creates a new instance of the RepositoryDocument model, populating it with the repos-

itory content, name, link, platform information, and author details. The instance is then saved 

to MongoDB:

        user = kwargs["user"]

        instance = self.model(

            content=tree,

            name=repo_name,

            link=link,

            platform="github",

            author_id=user.id,

            author_full_name=user.full_name,

        )

        instance.save()
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Finally, whether the scraping succeeds or an exception occurs, the crawler ensures that the tem-

porary directory is removed to clean up any resources used during the process:

    except Exception:

        raise

    finally:

        shutil.rmtree(local_temp)

    logger.info(f"Finished scrapping GitHub repository: {link}")

CustomArticleCrawler class
The CustomArticleCrawler class takes a different approach to collecting data from the in-

ternet. It leverages the AsyncHtmlLoader class to read the entire HTML from a link and the 

Html2TextTransformer class to extract the text from that HTML. Both classes are made available 

by the langchain_community Python package, as seen below, where we import all the necessary 

Python modules:

from urllib.parse import urlparse

from langchain_community.document_loaders import AsyncHtmlLoader

from langchain_community.document_transformers.html2text import 
Html2TextTransformer

from loguru import logger

from llm_engineering.domain.documents import ArticleDocument

from .base import BaseCrawler

Next, we define the CustomArticleCrawler class, which inherits from BaseCrawler. As before, 

we don’t need to log in or use the scrolling functionality provided by Selenium. In the extract

method, we first check if the article exists in the database to avoid duplicating content:

class CustomArticleCrawler(BaseCrawler):

    model = ArticleDocument

    def extract(self, link: str, **kwargs) -> None:

        old_model = self.model.find(link=link)

        if old_model is not None:
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            logger.info(f"Article already exists in the database: {link}")

            return

If the article doesn’t exist, we proceed to scrape it. We use the AsyncHtmlLoader class to load the 

HTML from the provided link. After, we transform it into plain text using the Html2TextTransformer

class, which returns a list of documents. We are only interested in the first document. As we dele-

gate the whole logic to these two classes, we don’t control how the content is extracted and parsed. 

That’s why we used this class as a fallback system for domains where we don’t have anything cus-

tom implemented. These two classes follow the LangChain paradigm, which provides high-level 

functionality that works decently in most scenarios. It is fast to implement but hard to customize. 

That is one of the reasons why many developers avoid using LangChain in production use cases:

        logger.info(f"Starting scrapping article: {link}")

        loader = AsyncHtmlLoader([link])

        docs = loader.load()

        html2text = Html2TextTransformer()

        docs_transformed = html2text.transform_documents(docs)

        doc_transformed = docs_transformed[0]

We get the page content from the extracted document, plus relevant metadata such as the title, 

subtitle, content, and language:

        content = {

            "Title": doc_transformed.metadata.get("title"),

            "Subtitle": doc_transformed.metadata.get("description"),

            "Content": doc_transformed.page_content,

            "language": doc_transformed.metadata.get("language"),

        }

Next, we parse the URL to determine the platform (or domain) from which the article was scraped:

        parsed_url = urlparse(link)

        platform = parsed_url.netloc

We then create a new instance of the article model, populating it with the extracted content. 

Finally, we save this instance to the MongoDB data warehouse:

        user = kwargs["user"]
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        instance = self.model(

            content=content,

            link=link,

            platform=platform,

            author_id=user.id,

            author_full_name=user.full_name,

        )

        instance.save()

        logger.info(f"Finished scrapping custom article: {link}")       

So far, we have seen how to crawl GitHub repositories and random sites using LangChain utility 

functions. Lastly, we must explore a crawler using Selenium to manipulate the browser program-

matically. Thus, we will continue with the MediumCrawler implementation.

MediumCrawler class
The code begins by importing essential libraries and defining the MediumCrawler class, which 

inherits from BaseSeleniumCrawler:

from bs4 import BeautifulSoup

from loguru import logger

from llm_engineering.domain.documents import ArticleDocument

from .base import BaseSeleniumCrawler

class MediumCrawler(BaseSeleniumCrawler):

    model = ArticleDocument

Within the MediumCrawler class, we leverage the set_extra_driver_options() method to extend 

the default driver options used by Selenium:

    def set_extra_driver_options(self, options) -> None:

        options.add_argument(r"--profile-directory=Profile 2")

The extract() method implements the core functionality, first checking whether the article 

exists in the database to prevent duplicate entries. 
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If the article is new, the method proceeds to navigate to the article’s link and scroll through the 

page to ensure all content is loaded:

    def extract(self, link: str, **kwargs) -> None:

        old_model = self.model.find(link=link)

        if old_model is not None:

            logger.info(f"Article already exists in the database: {link}")

            return

        logger.info(f"Starting scrapping Medium article: {link}")

        self.driver.get(link)

        self.scroll_page()

After fully loading the page, the method uses BeautifulSoup to parse the HTML content and 

extract the article’s title, subtitle, and full text. BeautifulSoup is a popular Python library for 

web scraping and parsing HTML or XML documents. Thus, we used it to extract all the HTML 

elements we needed from the HTML accessed with Selenium. Finally, we aggregate everything 

into a dictionary:

        soup = BeautifulSoup(self.driver.page_source, "html.parser")

        title = soup.find_all("h1", class_="pw-post-title")

        subtitle = soup.find_all("h2", class_="pw-subtitle-paragraph")

        data = {

            "Title": title[0].string if title else None,

            "Subtitle": subtitle[0].string if subtitle else None,

            "Content": soup.get_text(),

        }

Finally, the method closes the WebDriver to free up resources. It then creates a new ArticleDocument

instance, populates it with the extracted content and user information provided via kwargs, and 

saves it to the database:

        self.driver.close()

        user = kwargs["user"]

        instance = self.model(
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            platform="medium",

            content=data,

            link=link,

            author_id=user.id,

            author_full_name=user.full_name,

        )

        instance.save()

        logger.info(f"Successfully scraped and saved article: {link}")

With that, we conclude the MediumCrawler implementation. The LinkedIn crawler follows a 

similar pattern to the Medium one, where it uses Selenium to log in and access the feed of a 

user’s latest posts. Then, it extracts the posts and scrolls through the feed to load the next page 

until a limit is hit. You can check the full implementation in our repository at https://github.
com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/

crawlers/linkedin.py.

With the rise of LLMs, collecting data from the internet has become a critical step in many re-

al-world AI applications. Hence, more high-level tools have appeared in the Python ecosystem, 

such as Scrapy (https://github.com/scrapy/scrapy), which crawls websites and extracts struc-

tured data from their pages, and Crawl4AI (https://github.com/unclecode/crawl4ai), which 

is highly specialized in crawling data for LLMs and AI applications.

In this section, we’ve looked at implementing three types of crawlers: one that leverages the 

git executable in a subprocess to clone GitHub repositories, one that uses LangChain utilities 

to extract the HTML of a single web page, and one that leverages Selenium for more complex 

scenarios where we have to navigate through the login page, scroll the article to load the entire 

HTML, and extract it into text format. The last step is understanding how the document classes 

we’ve used across the chapter, such as the ArticleDocument, work.

The NoSQL data warehouse documents
We had to implement three document classes to structure our data categories. These classes 

define the specific attributes we require for a document, such as the content, author, and source 

link. It is best practice to structure your data in classes instead of dictionaries, as the attributes we 

expect for each item are more verbose, reducing run errors. For example, when accessing a value 

from a Python dictionary, we can never be sure it is present or its type is current. By wrapping 

our data items with classes, we can ensure each attribute is as expected. 

https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/crawlers/linkedin.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/crawlers/linkedin.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/crawlers/linkedin.py
https://github.com/scrapy/scrapy
https://github.com/unclecode/crawl4ai
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By leveraging Python packages such as Pydantic, we have out-of-the-box type validation, which 

ensures consistency in our datasets. Thus, we modeled the data categories as the following doc-

ument classes, which we already used in the code up until point:

• ArticleDocument class

• PostDocument class

• RepositoryDocument class

These are not simple Python data classes or Pydantic models. They support read and write oper-

ations on top of the MongoDB data warehouse. To inject the read-and-write functionality into 

all the document classes without repeating any code, we used the Object-Document Mapping

(ODM) software pattern, which is based on the object-relational mapping (ORM) pattern. Thus, 

let’s first explore ORM, then move to ODM, and, finally, dig into our custom ODM implementation 

and document classes.

The ORM and ODM software patterns
Before we talk about software patterns, let’s see what ORM is. It’s a technique that lets you query 

and manipulate data from a database using an object-oriented paradigm. Instead of writing SQL 

or API-specific queries, you encapsulate all the complexity under an ORM class that knows how 

to handle all the database operations, most commonly CRUD operations. Thus, working with 

ORM removes the need to handle the database operations manually and reduces the need to write 

boilerplate code manually. An ORM interacts with a SQL database, such as PostgreSQL or MySQL.

Most modern Python applications use ORMs when interacting with the database. Even though 

SQL is still a popular choice in the data world, you rarely see raw SQL queries in Python backend 

components. The most popular Python ORM is SQLAlchemy (https://www.sqlalchemy.org/). 

Also, with the rise of FastAPI, SQLModel is (https://github.com/fastapi/sqlmodel) a common 

choice, which is a wrapper over SQLAlchemy that makes the integration easier with FastAPI.

For example, using SQLAlchemy, we defined a User ORM with the ID and name fields. The User

ORM is mapped to the users table within the SQL database. Thus, when we create a new user 

and commit it to the database, it is automatically saved to the users table. The same applies to 

all the CRUD operations on top of the User class.

from sqlalchemy import Column, Integer, String, create_engine

from sqlalchemy.orm import declarative_base, sessionmaker

   Base = declarative_base()

https://www.sqlalchemy.org/
https://github.com/fastapi/sqlmodel
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# Define a class that maps to the users table.

   class User(Base):

    __tablename__ = "users"

    id = Column(Integer, primary_key=True)

   name = Column(String)

Using the User ORM, we can quickly insert or query users directly from Python without writing a 

line of SQL. Note that an ORM usually supports all CRUD operations. Here is a code snippet that 

shows how to save an instance of the User ORM to a SQLite database:

engine = create_engine("sqlite:///:memory:")

Base.metadata.create_all(engine)

# Create a session used to interact with the database.

Session = sessionmaker(bind=engine)

session = Session()

# Add a new user.

new_user = User(name="Alice")

session.add(new_user)

session.commit()

Also, this is how we can query a user from the users SQLite table:

user = session.query(User).first()

if user:

print(f"User ID: {user.id}")

print(f"User name: {user.name}")

The ODM pattern is extremely similar to ORM, but instead of working with SQL databases and 

tables, it works with NoSQL databases (such as MongoDB) and unstructured collections. As we 

work with NoSQL databases, the data structure is centered on collections, which store JSON-like 

documents rather than rows in tables.

Find the entire script and how to run it in the GitHub repository at code_snippets/03_

orm.py.
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To conclude, ODM simplifies working with document-based NoSQL databases and maps ob-

ject-oriented code to JSON-like documents. We will implement a light ODM module on top of 

MongoDB to fully understand how ODM works.

Implementing the ODM class
This section will explore how to implement an ODM class from scratch. This is an excellent ex-

ercise to learn how ODM works and sharpen our skills in writing modular and reusable Python 

classes. Hence, we will implement a base ODM class called NoSQLBaseDocument, from which all 

the other documents will inherit to interact with the MongoDB data warehouse.

The code starts by importing essential modules and setting up the database connection. Through 

the _database variable, we establish a connection to the database specified in the settings, which 

is by default called twin:

import uuid

from abc import ABC

from typing import Generic, Type, TypeVar

from loguru import logger

from pydantic import UUID4, BaseModel, Field

from pymongo import errors

from llm_engineering.domain.exceptions import ImproperlyConfigured

from llm_engineering.infrastructure.db.mongo import connection

from llm_engineering.settings import settings

_database = connection.get_database(settings.DATABASE_NAME)

Next, we define a type variable T bound to the NoSQLBaseDocument class. The variable leverages 

Python’s generic module, allowing us to generalize the class’s types. For example, when we im-

plement the ArticleDocument class, which will inherit from the NoSQLBaseDocument class, all the 

instances where T was used will be replaced with the ArticleDocument type when analyzing the 

signature of functions (more on Python generics: https://realpython.com/python312-typing). 

The class can be found in our repository at llm_engineering/domain/base/nosql.

py.

https://realpython.com/python312-typing
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The NoSQLBaseDocument class is then declared as an abstract base class inheriting from Pydan-

tic’s BaseModel, Python’s Generic (which provides the functionality described earlier), and ABC

(making the class abstract) classes. This class serves as the foundational ODM class:

T = TypeVar("T", bound="NoSQLBaseDocument")

class NoSQLBaseDocument(BaseModel, Generic[T], ABC):

Within the NoSQLBaseDocument class, an id field is defined as a UUID4, with a default factory 

generating a unique UUID. The class also implements the __eq__ and __hash__ methods to allow 

instances to be compared and used in hashed collections like sets or as dictionary keys based on 

their unique id attribute:

id: UUID4 = Field(default_factory=uuid.uuid4)

def __eq__(self, value: object) -> bool:

    if not isinstance(value, self.__class__):

        return False

    return self.id == value.id

def __hash__(self) -> int:

    return hash(self.id)

The class provides methods for converting between MongoDB documents and class instances. The 

from_mongo() class method transforms a dictionary retrieved from MongoDB into an instance of 

the class. The to_mongo() instance method converts the model instance into a dictionary suitable 

for MongoDB insertion:

@classmethod

def from_mongo(cls: Type[T], data: dict) -> T:

    if not data:

        raise ValueError("Data is empty.")

    id = data.pop("_id")

    return cls(**dict(data, id=id))

def to_mongo(self: T, **kwargs) -> dict:
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    exclude_unset = kwargs.pop("exclude_unset", False)

    by_alias = kwargs.pop("by_alias", True)

    parsed = self.model_dump(exclude_unset=exclude_unset, by_alias=by_
alias, **kwargs)

    if "_id" not in parsed and "id" in parsed:

        parsed["_id"] = str(parsed.pop("id"))

    for key, value in parsed.items():

        if isinstance(value, uuid.UUID):

            parsed[key] = str(value)

    return parsed

The save() method allows an instance of the model to be inserted into a MongoDB collection. It 

retrieves the appropriate collection, converts the instance into a MongoDB-compatible document 

leveraging the to_mongo() method described above, and attempts to insert it into the database, 

handling any write errors that may occur:

def save(self: T, **kwargs) -> T | None:

    collection = _database[self.get_collection_name()]

    try:

        collection.insert_one(self.to_mongo(**kwargs))

        return self

    except errors.WriteError:

        logger.exception("Failed to insert document.")

        return None

The get_or_create() class method attempts to find a document in the database matching the 

provided filter options. If a matching document is found, it is converted into an instance of the class. 

If not, a new instance is created with the filter options as its initial data and saved to the database:

@classmethod

def get_or_create(cls: Type[T], **filter_options) -> T:

    collection = _database[cls.get_collection_name()]

    try:
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        instance = collection.find_one(filter_options)

        if instance:

            return cls.from_mongo(instance)

        new_instance = cls(**filter_options)

        new_instance = new_instance.save()

        return new_instance

    except errors.OperationFailure:

        logger.exception(f"Failed to retrieve document with filter 
options: {filter_options}")

        raise

The bulk_insert() class method allows multiple documents to be inserted into the database 

at once:

@classmethod

def bulk_insert(cls: Type[T], documents: list[T], **kwargs) -> bool:

    collection = _database[cls.get_collection_name()]

    try:

        collection.insert_many([doc.to_mongo(**kwargs) for doc in 
documents])

        return True

    except (errors.WriteError, errors.BulkWriteError):

logger.error(f"Failed to insert documents of type {cls.__name__}")

        return False

The find() class method searches for a single document in the database that matches the given 

filter options:

@classmethod

def find(cls: Type[T], **filter_options) -> T | None:

    collection = _database[cls.get_collection_name()]

    try:

        instance = collection.find_one(filter_options)
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        if instance:

            return cls.from_mongo(instance)

        return None

    except errors.OperationFailure:

        logger.error("Failed to retrieve document.")

        return None

Similarly, the bulk_find() class method retrieves multiple documents matching the filter options. 

It converts each retrieved MongoDB document into a model instance, collecting them into a list:

@classmethod

def bulk_find(cls: Type[T], **filter_options) -> list[T]:

    collection = _database[cls.get_collection_name()]

    try:

        instances = collection.find(filter_options)

        return [document for instance in instances if (document := cls.
from_mongo(instance)) is not None]

    except errors.OperationFailure:

        logger.error("Failed to retrieve document.")

        return []

Finally, the get_collection_name() class method determines the name of the MongoDB collec-

tion associated with the class. It expects the class to have a nested Settings class with a name at-

tribute specifying the collection name. If this configuration is missing, an ImproperlyConfigured

exception will be raised specifying that the subclass should define a nested Settings class:

@classmethod

def get_collection_name(cls: Type[T]) -> str:

    if not hasattr(cls, "Settings") or not hasattr(cls.Settings, "name"):

        raise ImproperlyConfigured(

            "Document should define an Settings configuration class with 
the name of the collection."

        )

    return cls.Settings.name
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We can configure each subclass using the nested Settings class, such as defining the collection 

name, or anything else specific to that subclass. Within the Python ecosystem, there is an ODM 

implementation on top of MongoDB, called mongoengine, which you can find on GitHub. It follows 

a pattern similar to ours but more comprehensive. We implemented it by ourselves, as it was an 

excellent exercise to practice writing modular and generic code following best OOP principles, 

which are essential for implementing production-level code.

Data categories and user document classes
The last piece of the puzzle is to see the implementation of the subclasses that inherit from the 

NoSQLBaseDocument base class. These are the concrete classes that define our data categories. 

You’ve seen these classes used across the chapter when working with articles, repositories, and 

posts within the crawler classes.

We begin by importing the essential Python modules and the ODM base class:

from abc import ABC

from typing import Optional

from pydantic import UUID4, Field

from .base import NoSQLBaseDocument

from .types import DataCategory

We define an enum class, where we centralize all our data category types. These variables will act 

as constants in configuring all our ODM classes throughout the book.

from enum import StrEnum

class DataCategory(StrEnum):

    PROMPT = "prompt"

    QUERIES = "queries"

    INSTRUCT_DATASET_SAMPLES = "instruct_dataset_samples"

The class can be found in the repository at llm_engineering/domain/types.py.
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    INSTRUCT_DATASET = "instruct_dataset"

    PREFERENCE_DATASET_SAMPLES = "preference_dataset_samples"

    PREFERENCE_DATASET = "preference_dataset"

    POSTS = "posts"

    ARTICLES = "articles"

     REPOSITORIES = "repositories"

The Document class is introduced as an abstract base model for other documents on top of the 

NoSQLBaseDocument ODM class. It includes common attributes like content, platform, and author 

details, providing a standardized structure for documents that will inherit from it:

class Document(NoSQLBaseDocument, ABC):

    content: dict

    platform: str

    author_id: UUID4 = Field(alias="author_id")

    author_full_name: str = Field(alias="author_full_name")

Finally, specific document types are defined by extending the Document class. The 

RepositoryDocument, PostDocument, and ArticleDocument classes represent different catego-

ries of data, each with unique fields and settings that specify their respective collection names 

in the database:

class RepositoryDocument(Document):

    name: str

    link: str

    class Settings:

        name = DataCategory.REPOSITORIES

class PostDocument(Document):

    image: Optional[str] = None

    link: str | None = None

    class Settings:

        name = DataCategory.POSTS
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class ArticleDocument(Document):

    link: str

    class Settings:

        name = DataCategory.ARTICLES

Finally, we define the UserDocument class, which is used to store and query all the users from the 

LLM Twin project:

class UserDocument(NoSQLBaseDocument):

    first_name: str

    last_name: str

    class Settings:

        name = "users"

    @property

    def full_name(self):

        return f"{self.first_name} {self.last_name}"

By implementing the NoSQLBaseDocument ODM class, we had to focus solely on the fields and 

specific functionality of each document or domain entity. All the CRUD functionality is delegated 

to the parent class. Also, by leveraging Pydantic to define the fields, we have out-of-the-box type 

validation. For example, when creating an instance of the ArticleDocument class, if the provided 

link is None or not a string, it will throw an error signaling that the data is invalid.

With that, we’ve finished implementing our data collection pipeline, starting with the ZenML 

components. Then, we looked into the implementation of the crawlers and, finally, wrapped it 

up with the ODM class and data category documents. The last step is to run the data collection 

pipeline and ingest raw data into the MongoDB data warehouse.

Gathering raw data into the data warehouse
ZenML orchestrates the data collection pipeline. Thus, leveraging ZenML, the data collection 

pipeline can be run manually, scheduled, or triggered by specific events. Here, we will show you 

how to run it manually, while we will discuss the other scenarios in Chapter 11 when digging 

deeper into MLOps.
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We configured a different pipeline run for each author. We provided a ZenML configuration file for 

Paul Iusztin’s or Maxime Labonne’s data. To call the data collection pipeline to collect Maxime’s 

data, for example, you can run the following CLI command:

poetry poe run-digital-data-etl-maxime

That will call the pipeline with the following ZenML YAML configuration file:

parameters:

  user_full_name: Maxime Labonne # [First Name(s)] [Last Name]

  links:

    # Personal Blog

    - https://mlabonne.github.io/blog/posts/2024-07-29_Finetune_Llama31.
html

    - https://mlabonne.github.io/blog/posts/2024-07-15_The_Rise_of_
Agentic_Data_Generation.html

    # Substack

    - https://maximelabonne.substack.com/p/uncensor-any-llm-with-
abliteration-d30148b7d43e

    - https://maximelabonne.substack.com/p/create-mixtures-of-experts-
with-mergekit-11b318c99562

    - https://maximelabonne.substack.com/p/merge-large-language-models-
with-mergekit-2118fb392b54

    … # More Substack links

In Figure 3.3 earlier, we saw the pipeline’s run DAG and details in ZenML’s dashboard. Meanwhile, 

Figure 3.5 shows the user output artifact generated by this data collection pipeline. You can in-

spect the query user_full_name and the retrieved user from the MongoDB database, for which 

we collected the links in this specific run.
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Figure 3.5: Example of the user output artifact after running the data collection pipeline using 
Maxime’s configuration file

Also, in Figure 3.6, you can observe the crawled_links output artifact, which lists all the domains 

from which we collected data, the total number of links crawled for each domain, and the number 

of successfully collected links. 
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We want to highlight again the power of these artifacts, as they trace each pipeline’s results and 

metadata, making it extremely easy to monitor and debug each pipeline run individually.

Figure 3.6: Example of the crawled_links output artifact after running the data collection 
pipeline using Maxime’s configuration file

Now, we can download the crawled_links artifact anywhere in our code by running the following 

code, where the ID of the artifact can be found in ZenML and is unique for every artifact version:

from zenml.client import Client

artifact = Client().get_artifact_version('8349ce09-0693-4e28-8fa2-
20f82c76ddec')

loaded_artifact = artifact.load()
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For example, we can easily run the same data collection pipeline but with Paul Iusztin’s YAML 

configuration, listed below:

parameters:

  user_full_name: Paul Iusztin # [First Name(s)] [Last Name]

  links:

    # Medium

    - https://medium.com/decodingml/an-end-to-end-framework-for-
production-ready-llm-systems-by-building-your-llm-twin-2cc6bb01141f

    - https://medium.com/decodingml/a-real-time-retrieval-system-for-rag-
on-social-media-data-9cc01d50a2a0

    - https://medium.com/decodingml/sota-python-streaming-pipelines-for-
fine-tuning-llms-and-rag-in-real-time-82eb07795b87

    … # More Medium links

    # Substack

    - https://decodingml.substack.com/p/real-time-feature-pipelines-
with?r=1ttoeh

    - https://decodingml.substack.com/p/building-ml-systems-the-right-
way?r=1ttoeh

    - https://decodingml.substack.com/p/reduce-your-pytorchs-code-
latency?r=1ttoeh

    … # More Substack links

To run the pipeline using Paul’s configuration, we call the following poe command:

poetry poe run-digital-data-etl-paul

That, under the hood, calls the following CLI command that references Paul’s config file:

poetry run python -m tools.run --run-etl --no-cache --etl-config-filename 
digital_data_etl_paul_iusztin.yaml

You can find all the configs in the repository in the configs/ directory. Also, using poe, we con-

figured a command that calls the data collection pipeline for all the supported authors:

poetry poe run-digital-data-etl

We can easily query the MongoDB data warehouse using our ODM classes. For example, let’s 

query all the articles collected for Paul Iusztin:

from llm_engineering.domain.documents import ArticleDocument, UserDocument
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user = UserDocument.get_or_create(first_name="Paul", last_name="Iusztin")

articles = ArticleDocument.bulk_find(author_id=str(user.id))

print(f"User ID: {user.id}")

print(f"User name: {user.first_name} {user.last_name}")

print(f"Number of articles: {len(articles)}")

print("First article link:", articles[0].link)

The output of the code from above is:

User ID: 900fec95-d621-4315-84c6-52e5229e0b96

User name: Paul Iusztin

Number of articles: 50

First article link: https://medium.com/decodingml/an-end-to-end-framework-
for-production-ready-llm-systems-by-building-your-llm-twin-2cc6bb01141f

With only two lines of code, we can query and filter our MongoDB data warehouse using any 

ODM defined within our project.

Also, to ensure that your data collection pipeline works as expected, you can search your MongoDB 

collections using your IDE’s MongoDB plugin, which you must install separately. For example, 

you can use this plugin for VSCode: https://www.mongodb.com/products/tools/vs-code. For 

other IDEs, you can use similar plugins or external NoSQL visualization tools. After connecting 

to the MongoDB visualization tool, you can connect to our local database using the following 

URI: mongodb://llm_engineering:llm_engineering@127.0.0.1:27017. For a cloud MongoDB 

cluster, you must change the URI, which we will explore in Chapter 11.

And just like that, you’ve learned how to run the data collection pipeline with different ZenML 

configs and how to visualize the output artifacts of each run. We also looked at how to query the 

data warehouse for a particular data category and author. Thus, we’ve finalized our data engi-

neering chapter and can move to the conclusion.

Troubleshooting
The raw data stored in the MongoDB database is central to all future steps. Thus, if you haven’t 

successfully run the code from this chapter due to any issues with the crawlers, this section pro-

vides solutions for fixing potential issues to allow you to move forward.

https://www.mongodb.com/products/tools/vs-code
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Selenium issues
It is a well-known issue that running Selenium can cause problems due to issues with the 

browser driver, such as the ChromeDriver. Thus, if the crawlers that use Selenium, such as the 

MediumCrawler, fail due to problems with your ChromeDriver, you can easily bypass this by 

commenting out the Medium links added to the data collection YAML configs. To do so, go to 

the configs/ directory and find all the YAML files that start with digital_data_etl_*, such as 

digital_data_etl_maxime_labonne.yaml. Open them and comment on all the Medium-related 

URLs, as illustrated in Figure 3.7. You can leave out the Substack or personal blog URLs as these 

use the CustomArticleCrawler, which is not dependent on Selenium.

Figure 3.7: Fix Selenium issues when crawling raw data

Import our backed-up data
If nothing works, there is the possibility of populating the MongoDB database with your backed-

up data saved under the data/data_warehouse_raw_data directory. This will allow you to 

proceed to the fine-tuning and inference sections without running the data collection ETL code. 

To import all the data within this directory, run:

poetry poe run-import-data-warehouse-from-json
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After running the CLI command from above, you will have a one-to-one replica of the dataset 

we used while developing the code. To ensure the import is completed successfully, you should 

have 88 articles and 3 users in your MongoDB database.

Summary
In this chapter, we’ve learned how to design and build the data collection pipeline for the LLM 

Twin use case. Instead of relying on static datasets, we collected our custom data to mimic re-

al-world situations, preparing us for real-world challenges in building AI systems.

First, we examined the architecture of LLM Twin’s data collection pipeline, which functions 

as an ETL process. Next, we started digging into the pipeline implementation. We began by 

understanding how we can orchestrate the pipeline using ZenML. Then, we looked into the 

crawler implementation. We learned how to crawl data in three ways: using CLI commands in 

subprocesses or using utility functions from LangChain or Selenium to build custom logic that 

programmatically manipulates the browser. Finally, we looked into how to build our own ODM 

class, which we used to define our document class hierarchy, which contains entities such as 

articles, posts, and repositories.

At the end of the chapter, we learned how to run ZenML pipelines with different YAML configura-

tion files and explore the results in the dashboard. We also saw how to interact with the MongoDB 

data warehouse through the ODM classes.

In the next chapter, we will cover the key steps of the RAG feature pipeline, including chunking 

and embedding documents, ingesting these documents into a vector DB, and applying pre-re-

trieval optimizations to improve performance. We will also set up the necessary infrastructure 

programmatically using Pulumi and conclude by deploying the RAG ingestion pipeline to AWS.
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4
RAG Feature Pipeline

Retrieval-augmented generation (RAG) is fundamental in most generative AI applications. RAG’s 

core responsibility is to inject custom data into the large language model (LLM) to perform a 

given action (e.g., summarize, reformulate, and extract the injected data). You often want to use 

the LLM on data it wasn’t trained on (e.g., private or new data). As fine-tuning an LLM is a highly 

costly operation, RAG is a compelling strategy that bypasses the need for constant fine-tuning 

to access that new data.

We will start this chapter with a theoretical part that focuses on the fundamentals of RAG and 

how it works. We will then walk you through all the components of a naïve RAG system: chunk-

ing, embedding, and vector DBs. Ultimately, we will present various optimizations used for an 

advanced RAG system. Then, we will continue exploring LLM Twin’s RAG feature pipeline archi-

tecture. At this step, we will apply all the theoretical aspects we discussed at the beginning of the 

chapter. Finally, we will go through a practical example by implementing the LLM Twin’s RAG 

feature pipeline based on the system design described throughout the book.

The main sections of this chapter are:

• Understanding RAG

• An overview of advanced RAG

• Exploring the LLM Twin’s RAG feature pipeline architecture

• Implementing the LLM Twin’s RAG feature pipeline

By the end of this chapter, you will have a clear and comprehensive understanding of what RAG 

is and how it is applied to our LLM Twin use case.
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Understanding RAG
RAG enhances the accuracy and reliability of generative AI models with information fetched from 

external sources. It is a technique complementary to the internal knowledge of the LLMs. Before 

going into the details, let’s understand what RAG stands for:

• Retrieval: Search for relevant data

• Augmented: Add the data as context to the prompt

• Generation: Use the augmented prompt with an LLM for generation

Any LLM is bound to understand the data it was trained on, sometimes called parameterized 

knowledge. Thus, even if the LLM can perfectly answer what happened in the past, it won’t have 

access to the newest data or any other external sources on which it wasn’t trained.

Let’s take the most powerful model from OpenAI as an example, which, in the summer of 2024, is 

GPT-4o. The model is trained on data up to October 2023. Thus, if we ask what happened during 

the 2020 pandemic, it can be answered perfectly due to its parametrized knowledge. However, 

it will not know the answer if we ask about the 2024 European Football Championship results 

due to its bounded parametrized knowledge. Another scenario is that it will start confidently 

hallucinating and provide a faulty answer.

RAG overcomes these two limitations of LLMs. It provides access to external or latest data and 

prevents hallucinations, enhancing generative AI models’ accuracy and reliability.

Why use RAG?
We briefly explained the importance of using RAG in generative AI applications earlier. Now, we 

will dig deeper into the “why,” following which we will focus on what a naïve RAG framework 

looks like.

For now, to get an intuition about RAG, you have to know that when using RAG, we inject the 

necessary information into the prompt to answer the initial user question. After that, we pass 

the augmented prompt to the LLM for the final answer. Now, the LLM will use the additional 

context to answer the user question.

There are two fundamental problems that RAG solves:

• Hallucinations

• Old or private information
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Hallucinations
If a chatbot without RAG is asked a question about something it wasn’t trained on, there is a high 

chance that it will give you a confident answer about something that isn’t true. Let’s take the 2024 

European Football Championship as an example. If the model is trained up to October 2023 and 

we ask it something about the tournament, it will most likely come up with a random answer 

that is hard to differentiate between reality and truth. Even if the LLM doesn’t hallucinate all the 

time, it raises concerns about the trustworthiness of its answers. Thus, we must ask ourselves: 

“When can we trust the LLM’s answers?” and “How can we evaluate if the answers are correct?”. 

By introducing RAG, we enforce the LLM to always answer solely based on the introduced con-

text. The LLM will act as the reasoning engine, while the additional information added through 

RAG will act as the single source of truth for the generated answer. By doing so, we can quickly 

evaluate if the LLM’s answer is based on the external data or not.

Old information
Any LLM is trained or fine-tuned on a subset of the total world knowledge dataset. This is due 

to three main issues:

• Private data: You cannot train your model on data you don’t own or have the right to use.

• New data: New data is generated every second. Thus, you would have to constantly train 

your LLM to keep up.

• Costs: Training or fine-tuning an LLM is an extremely costly operation. Hence, it is not 

feasible to do it on an hourly or daily basis.

RAG solves these issues, as you no longer have to constantly fine-tune your LLM on new data (or 

even private data). Directly injecting the necessary data to respond to user questions into the 

prompts that are fed to the LLM is enough to generate correct and valuable answers.

To conclude, RAG is key for a robust and flexible generative AI system. But how do we inject the 

right data into the prompt based on the user’s questions? We will dig into the technical aspects 

of RAG in the next sections.

The vanilla RAG framework
Every RAG system is similar at its roots. We will first focus on understanding RAG in its simplest 

form. Later, we will gradually introduce more advanced RAG techniques to improve the system’s 

accuracy. Note that we will use vanilla and naive RAG interchangeably to avoid repetition. 
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A RAG system is composed of three main modules independent of each other:

• Ingestion pipeline: A batch or streaming pipeline used to populate the vector DB

• Retrieval pipeline: A module that queries the vector DB and retrieves relevant entries to 

the user’s input

• Generation pipeline: The layer that uses the retrieved data to augment the prompt and 

an LLM to generate answers

As these three components are classes or services of their own, we will dig into each separately. 

But for now, let’s try to answer the question “How are these three modules connected?”. Here is 

a very simplistic overview:

1. On the backend side, the ingestion pipeline runs either on a schedule or constantly to 

populate the vector DB with external data.

2. On the client side, the user asks a question.

3. The question is passed to the retrieval module, which preprocesses the user’s input and 

queries the vector DB.

4. The generation pipelines use a prompt template, user input, and retrieved context to 

create the prompt.

5. The prompt is passed to an LLM to generate the answer.

6. The answer is shown to the user.
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Figure 4.1: Vanilla RAG architecture

You must implement RAG in your generative AI application when you need access to any type of 

external information. For example, when implementing a financial assistant, you most likely need 

access to the latest news, reports, and prices before providing valuable answers. Or, if you build 

a traveling recommender, you must retrieve and parse a list of potential attractions, restaurants, 

and activities. At training time, LLMs don’t have access to your specific data, so you will often 

have to implement a RAG strategy in your generative AI project. Now, let’s dig into the ingestion, 

retrieval, and generation pipelines.
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Ingestion pipeline
The RAG ingestion pipeline extracts raw documents from various data sources (e.g., data ware-

house, data lake, web pages, etc.). Then, it cleans, chunks (splits into smaller sections), and em-

beds the documents. Ultimately, it loads the embedded chunks into a vector DB (or other similar 

vector storage).

Thus, the RAG ingestion pipeline is split into the following:

• The data extraction module gathers all the necessary data from various sources such as 

DBs, APIs, or web pages. This module is highly dependent on your data. It can be as easy 

as querying your data warehouse or something more complex such as crawling Wikipedia.

• A cleaning layer standardizes and removes unwanted characters from the extracted data. 

For example, you must remove all invalid characters from your input text, such as non-AS-

CII and bold and italic characters. Another popular cleaning strategy is to replace URLs 

with placeholders. However, your cleaning strategy will vary depending on your data 

source and embedding model.

• The chunking module splits the cleaned documents into smaller ones. As we want to 

pass the document’s content to an embedding model, this is necessary to ensure it doesn’t 

exceed the model’s input maximum size. Also, chunking is required to separate specific 

regions that are semantically related. For example, when chunking a book’s chapter, the 

most optimal way is to group similar paragraphs into the same section or chunk. By doing 

so, at the retrieval time, you will add only the essential data to the prompt.

• The embedding component uses an embedding model to take the chunk’s content (text, 

images, audio, etc.) and project it into a dense vector packed with semantic value—more 

on embeddings in the What are embeddings? section below.

• The loading module takes the embedded chunks along with a metadata document. The 

metadata will contain essential information such as the embedded content, the URL to 

the source of the chunk, and when the content was published on the web. The embed-

ding is used as an index to query similar chunks, while the metadata is used to access the 

information added to augment the prompt.

At this point, we have a RAG ingestion pipeline that takes raw documents as input, processes them, 

and populates a vector DB. The next step is to retrieve relevant data from the vector store correctly.
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Retrieval pipeline
The retrieval components take the user’s input (text, image, audio, etc.), embed it, and query the 

vector DB for similar vectors to the user’s input.

The primary function of the retrieval step is to project the user’s input into the same vector space 

as the embeddings used as an index in the vector DB. This allows us to find the top K’s most sim-

ilar entries by comparing the embeddings from the vector storage with the user’s input vector. 

These entries then serve as content to augment the prompt that is passed to the LLM to generate 

the answer.

You must use a distance metric to compare two vectors, such as the Euclidean or Manhattan 

distance. But the most popular one is the cosine distance, which is equal to 1 minus the cosine of 

the angle between two vectors, as follows:𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶 𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶 𝐶𝐶𝐶 𝐶 𝐶 𝐴𝐴𝐴     
It ranges from -1 to 1, with a value of -1 when vectors A and B are in opposite directions, 0 if they 

are orthogonal, and 1 if they point in the same direction.

Most of the time, the cosine distance works well in non-linear complex vector spaces. However, 

it is essential to notice that choosing the proper distance between two vectors depends on your 

data and the embedding model you use.

One critical factor to highlight is that the user’s input and embeddings must be in the same vec-

tor space. Otherwise, you cannot compute the distance between them. To do so, it is essential to 

preprocess the user input in the same way you processed the raw documents in the RAG ingestion 

pipeline. This means you must clean, chunk (if necessary), and embed the user’s input using the 

same functions, models, and hyperparameters. This is similar to how you have to preprocess the 

data into features in the same way between training and inference; otherwise, the inference will 

yield inaccurate results—a phenomenon also known as the training-serving skew.

Generation pipeline
The last step of the RAG system is to take the user’s input, retrieve data, pass it to an LLM, and 

generate a valuable answer.
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The final prompt results from a system and prompt template populated with the user’s query and 

retrieved context. You might have a single prompt template or multiple prompt templates, depend-

ing on your application. Usually, all the prompt engineering is done at the prompt template level.

Below, you can see a dummy example of what a generic system and prompt template look like 

and how they are used together with the retrieval logic and the LLM to generate the final answer:

system_template = """

You are a helpful assistant who answers all the user's questions politely.

"""

prompt_template = """

Answer the user's question using only the provided context. If you cannot 
answer using the context, respond with "I don't know."

Context: {context}

User question: {user_question}

"""

user_question = "<your_question>"

retrieved_context = retrieve(user_question)

prompt = f"{system_template}\n"

prompt += prompt_template.format(context=retrieved_context, user_
question=user_question)

answer  = llm(prompt)

As the prompt templates evolve, each change should be tracked and versioned using machine 

learning operations (MLOps) best practices. Thus, during training or inference time, you always 

know that a given answer was generated by a specific version of the LLM and prompt template(s). 

You can do this through Git, store the prompt templates in a DB, or use specific prompt manage-

ment tools such as LangFuse.

As we’ve seen in the retrieval pipeline, some critical aspects that directly impact the accuracy of 

your RAG system are the embeddings of the external data, usually stored in vector DBs, the em-

bedding of the user’s query, and how we can find similarities between the two using functions 

such as the cosine distance. To better understand this part of the RAG algorithm, let’s zoom in 

on what embeddings are and how they are computed.
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What are embeddings?
Imagine you’re trying to teach a computer to understand the world. Embeddings are like a par-

ticular translator that turns these things into a numerical code. This code isn’t random, though, 

because similar words or items end up with codes that are close to each other. It’s like a map 

where words with similar meanings are clustered together.

With that in mind, a more theoretical definition is that embeddings are dense numerical repre-

sentations of objects encoded as vectors in a continuous vector space, such as words, images, or 

items in a recommendation system. This transformation helps capture the semantic meaning 

and relationships between the objects. For instance, in natural language processing (NLP), em-

beddings translate words into vectors where semantically similar words are positioned closely 

together in the vector space.

Figure 4.2: What are embeddings?

A popular method is visualizing the embeddings to understand and evaluate their geometrical 

relationship. As the embeddings often have more than 2 or 3 dimensions, usually between 64 

and 2048, you must project them again to 2D or 3D.
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For example, you can use UMAP (https://umap-learn.readthedocs.io/en/latest/index.

html), a dimensionality reduction method well known for keeping the geometrical properties 

between the points when projecting the embeddings to 2D or 3D. Another popular algorithm for 

dimensionality reduction when visualizing vectors is t-SNE (https://scikit-learn.org/stable/

modules/generated/sklearn.manifold.TSNE.html). However, compared to UMAP, it is more 

stochastic and doesn’t preserve the topological relationships between the points.

Figure 4.3: Visualize embeddings using UMAP (Source: UMAP’s documentation)

 A dimensionality reduction algorithm, such as PCA, UMAP, and t-SNE, is a mathe-

matical technique used to reduce the number of input variables or features in a data-

set while preserving the data’s essential patterns, structure, and relationships. The 

goal is to transform high-dimensional data into a lower-dimensional form, making 

it easier to visualize, interpret, and process while minimizing the loss of important 

information. These methods help to address the “curse of dimensionality,” improve 

computational efficiency, and often enhance the performance of ML algorithms.

https://umap-learn.readthedocs.io/en/latest/index.html
https://umap-learn.readthedocs.io/en/latest/index.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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Why embeddings are so powerful
Firstly, ML models work only with numerical values. This is not a problem when working with 

tabular data, as the data is often in numerical form or can easily be processed into numbers. 

Embeddings come in handy when we want to feed words, images, or audio data into models.

For instance, when working with transformer models, you tokenize all your text input, where 

each token has an embedding associated with it. The beauty of this process lies in its simplicity; 

the input to the transformer is a sequence of embeddings, which can be easily and confidently 

interpreted by the dense layers of the neural network.

Based on this example, you can use embeddings to encode any categorical variable and feed it to 

an ML model. But why not use other simple methods, such as one-hot encoding? When working 

with categorical variables with high cardinality, such as language vocabularies, you will suffer 

from the curse of dimensionality when using other classical methods. For example, if your vocab-

ulary has 10,000 tokens, then only one token will have a length of 10,000 after applying one-hot 

encoding. If the input sequence has N tokens, that will become N * 10,000 input parameters. If 

N >= 100, often, when inputting text, the input is too large to be usable. Another issue with other 

classical methods that don’t suffer from the curse of dimensionality, such as hashing, is that you 

lose the semantic relationships between the vectors.
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Secondly, embedding your input reduces the size of its dimension and condenses all of its se-

mantic meaning into a dense vector. This is an extremely popular technique when working with 

images, where a CNN encoder module maps the high-dimensional meaning into an embedding, 

which is later processed by a CNN decoder that performs the classification or regression steps.

The following image shows a typical CNN layout. Imagine tiny squares within each layer. Those 

are the “receptive fields.” Each square feeds information to a single neuron in the previous layer. 

As you move through the network, two key things are happening:

• Shrinking the picture: Special “subsampling” operations make the layers smaller, fo-

cusing on essential details.

• Learning features: “Convolution” operations, on the other hand, actually increase the 

layer size as the network learns more complex features from the image.

One-hot encoding is a technique that converts categorical variables into a binary 

matrix representation. Each category is represented as a unique binary vector. For 

each categorical variable, a binary vector is created with a length equal to the number 

of unique categories, where all values are zero except for the index corresponding to 

the specific category, which is set to one. The method preserves all information about 

the categories. It is simple and interpretable. However, a significant disadvantage is 

that it can lead to a high-dimensional feature space if the categorical variable has 

many unique values, making the method impractical.

Feature hashing, also known as hashing encoding or the “hash trick,” is a technique 

used to convert categorical variables into numerical features by applying a hash 

function to the category values. Compared to one-hot encoding, the method is not 

bound to the number of unique categories, but it reduces the dimensionality of the 

feature space by mapping categories into a fixed number of bins or buckets. Thus, it 

reduces the dimensionality of the feature space, which is particularly useful when 

dealing with high-cardinality categorical variables. This makes it efficient in terms of 

memory usage and computational time. However, there is a risk of collisions, where 

different categories might map to the same bin, leading to a loss of information. The 

mapping makes the method uninterpretable. Also, it is difficult to understand the 

relationship between the original categories and the hashed features.

Embeddings help us encode categorical variables while controlling the output vec-

tor’s dimension. They also use ingenious ways to condense information into a lower 

dimension space than naive hashing tricks.
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Finally, a fully connected layer at the end takes all this processed information and transforms it 

into the final vector embedding, a numerical image representation.

Figure 4.4: Creating embeddings from an image using a CNN (Image source)

How are embeddings created?
Embeddings are created by deep learning models that understand the context and semantics of 

your input and project it into a continuous vector space.

Various deep learning models can be used to create embeddings, varying by the data input type. 

Thus, it is fundamental to understand your data and what you need from it before picking an 

embedding model.

For example, when working with text data, one of the early methods used to create embeddings 

for your vocabulary is Word2Vec and GloVe. These are still popular methods used today for sim-

pler applications.

Another popular method is to use encoder-only transformers, such as BERT, or other methods 

from its family, such as RoBERTa. These models leverage the encoder of the transformer architec-

ture to smartly project your input into a dense vector space that can later be used as embeddings.

To quickly compute the embeddings in Python, you can conveniently leverage the Sentence 

Transformers Python package (also available in Hugging Face’s transformer package). This tool 

provides a user-friendly interface, making the embedding process straightforward and efficient.

The preceding image is sourced from Wikimedia Commons (https://commons.

wikimedia.org/wiki/File:Typical_cnn.png) and licensed under the Creative 

Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0: https://

creativecommons.org/licenses/by-sa/4.0/deed.en).

https://commons.wikimedia.org/wiki/File:Typical_cnn.png
https://commons.wikimedia.org/wiki/File:Typical_cnn.png
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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In the code snippet below, you can see how we loaded a model from SentenceTransformer, comput-

ed the embeddings for three sentences, and, ultimately, computed the cosine similarity between 

them. The similarity between one sentence and itself is always 1. Also, the similarity between 

the first and second sentences is approximately 0, as the sentences have nothing in common. In 

contrast, the value between the first and third one is higher as there is some overlapping context:

from sentence_transformers import SentenceTransformer

model = SentenceTransformer("all-MiniLM-L6-v2")

sentences = [

"The dog sits outside waiting for a treat.",

"I am going swimming.",

"The dog is swimming."

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# Output: [3, 384]

similarities = model.similarity(embeddings, embeddings)

print(similarities)

# Output:

# tensor([[ 1.0000, -0.0389, 0.2692],

# [-0.0389, 1.0000, 0.3837],

# [ 0.2692, 0.3837, 1.0000]])

#

# similarities[0, 0] = The similarity between the first sentence and 
itself.

# similarities[0, 1] = The similarity between the first and second 
sentence.

# similarities[2, 1] = The similarity between the third and second 
sentence.

The source code for the preceding snippet can be found at https://github.com/PacktPublishing/

LLM-Engineering/blob/main/code_snippets/08_text_embeddings.py.

https://github.com/PacktPublishing/LLM-Engineering/blob/main/code_snippets/08_text_embeddings.py
https://github.com/PacktPublishing/LLM-Engineering/blob/main/code_snippets/08_text_embeddings.py
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The best-performing embedding model can change with time and your specific use case. You can 

find particular models on the Massive Text Embedding Benchmark (MTEB) on Hugging Face. 

Depending on your needs, you can consider the best-performing model, the one with the best 

accuracy, or the one with the smallest memory footprint. This decision is solely based on your 

requirements (e.g., accuracy and hardware). However, Hugging Face and SentenceTransformer 

make switching between different models straightforward. Thus, you can always experiment 

with various options.

When working with images, you can embed them using convolutional neural networks (CNNs). 

Popular CNN networks are based on the ResNet architecture. However, we can’t directly use im-

age embedding techniques for audio recordings. Instead, we can create a visual representation 

of the audio, such as a spectrogram, and then apply image embedding models to those visuals. 

This allows us to capture the essence of images and sounds in a way computers can understand.

By leveraging models like CLIP, you can practically embed a piece of text and an image in the 

same vector space. This allows you to find similar images using a sentence as input, or the other 

way around, demonstrating the practicality of CLIP.

In the following code snippet, we use CLIP to encode a crazy cat image and three sentences. 

Ultimately, we use cosine similarity to compute the resemblance between the picture and the 

sentences:

from io import BytesIO

import requests

from PIL import Image

from sentence_transformers import SentenceTransformer

response = requests.get(

"https://github.com/PacktPublishing/LLM-Engineering/blob/main/images/
crazy_cat.jpg?raw=true"

)

The examples in the embeddings section can be run within the virtual environment 

used across the book, as it contains all the required dependencies.
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image = Image.open(BytesIO(response.content))

model = SentenceTransformer("clip-ViT-B-32")

img_emb = model.encode(image)

text_emb = model.encode(

["A crazy cat smiling.",

"A white and brown cat with a yellow bandana.",

"A man eating in the garden."]

)

print(text_emb.shape) # noqa

# Output: (3, 512)

similarity_scores = model.similarity(img_emb, text_emb)

print(similarity_scores) # noqa

# Output: tensor([[0.3068, 0.3300, 0.1719]])

The source code can be found at https://github.com/PacktPublishing/LLM-Engineering/

blob/main/code_snippets/08_text_image_embeddings.py.

Here, we provided a small introduction to how embeddings can be computed. The realm of specific 

implementations is vast, but what is important to know is that embeddings can be computed for 

most digital data categories, such as words, sentences, documents, images, videos, and graphs.

It’s crucial to grasp that you must use specialized models when you need to compute the distance 

between two different data categories, such as the distance between the vector of a sentence and 

of an image. These models are designed to project both data types into the same vector space, 

such as CLIP, ensuring accurate distance computation.

Applications of embeddings
Due to the generative AI revolution, which uses RAG, embeddings have become extremely popu-

lar in information retrieval tasks, such as semantic search for text, code, images, and audio, and 

long-term memory of agents. But before generative AI, embeddings were already heavily used in:

• Representing categorical variables (e.g., vocabulary tokens) that are fed to an ML model

• Recommender systems by encoding the users and items and finding their relationship

• Clustering and outlier detection

• Data visualization by using algorithms such as UMAP

https://github.com/PacktPublishing/LLM-Engineering/blob/main/code_snippets/08_text_image_embeddings.py
https://github.com/PacktPublishing/LLM-Engineering/blob/main/code_snippets/08_text_image_embeddings.py


Chapter 4 115

• Classification by using the embeddings as features

• Zero-shot classification by comparing the embedding of each class and picking the most 

similar one

The last step to fully understanding how RAG works is to examine vector DBs and how they 

leverage embeddings to retrieve data.

More on vector DBs
Vector DBs are specialized DBs designed to efficiently store, index, and retrieve vector embed-

dings. Traditional scalar-based DBs struggle with the complexity of vector data, making vector 

DBs crucial for tasks like real-time semantic search.

While standalone vector indices like FAISS are effective for similarity search, they lack vector DBs’ 

comprehensive data management capabilities. Vector DBs support CRUD operations, metadata 

filtering, scalability, real-time updates, backups, ecosystem integration, and robust data security, 

making them more suited for production environments than standalone indices.

How does a vector DB work?
Think of how you usually search a DB. You type in something specific, and the system spits out 

the exact match. That’s how traditional DBs work. Vector DBs are different. Instead of perfect 

matches, we look for the closest neighbors of the query vector. Under the hood, a vector DB uses 

approximate nearest neighbor (ANN) algorithms to find these close neighbors.

While ANN algorithms don’t return the top matches for a given search, standard nearest neigh-

bor algorithms are too slow to work in practice. Also, it is shown empirically that using only ap-

proximations of the top matches for a given input query works well enough. Thus, the trade-off 

between accuracy and latency ultimately favors ANN algorithms.

This is a typical workflow of a vector DB:

1. Indexing vectors: Vectors are indexed using data structures optimized for high-dimen-

sional data. Common indexing techniques include hierarchical navigable small world

(HNSW), random projection, product quantization (PQ), and locality-sensitive hashing

(LSH).

2. Querying for similarity: During a search, the DB queries the indexed vectors to find those 

most similar to the input vector. This process involves comparing vectors based on sim-

ilarity measures such as cosine similarity, Euclidean distance, or dot product. Each has 

unique advantages and is suitable for different use cases.
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3. Post-processing results: After identifying potential matches, the results undergo post-pro-

cessing to refine accuracy. This step ensures that the most relevant vectors are returned 

to the user.

Vector DBs can filter results based on metadata before or after the vector search. Both approaches 

have trade-offs in terms of performance and accuracy. The query also depends on the metadata 

(along with the vector index), so it contains a metadata index user for filtering operations.

Algorithms for creating the vector index
Vector DBs use various algorithms to create the vector index and manage searching data efficiently:

• Random projection: Random projection reduces the dimensionality of vectors by project-

ing them into a lower-dimensional space using a random matrix. This technique preserves 

the relative distances between vectors, facilitating faster searches.

• PQ: PQ compresses vectors by dividing them into smaller sub-vectors and then quantizing 

these sub-vectors into representative codes. This reduces memory usage and speeds up 

similarity searches.

• LSH: LSH maps similar vectors into buckets. This method enables fast approximate near-

est neighbor searches by focusing on a subset of the data, reducing the computational 

complexity.

• HNSW: HNSW constructs a multi-layer graph where each node represents a set of vectors. 

Similar nodes are connected, allowing the algorithm to navigate the graph and find the 

nearest neighbors efficiently.

These algorithms enable vector DBs to efficiently handle complex and large-scale data, making 

them a perfect fit for a variety of AI and ML applications.

DB operations
Vector DBs also share common characteristics with standard DBs to ensure high performance, 

fault tolerance, and ease of management in production environments. Key operations include:

• Sharding and replication: Data is partitioned (sharded) across multiple nodes to ensure 

scalability and high availability. Data replication across nodes helps maintain data integ-

rity and availability in case of node failures.
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• Monitoring: Continuous monitoring of DB performance, including query latency and re-

source usage (RAM, CPU, disk), helps maintain optimal operations and identify potential 

issues before they impact the system.

• Access control: Implementing robust access control mechanisms ensures that only au-

thorized users can access and modify data. This includes role-based access controls and 

other security protocols to protect sensitive information.

• Backups: Regular DB backups are critical for disaster recovery. Automated backup pro-

cesses ensure that data can be restored to a previous state in case of corruption or loss.

An overview of advanced RAG
The vanilla RAG framework we just presented doesn’t address many fundamental aspects that 

impact the quality of the retrieval and answer generation, such as:

• Are the retrieved documents relevant to the user’s question?

• Is the retrieved context enough to answer the user’s question?

• Is there any redundant information that only adds noise to the augmented prompt?

• Does the latency of the retrieval step match our requirements?

• What do we do if we can’t generate a valid answer using the retrieved information?

From the questions above, we can draw two conclusions. The first one is that we need a robust 

evaluation module for our RAG system that can quantify and measure the quality of the retrieved 

data and generate answers relative to the user’s question. We will discuss this topic in more detail 

in Chapter 9. The second conclusion is that we must improve our RAG framework to address the 

retrieval limitations directly in the algorithm. These improvements are known as advanced RAG.

The vanilla RAG design can be optimized at three different stages:

• Pre-retrieval: This stage focuses on how to structure and preprocess your data for data 

indexing optimizations as well as query optimizations.

• Retrieval: This stage revolves around improving the embedding models and metadata 

filtering to improve the vector search step.
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• Post-retrieval: This stage mainly targets different ways to filter out noise from the retrieved 

documents and compress the prompt before feeding it to an LLM for answer generation.

Figure 4.5: The three stages of advanced RAG

This section is not meant to be an exhaustive list of all the advanced RAG methods available. The 

goal is to build an intuition about what can be optimized. We will use only examples based on 

text data, but the principles of advanced RAG remain the same regardless of the data category. 

Now, let’s zoom in on all three components.
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Pre-retrieval
The pre-retrieval steps are performed in two different ways:

• Data indexing: It is part of the RAG ingestion pipeline. It is mainly implemented within 

the cleaning or chunking modules to preprocess the data for better indexing.

• Query optimization: The algorithm is performed directly on the user’s query before em-

bedding it and retrieving the chunks from the vector DB.

As we index our data using embeddings that semantically represent the content of a chunked 

document, most of the data indexing techniques focus on better preprocessing and structuring 

the data to improve retrieval efficiency, such as:

• Sliding window: The sliding window technique introduces overlap between text chunks, 

ensuring that important context near chunk boundaries is retained, which enhances re-

trieval accuracy. This is particularly beneficial in domains like legal documents, scientific 

papers, customer support logs, and medical records, where critical information often spans 

multiple sections. The embedding is computed on the chunk along with the overlapping 

portion. Hence, the sliding window improves the system’s ability to retrieve relevant and 

coherent information by maintaining context across boundaries.

• Enhancing data granularity: This involves data cleaning techniques like removing irrel-

evant details, verifying factual accuracy, and updating outdated information. A clean and 

accurate dataset allows for sharper retrieval.

• Metadata: Adding metadata tags like dates, URLs, external IDs, or chapter markers helps 

filter results efficiently during retrieval.

• Optimizing index structures: It is based on different data index methods, such as various 

chunk sizes and multi-indexing strategies.

• Small-to-big: The algorithm decouples the chunks used for retrieval and the context used 

in the prompt for the final answer generation. The algorithm uses a small sequence of 

text to compute the embedding while preserving the sequence itself and a wider window 

around it in the metadata. Thus, using smaller chunks enhances the retrieval’s accuracy, 

while the larger context adds more contextual information to the LLM. 
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The intuition behind this is that if we use the whole text for computing the embedding, we 

might introduce too much noise, or the text could contain multiple topics, which results 

in a poor overall semantic representation of the embedding.

Figure 4.6: Query routing

On the query optimization side, we can leverage techniques such as query routing, query rewriting, 

and query expansion to refine the retrieved information for the LLM further:

• Query routing: Based on the user’s input, we might have to interact with different cate-

gories of data and query each category differently. Query rooting is used to decide what 

action to take based on the user’s input, similar to if/else statements. Still, the decisions 

are made solely using natural language instead of logical statements. 
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As illustrated in Figure 4.6, let’s assume that, based on the user’s input, to do RAG, we 

can retrieve additional context from a vector DB using vector search queries, a standard 

SQL DB by translating the user query to an SQL command, or the internet by leveraging 

REST API calls. The query router can also detect whether a context is required, helping us 

avoid making redundant calls to external data storage. Also, a query router can be used to 

pick the best prompt template for a given input. For example, in the LLM Twin use case, 

depending on whether the user wants an article paragraph, a post, or a code snippet, you 

need different prompt templates to optimize the creation process. The routing usually 

uses an LLM to decide what route to take or embeddings by picking the path with the 

most similar vectors. To summarize, query routing is identical to an if/else statement but 

much more versatile as it works directly with natural language.

• Query rewriting: Sometimes, the user’s initial query might not perfectly align with the 

way your data is structured. Query rewriting tackles this by reformulating the question 

to match the indexed information better. This can involve techniques like:

• Paraphrasing: Rephrasing the user’s query while preserving its meaning (e.g., 

“What are the causes of climate change?” could be rewritten as “Factors contrib-

uting to global warming”).

• Synonym substitution: Replacing less common words with synonyms to broaden 

the search scope (e.g., “ joyful” could be rewritten as “happy”).

• Sub-queries: For longer queries, we can break them down into multiple shorter 

and more focused sub-queries. This can help the retrieval stage identify relevant 

documents more precisely.

• Hypothetical document embeddings (HyDE): This technique involves having an LLM 

create a hypothetical response to the query. Then, both the original query and the LLM’s 

response are fed into the retrieval stage.

• Query expansion: This approach aims to enrich the user’s question by adding additional 

terms or concepts, resulting in different perspectives of the same initial question. For 

example, when searching for “disease,” you can leverage synonyms and related terms 

associated with the original query words and also include “illnesses” or “ailments.”

• Self-query: The core idea is to map unstructured queries into structured ones. An LLM 

identifies key entities, events, and relationships within the input text. These identities are 

used as filtering parameters to reduce the vector search space (e.g., identify cities within 

the query, for example, “Paris,” and add it to your filter to reduce your vector search space).
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Both data indexing and query optimization pre-retrieval optimization techniques depend highly 

on your data type, structure, and source. Thus, as with any data processing pipeline, no method 

always works, as every use case has its own particularities and gotchas. Optimizing your pre-re-

trieval RAG layer is experimental. Thus, what is essential is to try multiple methods (such as the 

ones enumerated in this section), reiterate, and observe what works best.

Retrieval
The retrieval step can be optimized in two fundamental ways:

• Improving the embedding models used in the RAG ingestion pipeline to encode the 

chunked documents and, at inference time, transform the user’s input.

• Leveraging the DB’s filter and search features. This step will be used solely at inference 

time when you have to retrieve the most similar chunks based on user input.

Both strategies are aligned with our ultimate goal: to enhance the vector search step by leveraging 

the semantic similarity between the query and the indexed data.

When improving the embedding models, you usually have to fine-tune the pre-trained embedding 

models to tailor them to specific jargon and nuances of your domain, especially for areas with 

evolving terminology or rare terms.

Instead of fine-tuning the embedding model, you can leverage instructor models (https://

huggingface.co/hkunlp/instructor-xl) to guide the embedding generation process with an 

instruction/prompt aimed at your domain. Tailoring your embedding network to your data us-

ing such a model can be a good option, as fine-tuning a model consumes more computing and 

human resources.

In the code snippet below, you can see an example of an Instructor model that embeds article 

titles about AI:

from InstructorEmbedding import INSTRUCTOR

model = INSTRUCTOR("hkunlp/instructor-base")

sentence = "RAG Fundamentals First"

instruction = "Represent the title of an article about AI:"

https://huggingface.co/hkunlp/instructor-xl
https://huggingface.co/hkunlp/instructor-xl
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embeddings = model.encode([[instruction, sentence]])

print(embeddings.shape) # noqa

# Output: (1, 768)

The source code can be found at https://github.com/PacktPublishing/LLM-Engineering/

blob/main/code_snippets/08_instructor_embeddings.py.

python3 -m venv instructor_venv && source instructor_venv/bin/activate

pip install sentence-transformers==2.2.2 InstructorEmbedding==1.0.1

On the other side of the spectrum, here is how you can improve your retrieval by leveraging classic 

filter and search DB features:

• Hybrid search: This is a vector and keyword-based search blend. Keyword-based search 

excels at identifying documents containing specific keywords. When your task demands 

pinpoint accuracy and the retrieved information must include exact keyword matches, 

hybrid search shines. Vector search, while powerful, can sometimes struggle with finding 

exact matches, but it excels at finding more general semantic similarities. You leverage 

both keyword matching and semantic similarities by combining the two methods. You 

have a parameter, usually called alpha, that controls the weight between the two methods. 

The algorithm has two independent searches, which are later normalized and unified.

• Filtered vector search: This type of search leverages the metadata index to filter for specific 

keywords within the metadata. It differs from a hybrid search in that you retrieve the data 

once using only the vector index and perform the filtering step before or after the vector 

search to reduce your search space.

To run the instructor code, you have to create a different virtual environment and 

activate it:

And install the required Python dependencies:

https://github.com/PacktPublishing/LLM-Engineering/blob/main/code_snippets/08_instructor_embeddings.py
https://github.com/PacktPublishing/LLM-Engineering/blob/main/code_snippets/08_instructor_embeddings.py
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In practice, on the retrieval side, you usually start with filtered vector search or hybrid search, as 

they are fairly quick to implement. This approach gives you the flexibility to adjust your strategy 

based on performance. If the results are not as expected, you can always fine-tune your embed-

ding model.

Post-retrieval
The post-retrieval optimizations are solely performed on the retrieved data to ensure that the 

LLM’s performance is not compromised by issues such as limited context windows or noisy data. 

This is because the retrieved context can sometimes be too large or contain irrelevant information, 

both of which can distract the LLM.

Two popular methods performed at the post-retrieval step are:

• Prompt compression: Eliminate unnecessary details while keeping the essence of the data.

• Re-ranking: Use a cross-encoder ML model to give a matching score between the user’s 

input and every retrieved chunk. The retrieved items are sorted based on this score. Only 

the top N results are kept as the most relevant. As you can see in Figure 4.7, this works 

because the re-ranking model can find more complex relationships between the user input 

and some content than a simple similarity search. However, we can’t apply this model at 

the initial retrieval step because it is costly. That is why a popular strategy is to retrieve 

the data using a similarity distance between the embeddings and refine the retrieved 

information using a re-raking model, as illustrated in Figure 4.8.
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Figure 4.7: Bi-encoder (the standard embedding model) versus cross-encoder

The abovementioned techniques are far from an exhaustive list of all potential solutions. We 

used them as examples to get an intuition on what you can (and should) optimize at each step 

in your RAG workflow. The truth is that these techniques can vary tremendously by the type of 

data you work with. 



RAG Feature Pipeline126

For example, if you work with multi-modal data such as text and images, most of the techniques 

from earlier won’t work as they are designed for text only.

Figure 4.8: The re-ranking algorithm

To summarize, the primary goal of these optimizations is to enhance the RAG algorithm at three key 

stages: pre-retrieval, retrieval, and post-retrieval. This involves preprocessing data for improved 

vector indexing, adjusting user queries for more accurate searches, enhancing the embedding 

model, utilizing classic filtering DB operations, and removing noisy data. By keeping these goals 

in mind, you can effectively optimize your RAG workflow for data processing and retrieval
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Exploring the LLM Twin’s RAG feature pipeline 
architecture
Now that you have a strong intuition and understanding of RAG and its workings, we will con-

tinue exploring our particular LLM Twin use case. The goal is to provide a hands-on end-to-end 

example to solidify the theory presented in this chapter.

Any RAG system is split into two independent components:

• The ingestion pipeline takes in raw data, cleans, chunks, embeds, and loads it into a 

vector DB.

• The inference pipeline queries the vector DB for relevant context and ultimately generates 

an answer by levering an LLM.

In this chapter, we will focus on implementing the RAG ingestion pipeline, and in Chapter 9, we 

will continue developing the inference pipeline.

With that in mind, let’s have a quick refresher on the problem we are trying to solve and where 

we get our raw data. Remember that we are building an end-to-end ML system. Thus, all the 

components talk to each other through an interface (or a contract), and each pipeline has a sin-

gle responsibility. In our case, we ingest raw documents, preprocess them, and load them into 

a vector DB.

The problem we are solving
As presented in the previous chapter, this book aims to show you how to build a production-ready 

LLM Twin backed by an end-to-end ML system. In this chapter specifically, we want to design a 

RAG feature pipeline that takes raw social media data (e.g., articles, code repositories, and posts) 

from our MongoDB data warehouse. The text of the raw documents will be cleaned, chunked, 

embedded, and ultimately loaded to a feature store. As discussed in Chapter 1, we will implement 

a logical feature store using ZenML artifacts and a Qdrant vector DB.

As we want to build a fully automated feature pipeline, we want to sync the data warehouse and 

logical feature store. Remember that, at inference time, the context used to generate the answer 

is retrieved from the vector DB. Thus, the speed of synchronization between the data warehouse 

and the feature store will directly impact the accuracy of our RAG algorithm.

Another key consideration is how to automate the feature pipeline and integrate it with the rest 

of our ML system. Our goal is to minimize any desynchronization between the two data storages, 

as this could potentially compromise the integrity of our system.
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To conclude, we must design a feature pipeline that constantly syncs the data warehouse and 

logical feature store while processing the data accordingly. Having the data in a feature store 

is critical for a production-ready ML system. The LLM Twin inference pipeline will query it for 

RAG, while the training pipeline will consume tracked and versioned fine-tuning datasets from it.

The feature store
The feature store will be the central access point for all the features used within the training and 

inference pipelines. The training pipeline will use the cleaned data from the feature store (stored 

as artifacts) to fine-tune LLMs. The inference pipeline will query the vector DB for chunked doc-

uments for RAG. That is why we are designing a feature pipeline and not only a RAG ingestion 

pipeline. In practice, the feature pipeline contains multiple subcomponents, one of which is the 

RAG logic.

Remember that the feature pipeline is mainly used as a mind map to navigate the complexity of 

ML systems. It clearly states that it takes raw data as input and then outputs features and optional 

labels, which are stored in the feature store. Thus, a good intuition is to consider that all the logic 

between the data warehouse and the feature store goes into the feature pipeline namespace, con-

sisting of one or more sub-pipelines. For example, we will implement another pipeline that takes 

in cleaned data, processes it into instruct datasets, and stores it in artifacts; this also sits under 

the feature pipeline umbrella as the artifacts are part of the logical feature store. Another example 

would be implementing a data validation pipeline on top of the raw data or computed features.

Another important observation to make is that text data stored as strings are not considered 

features if you follow the standard conventions. A feature is something that is fed directly into 

the model. For example, we would have to tokenize the instruct datasets or chunked documents 

to be considered features. Why? Because the tokens are fed directly to the model and not the 

sentences as strings. Unfortunately, this makes the system more complex and unflexible. Thus, 

we will do the tokenization at runtime. But this observation is important to understand as it’s 

a clear example that you don’t have to be too rigid about the feature/training/inference (FTI) 

architecture. You have to take it and adapt it to your own use case.

Where does the raw data come from?
As a quick reminder, all the raw documents are stored in a MongoDB data warehouse. The data 

warehouse is populated by the data collection ETL pipeline presented in Chapter 3. The ETL pipe-

line crawls various platforms such as Medium and Substack, standardizes the data, and loads it 

into MongoDB. Check out Chapter 3 for more details on this topic.
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Designing the architecture of the RAG feature pipeline
The last step is to architect and go through the design of the RAG feature pipeline of the LLM 

Twin application. We will use a batch design scheduled to poll data from the MongoDB data 

warehouse, process it, and load it to a Qdrant vector DB. The first question to ask ourselves is, 

“Why a batch pipeline?”

But before answering that, let’s quickly understand how a batch architecture works and behaves 

relative to a streaming design.

Figure 4.9: The architecture of the LLM Twin’s RAG feature pipeline
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Batch pipelines
A batch pipeline in data systems refers to a data processing method where data is collected, pro-

cessed, and stored in predefined intervals and larger volumes, also known as “batches”. This ap-

proach differs from real-time or streaming data processing, where data is processed continuously 

as it arrives. This is what happens in a batch pipeline:

1. Data collection: Data is collected from various sources and stored until sufficient amounts 

are accumulated for processing. This can include data from DBs, logs, files, and other 

sources.

2. Scheduled processing: Data processing is scheduled at regular intervals, for example, 

hourly or daily. During this time, the collected data is processed in bulk. This can involve 

data cleansing, transformation, aggregation, and other operations.

3. Data loading: After processing, the data is loaded into the target system, such as a DB, data 

warehouse, data lake, or feature store. This processed data is then available for analysis, 

querying, or further processing.

Batch pipelines are particularly useful when dealing with large volumes of data that do not require 

immediate processing. They offer several advantages, including:

• Efficiency: Batch processing can handle large volumes of data more efficiently than re-

al-time processing, allowing for optimized resource allocation and parallel processing.

• Complex processing: Batch pipelines can perform complex data transformations and 

aggregations that might be too resource-intensive for real-time processing.

• Simplicity: Batch processing systems’ architectures are often simpler than those of re-

al-time systems, making them easier to implement and maintain.

Batch versus streaming pipelines
When implementing feature pipelines, you have two main design choices: batch and streaming. 

Thus, it is worthwhile to see the difference between the two and understand why we chose a 

batch architecture over a streaming one for our LLM Twin use case.

You can effortlessly write a dedicated chapter on streaming pipelines, which suggests its com-

plexity over a batch design. However, as streaming architectures become increasingly popular, 

one must have an intuition of how they work to choose the best option for your application.
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The core elements of streaming applications are a distributed event streaming platform such as 

Apache Kafka or Redpanda to store events from multiple clients and a streaming engine such as 

Apache Flink or Bytewax to process the events. To simplify your architecture, you can swap your 

event streaming platform with queues, such as RabbitMQ, to store the events until processed. 

Table 4.1 compares batch and streaming pipelines based on multiple criteria such as processing 

schedule and complexity:

Aspect Batch pipeline Streaming pipeline

Processing schedule Processes data at regular 
intervals (e.g., every 
minute, hourly, daily).

Processes data 
continuously, with 
minimal latency.

Efficiency Handles large volumes of 
data more efficiently, 
optimizing resource 
allocation and parallel 
processing.

Handles single data 
points, providing 
immediate insights 
and updates, allowing 
for rapid response to 
changes.

Processing complexity Capable of performing 
complex data transformations 
and aggregations.

Designed to handle 
high-velocity data 
streams with low 
latency.

Use cases Suitable for scenarios where 
immediate data processing 
is not critical. Commonly 
used in data warehousing, 
reporting, ETL processes, 
and feature pipelines.

Ideal for applications 
requiring real-time 
analytics, features, 
monitoring, and event-
driven architectures.

System complexity Compared to streaming 
pipelines, systems are 
generally simpler to 
implement and maintain.

More complex to 
implement and maintain 
due to the need for 
low-latency processing, 
fault tolerance, and 
scalability. The 
tooling is also 
more advanced and 
complicated.

Table 4.1: Batch versus streaming pipelines

More complex to implement and maintain due to the need for low-latency processing, fault tolerance, and scalability. The tooling is also more advanced and complicated.
More complex to implement and maintain due to the need for low-latency processing, fault tolerance, and scalability. The tooling is also more advanced and complicated.
More complex to implement and maintain due to the need for low-latency processing, fault tolerance, and scalability. The tooling is also more advanced and complicated.
More complex to implement and maintain due to the need for low-latency processing, fault tolerance, and scalability. The tooling is also more advanced and complicated.
More complex to implement and maintain due to the need for low-latency processing, fault tolerance, and scalability. The tooling is also more advanced and complicated.
More complex to implement and maintain due to the need for low-latency processing, fault tolerance, and scalability. The tooling is also more advanced and complicated.
More complex to implement and maintain due to the need for low-latency processing, fault tolerance, and scalability. The tooling is also more advanced and complicated.
More complex to implement and maintain due to the need for low-latency processing, fault tolerance, and scalability. The tooling is also more advanced and complicated.
More complex to implement and maintain due to the need for low-latency processing, fault tolerance, and scalability. The tooling is also more advanced and complicated.
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For example, streaming pipelines are extremely powerful in social media recommender systems 

like TikTok. When using social media, user behavior changes frequently. A typical scenario is 

that you want to relax at a certain point in time and mostly look at videos of puppies. Still, after 

15 minutes, you get bored and want something more serious, such as educative content or news. 

This means the recommender system has to capture these behavior changes without delay to keep 

you engaged. As the transition between interests is cyclical and not predictable, you can’t use a 

batch pipeline that runs every 30 minutes or every hour to generate more content. You can run 

it every minute to create new content, but, at the same time, it will result in unnecessary costs, 

as most predictions will not be consumed. By implementing a streaming pipeline, you update 

the features of specific users in real time, which are then passed to a chain of models that predict 

the new recommendations.

Streaming architectures are also the backbone of real-time fraud detection algorithms, such as 

those used at Stripe or PayPal. In this context, it’s critical to identify potentially fraudulent trans-

actions as they occur, not after a few minutes or hours as a batch pipeline would process them. 

The same urgency applies to high-frequency trading platforms that make stock predictions based 

on the constant influx of market data, enabling traders to make decisions within milliseconds.

On the other hand, you can use a batch architecture for an offline recommender system. For ex-

ample, when implementing one for an e-commerce or streaming platform, you don’t need the 

system to be so reactive, as the user’s behavior rarely changes. Thus, updating the recommen-

dations periodically, such as every night, based on historical user behavior data using a batch 

pipeline is easier to implement and cheaper.

Another popular example of batch pipelines is the ETL design used to extract, transform, and load 

data for different use cases. The ETL design is widespread in data pipelines used to move data 

from one DB to another. Some practical use cases include aggregating data for analytics, where 

you have to extract data from multiple sources, aggregate it, and load it to a data warehouse 

connected to a dashboard. The analytics domains can be widespread, from e-commerce and 

marketing to finance and research.
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The data collection pipeline used in the LLM Twin use case is another example of an ETL pipeline 

that extracts data from the internet, structures it, and loads it into a data warehouse for future 

processing.

Along with prediction or feature freshness, another disadvantage of batch pipelines over streaming 

ones is that you usually make redundant predictions. Let’s take the example of a recommender 

system for a streaming platform like Netflix. Every night, you make the predictions for all users. 

There is a significant chance that a large chunk of users won’t log in that day. Also, users usually 

don’t browse all the recommendations but stick to the first ones. Thus, only a portion of predic-

tions are used, wasting computing power on all the others.

That’s why a popular strategy is to start with a batch architecture, as it’s faster and easier to im-

plement. After the product is in place, you gradually move to a streaming design to reduce costs 

and improve the user experience.

To conclude, we have used a batch architecture (and not a streaming one) to implement the LLM 

Twin’s feature pipeline for the following reasons:

• Does not require immediate data processing: Even if syncing the data warehouse and 

feature store is critical for an accurate RAG system, a delay of a few minutes is acceptable. 

Thus, we can schedule the batch pipeline to run every minute, constantly syncing the two 

data storages. This technique works because the data volume is small. The whole data 

warehouse will have only thousands of records, not millions or billions. Hence, we can 

quickly iterate through them and sync the two DBs.

• Simplicity: As stated earlier, implementing a streaming pipeline is two times more com-

plex. In the real world, you want to keep your system as simple as possible, making it 

easier to understand, debug, and maintain. Also, simplicity usually translates to lower 

infrastructure and development costs.
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In Figure 8.10, we compare what tools you can use based on your architecture (streaming versus 

batch) and the quantity of data you have to process (small versus big data). In our use case, we 

are in the smaller data and batch quadrant, where we picked a combination of vanilla Python and 

generative AI tools such as LangChain, Sentence Transformers, and Unstructured.

Figure 4.10: Tools on the streaming versus batch and smaller versus bigger data spectrum

In the Change data capture: syncing the data warehouse and feature store section later in this chapter, 

we will discuss when switching from a batch architecture to a streaming one makes sense.

Core steps
Most of the RAG feature pipelines are composed of five core steps. The one implemented in the 

LLM Twin architecture makes no exception. Thus, you can quickly adapt this pattern for other 

RAG applications, but here is what the LLM Twin’s RAG feature pipeline looks like:

1. Data extraction: Extract the latest articles, code repositories, and posts from the Mon-

goDB data warehouse. At the extraction step, you usually aggregate all the data you need 

for processing.
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2. Cleaning: The data from the data warehouse is standardized and partially clean, but we 

have to ensure that the text contains only useful information, is not duplicated, and can 

be interpreted by the embedding model. For example, we must clean and normalize all 

non-ASCII characters before passing the text to the embedding model. Also, to keep the 

information semantically dense, we decided to replace all the URLs with placeholders 

and remove all emojis. The cleaning step is more art than science. Hence, after you have 

the first iteration with an evaluation mechanism in place, you will probably reiterate and 

improve it.

3. Chunking: You must adopt various chunking strategies based on each data category 

and embedding model. For example, when working with code repositories, you want 

the chunks broader, whereas when working with articles, you want them narrower or 

scoped at the paragraph level. Depending on your data, you must decide if you split your 

document based on the chapter, section, paragraph, sentence, or just a fixed window size. 

Also, you have to ensure that the chunk size doesn’t exceed the maximum input size of 

the embedding model. That is why you usually chunk a document based on your data 

structure and the maximum input size of the model.

4. Embedding: You pass each chunk individually to an embedding model of your choice. 

Implementation-wise, this step is usually the simplest, as tools such as SentenceTrans-

former and Hugging Face provide high-level interfaces for most embedding models. As 

explained in the What are embeddings? section of this chapter, at this step, the most critical 

decisions are to decide what model to use and whether to fine-tune it or not. For example, 

we used an "all-mpnet-base-v2" embedding model from SentenceTransformer, which 

is relatively tiny and runs on most machines. However, we provide a configuration file 

where you can quickly configure the embedding model with something more powerful 

based on the state of the art when reading this book. You can quickly find other options 

on the MTEB on Hugging Face (https://huggingface.co/spaces/mteb/leaderboard).

5. Data loading: The final step combines the embedding of a chunked document and its 

metadata, such as the author and the document ID, content, URL, platform, and creation 

date. Ultimately, we wrap the vector and the metadata into a structure compatible with 

Qdrant and push it to the vector DB. As we want to use Qdrant as the single source of truth 

for the features, we also push the cleaned documents (before chunking) to Qdrant. We can 

push data without vectors, as the metadata index of Qdrant behaves like a NoSQL DB. Thus, 

pushing metadata without a vector attached to it is like using a standard NoSQL engine.

https://huggingface.co/spaces/mteb/leaderboard
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Change data capture: syncing the data warehouse and feature 
store
As highlighted a few times in this chapter, data is constantly changing, which can result in DBs, 

data lakes, data warehouses, and feature stores getting out of sync. Change data capture (CDC) 

is a strategy that allows you to optimally keep two or more data storage types in sync without 

computing and I/O overhead. It captures any CRUD operation done on the source DB and repli-

cates it on a target DB. Optionally, you can add preprocessing steps in between the replication.

The syncing issues also apply when building a feature pipeline. One key design choice concerns 

how to sync the data warehouse with the feature store to have data fresh enough for your par-

ticular use case.

In our LLM Twin use case, we chose a naïve approach out of simplicity. We implemented a batch 

pipeline that is triggered periodically or manually. It reads all the raw data from the data ware-

house, processes it in batches, and inserts new records or updates old ones from the Qdrant 

vector DB. This works fine when you are working with a small number of records, at the order of 

thousands or tens of thousands. But our naïve approach raises the following questions:

• What happens if the data suddenly grows to millions of records (or higher)?

• What happens if a record is deleted from the data warehouse? How is this reflected in 

the feature store?

• What if we want to process only the new or updated items from the data warehouse and 

not all of them?

Fortunately, the CDC pattern can solve all of these issues. When implementing CDC, you can 

take multiple approaches, but all of them use either a push or pull strategy:

• Push: The source DB is the primary driver in the push approach. It actively identifies 

and transmits data modifications to target systems for processing. This method ensures 

near-instantaneous updates at the target, but data loss can occur if target systems are 

inaccessible. To mitigate this, a messaging system is typically employed as a buffer.

• Pull: The pull method assigns a more passive role to the source DB, which only records 

data changes. Target systems periodically request these changes and handle updates 

accordingly. While this approach lightens the load on the source, it introduces a delay 

in data propagation. A messaging system is again essential to prevent data loss during 

periods of target system unavailability.
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In summary, the push method is ideal for applications demanding immediate data access, where-

as the pull method is better suited for large-scale data transfers where real-time updates aren’t 

critical. With that in mind, there are different methods to detect changes in data. Thus, let’s list 

the main CDC patterns that are used in the industry:

• Timestamp-based: The approach involves adding a modification time column to DB 

tables, usually called LAST_MODIFIED or LAST_UPDATED. Downstream systems can query 

this column to identify records that have been updated since their last check. While sim-

ple to implement, this method is limited to tracking changes, not deletions, and imposes 

performance overhead due to the need to scan entire tables.

• Trigger-based: The trigger-based approach utilizes DB triggers to automatically record 

data modifications in a separate table upon INSERT, UPDATE, or DELETE operations, often 

known as the event table. This method provides comprehensive change tracking but can 

impact the DB performance due to the additional write operations involved for each event.

• Log-based: DBs maintain transaction logs to record all data modifications, including 

timestamps. Primarily used for recovery, these logs can also be leveraged to propagate 

changes to target systems in real time. This approach minimizes the performance impact 

on the source DB. As a huge advantage, it avoids additional processing overhead on the 

source DB, captures all data changes, and requires no schema modification. But on the op-

posite side, it lacks standardized log formats, leading to vendor-specific implementations.

With these CDC techniques in mind, we could quickly implement a pull timestamp-based strategy 

in our RAG feature pipeline to sync the data warehouse and feature store more optimally when 

the data grows. Our implementation is still pull-based but doesn’t check any last updated field 

in the source DB; it just pulls everything from the data warehouse.

However, the most popular and optimal technique in the industry is the log-based one. It doesn’t 

add any I/O overhead to the source DB, has low latency, and supports all CRUD operations. The 

biggest downside is its development complexity, which requires a queue to capture all the CRUD 

events and a streaming pipeline to process them.

For more details on CDC, I recommend What is Change Data Capture? from Conflu-

ent’s blog: https://www.confluent.io/en-gb/learn/change-data-capture/.

https://www.confluent.io/en-gb/learn/change-data-capture/
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As this is an LLM book and not a data engineering one, we wanted to keep things simple, but it’s 

important to know that these techniques exist, and you can always upgrade your current imple-

mentation when it doesn’t fit your application requirements anymore.

Why is the data stored in two snapshots?
We store two snapshots of our data in the logical feature store:

• After the data is cleaned: For fine-tuning LLMs

• After the documents are chunked and embedded: For RAG

Why did we design it this way? Remember that the features should be accessed solely from the feature 

store for training and inference. Thus, this adds consistency to our design and makes it cleaner.

Also, storing the data cleaned specifically for our fine-tuning and embedding use case in the Mon-

goDB data warehouse would have been an antipattern. The data from the warehouse is shared 

all across the company. Thus, processing it for a specific use case is not good practice. Imagine 

another summarization use case where we must clean and preprocess the data differently. We 

must create a new “Cleaned Data” table prefixed with the use case name. We have to repeat that 

for every new use case. Therefore, to avoid having a spaghetti data warehouse, the data from the 

data warehouse is generic and is modeled to specific applications only in downstream compo-

nents, which, in our case, is the feature store.

Ultimately, as we mentioned in the Core steps section, you can leverage the metadata index of a 

vector DB as a NoSQL DB. Based on these factors, we decided to keep the cleaned data in Qdrant, 

along with the chunked and embedded versions of the documents.

As a quick reminder, when operationalizing our LLM Twin system, the create instruct dataset 

pipeline, explained in Chapter 5, will read the cleaned documents from Qdrant, process them, 

and save them under a versioned ZenML artifact. The training pipeline requires a dataset and not 

plain documents. This is a reminder that our logical feature store comprises the Qdrant vector 

DB for online serving and ZenML artifacts for offline training.

Orchestration
ZenML will orchestrate the batch RAG feature pipeline. Using ZenML, we can schedule it to run 

on a schedule, for example, every hour, or quickly manually trigger it. Another option is to trigger 

it after the ETL data collection pipeline finishes.

By orchestrating the feature pipeline and integrating it into ZenML (or any other orchestration 

tool), we can operationalize the feature pipeline with the end goal of continuous training (CT).
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We will go into all the details of orchestration, scheduling, and CT in Chapter 11.

Implementing the LLM Twin’s RAG feature pipeline
The last step is to review the LLM Twin’s RAG feature pipeline code to see how we applied every-

thing we discussed in this chapter. We will walk you through the following:

• ZenML code

• Pydantic domain objects

• A custom object-vector mapping (OVM) implementation

• The cleaning, chunking, and embedding logic for all our data categories

We will take a top-down approach. Thus, let’s start with the Settings class and ZenML pipeline.

Settings
We use Pydantic Settings (https://docs.pydantic.dev/latest/concepts/pydantic_settings/) 

to define a global Settings class that loads sensitive or non-sensitive variables from a .env file. 

This approach also gives us all the benefits of Pydantic, such as type validation. For example, if 

we provide a string for the QDRANT_DATABASE_PORT variable instead of an integer, the program 

will crash. This behavior makes the whole application more deterministic and reliable.

Here is what the Settings class looks like with all the variables necessary to build the RAG fea-

ture pipeline:

from pydantic import BaseSettings

class Settings(BaseSettings):

    class Config:

        env_file = ".env"

        env_file_encoding = "utf-8"

    … # Some other settings…

    # RAG

    TEXT_EMBEDDING_MODEL_ID: str = "sentence-transformers/all-MiniLM-
L6-v2"

    RERANKING_CROSS_ENCODER_MODEL_ID: str = "cross-encoder/ms-marco-
MiniLM-L-4-v2"

    RAG_MODEL_DEVICE: str = "cpu"

https://docs.pydantic.dev/latest/concepts/pydantic_settings/
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    # QdrantDB Vector DB

    USE_QDRANT_CLOUD: bool = False

    QDRANT_DATABASE_HOST: str = "localhost"

    QDRANT_DATABASE_PORT: int = 6333

    QDRANT_CLOUD_URL: str = "str"

    QDRANT_APIKEY: str | None = None

    … # More settings…

settings = Settings()

As stated in the internal Config class, all the variables have default values or can be overridden 

by providing a .env file.

ZenML pipeline and steps
The ZenML pipeline is the entry point for the RAG feature engineering pipeline. It reflects the 

five core phases of RAG ingestion code: extracting raw documents, cleaning, chunking, embed-

ding, and loading them to the logical feature store. The calls within the feature_engineering()

function are ZenML steps, representing a single execution unit performing the five phases of RAG. 

The code is available in the GitHub repository at https://github.com/PacktPublishing/LLM-

Engineers-Handbook/blob/main/pipelines/feature_engineering.py:

from zenml import pipeline

from llm_engineering.interfaces.orchestrator.steps import feature_
engineering as fe_steps

@pipeline

def feature_engineering(author_full_names: list[str]) -> None:

    raw_documents = fe_steps.query_data_warehouse(author_full_names)

    cleaned_documents = fe_steps.clean_documents(raw_documents)

     last_step_1 = fe_steps.load_to_vector_db(cleaned_documents)

    embedded_documents = fe_steps.chunk_and_embed(cleaned_documents)

    last_step_2 = fe_steps.load_to_vector_db(embedded_documents)

    return [last_step_1.invocation_id, last_step_2.invocation_id]

https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/pipelines/feature_engineering.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/pipelines/feature_engineering.py
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Figure 4.11 shows how multiple feature engineering pipeline runs look in ZenML’s dashboard.

Figure 4.11: Feature pipeline runs in the ZenML dashboard

Figure 8.12 shows the DAG of the RAG feature pipeline, where you can follow all the pipeline steps 

and their output artifacts. Remember that whatever is returned from a ZenML step is automati-

cally saved as an artifact, stored in ZenML’s artifact registry, versioned, and shareable across the 

application.

Figure 4.12: Feature pipeline DAG in the ZenML dashboard
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The final puzzle piece is understanding how to configure the RAG feature pipeline dynamically. 

All its available settings are exposed as function parameters. Here, we need only a list of au-

thor’s names, as seen in the function’s signature: feature_engineering(author_full_names: 

list[str]). We inject a YAML configuration file at runtime that contains all the necessary values 

based on different use cases. For example, the following configuration includes a list of all the 

authors of this book as we want to populate the feature store with data from all of us (available 

in the GitHub repository at configs/feature_engineering.yaml):

parameters:

  author_full_names:

    - Alex Vesa

    - Maxime Labonne

    - Paul Iusztin

The beauty of this approach is that you don’t have to modify the code to configure the feature 

pipeline with different input values. You have to provide a different configuration file when run-

ning it, as follows:

feature_engineering.with_options(config_path="…/feature_engineering.yaml")
()

You can either hardcode the path to the config file or provide the config_path from the CLI, which 

allows you to modify the pipeline’s configuration between different runs. Out of simplicity, we 

hard-coded the configuration file. Thus, we can call the feature engineering pipeline calling the 

run.py script as follows:

python -m tools.run --no-cache --run-feature-engineering

However, you can easily add another CLI argument to pass the config_path variable. Also, you 

can run the feature pipeline using the following poe command:

poetry poe run-feature-engineering-pipeline

Let’s move forward to the ZenML steps and sequentially zoom in on all of them. The source code for 

all the feature engineering pipeline steps is available on GitHub at "steps/feature_engineering". 

We will begin with the first step, which involves querying the data warehouse for new content 

to process into features.
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Querying the data warehouse
The first thing to notice is that a step is a Python function decorated with @step, similar to how 

a ZenML pipeline works. The function below takes as input a list of authors’ full names and per-

forms the following core steps:

• It attempts to get or create a UserDocument instance using the first and last names, ap-

pending this instance to the authors list. If the user doesn’t exist, it throws an error.

• It fetches all the raw data for the user from the data warehouse and extends the documents

list to include these user documents.

• Ultimately, it computes a descriptive metadata dictionary logged and tracked in ZenML.

… # other imports

from zenml import get_step_context, step

@step

def query_data_warehouse(

    author_full_names: list[str],

) -> Annotated[list, "raw_documents"]:

    documents = []

    authors = []

    for author_full_name in author_full_names:

        logger.info(f"Querying data warehouse for user: {author_full_
name}")

        first_name, last_name = utils.split_user_full_name(author_full_
name)

        logger.info(f"First name: {first_name}, Last name: {last_name}")

        user = UserDocument.get_or_create(first_name=first_name, last_
name=last_name)

        authors.append(user)

        results = fetch_all_data(user)

        user_documents = [doc for query_result in results.values() for doc 
in query_result]

        documents.extend(user_documents)

    step_context = get_step_context()
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    step_context.add_output_metadata(output_name="raw_documents", 
metadata=_get_metadata(documents))

    return documents

The fetch function leverages a thread pool that runs each query on a different thread. As we have 

multiple data categories, we have to make a different query for the articles, posts, and reposi-

tories, as they are stored in different collections. Each query calls the data warehouse, which is 

bounded by the network I/O and data warehouse latency, not by the machine’s CPU. Thus, by 

moving each query to a different thread, we can parallelize them. Ultimately, instead of adding 

the latency of each query as the total timing, the time to run this fetch function will be the max 

between all the calls.

Using threads to parallelize I/O-bounded calls is good practice in Python, as they are not locked 

by the Python Global Interpreter Lock (GIL). In contrast, adding each call to a different process 

would add too much overhead, as a process takes longer to spin off than a thread.

In Python, you want to parallelize things with processes only when the operations are CPU or 

memory-bound because the GIL affects them. Each process has a different GIL. Thus, paralleliz-

ing your computing logic, such as processing a batch of documents or images already loaded in 

memory, isn’t affected by Python’s GIL limitations.

def fetch_all_data(user: UserDocument) -> dict[str, 
list[NoSQLBaseDocument]]:

    user_id = str(user.id)

    with ThreadPoolExecutor() as executor:

        future_to_query = {

            executor.submit(__fetch_articles, user_id): "articles",

            executor.submit(__fetch_posts, user_id): "posts",

            executor.submit(__fetch_repositories, user_id): 
"repositories",

        }

        results = {}

        for future in as_completed(future_to_query):

            query_name = future_to_query[future]

            try:

                results[query_name] = future.result()

            except Exception:
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                logger.exception(f"'{query_name}' request failed.")

                results[query_name] = []

    return results

The _get_metadata() function takes the list of queried documents and authors and counts the 

number of them relative to each data category:

def _get_metadata(documents: list[Document]) -> dict:

    metadata = {

        "num_documents": len(documents),

    }

    for document in documents:

        collection = document.get_collection_name()

        if collection not in metadata:

            metadata[collection] = {}

        if "authors" not in metadata[collection]:

            metadata[collection]["authors"] = list()

        metadata[collection]["num_documents"] = metadata[collection].
get("num_documents", 0) + 1

        metadata[collection]["authors"].append(document.author_full_name)

    for value in metadata.values():

        if isinstance(value, dict) and "authors" in value:

            value["authors"] = list(set(value["authors"]))

    return metadata

We will expose this metadata in the ZenML dashboard to quickly see some statistics on the loaded 

data. For example, in Figure 4.13, we accessed the metadata tab of the query_data_warehouse()

step, where you can see that, within that particular run of the feature pipeline, we loaded 76 

documents from three authors. This is extremely powerful for monitoring and debugging batch 

pipelines. 
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You can always extend it with anything that makes sense for your use case.

Figure 4.13: Metadata of the “query the data warehouse” ZenML step

Cleaning the documents
In the cleaning step, we iterate through all the documents and delegate all the logic to a 

CleaningDispatcher who knows what cleaning logic to apply based on the data category. Re-

member that we want to apply, or have the ability to apply in the future, different cleaning tech-

niques on articles, posts, and code repositories.

@step

def clean_documents(

    documents: Annotated[list, "raw_documents"],

) -> Annotated[list, "cleaned_documents"]:

    cleaned_documents = []

    for document in documents:
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        cleaned_document = CleaningDispatcher.dispatch(document)

        cleaned_documents.append(cleaned_document)

    step_context = get_step_context()

    step_context.add_output_metadata(output_name="cleaned_documents", 
metadata=_get_metadata(cleaned_documents))

    return cleaned_documents

The computed metadata is similar to what we logged in the query_data_warehouse() step. Thus, 

let’s move on to chunking and embedding.

Chunk and embed the cleaned documents
Similar to how we cleaned the documents, we delegate the chunking and embedding logic to 

a dispatcher who knows how to handle each data category. Note that the chunking dispatcher 

returns a list instead of a single object, which makes sense as the document is split into multiple 

chunks. We will dig into the dispatcher in the “The dispatcher layer” section of this chapter.

@step

def chunk_and_embed(

    cleaned_documents: Annotated[list, "cleaned_documents"],

) -> Annotated[list, "embedded_documents"]:

    metadata = {"chunking": {}, "embedding": {}, "num_documents": 
len(cleaned_documents)}

    embedded_chunks = []

    for document in cleaned_documents:

        chunks = ChunkingDispatcher.dispatch(document)

        metadata["chunking"] = _add_chunks_metadata(chunks, 
metadata["chunking"])

        for batched_chunks in utils.misc.batch(chunks, 10):

            batched_embedded_chunks = EmbeddingDispatcher.
dispatch(batched_chunks)

            embedded_chunks.extend(batched_embedded_chunks)

    metadata["embedding"] = _add_embeddings_metadata(embedded_chunks, 
metadata["embedding"])

    metadata["num_chunks"] = len(embedded_chunks)
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    metadata["num_embedded_chunks"] = len(embedded_chunks)

    step_context = get_step_context()

    step_context.add_output_metadata(output_name="embedded_documents", 
metadata=metadata)

    return embedded_chunks

In Figure 4.14, you can see the metadata of the chunking and embedding ZenML step. For exam-

ple, you can quickly understand that we transformed 76 documents into 2,373 chunks, or the 

properties we used for chunking articles, such as a chunk_size of 500 and a chunk_overlap of 50.

Figure 4.14: Metadata of the embedding and chunking ZenML step, detailing the uncategorized 
and chunking dropdowns
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In Figure 4.15, the rest of the ZenML metadata from the embedding and chunking step details 

the embedding model and its properties used to compute the vectors.

Figure 4.15: Metadata of the embedding and chunking ZenML step, detailing the embedding 
dropdown
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As ML systems can break at any time while in production due to drifts or untreated use cases, le-

veraging the metadata section to monitor the ingested data can be a powerful tool that will save 

debugging days, translating to tens of thousands of dollars or more for your business.

Loading the documents to the vector DB
As each article, post, or code repository sits in a different collection inside the vector DB, we have 

to group all the documents based on their data category. Then, we load each group in bulk in the 

Qdrant vector DB:

@step

def load_to_vector_db(

    documents: Annotated[list, "documents"],

) -> None:

    logger.info(f"Loading {len(documents)} documents into the vector 
database.")

    grouped_documents = VectorBaseDocument.group_by_class(documents)

    for document_class, documents in grouped_documents.items():

        logger.info(f"Loading documents into {document_class.get_
collection_name()}")

        for documents_batch in utils.misc.batch(documents, size=4):

            try:

                document_class.bulk_insert(documents_batch)

            except Exception:

                return False

    return True

Pydantic domain entities
Before investigating the dispatchers, we must understand the domain objects we work with. To 

some extent, in implementing the LLM Twin, we are following the domain-driven design (DDD) 

principles, which state that domain entities are the core of your application. Thus, before pro-

ceeding, it’s important to understand the hierarchy of the domain classes we are working with.

The code for the domain entities is available on GitHub at https://github.com/

PacktPublishing/LLM-Engineering/tree/main/llm_engineering/domain.

https://github.com/PacktPublishing/LLM-Engineering/tree/main/llm_engineering/domain
https://github.com/PacktPublishing/LLM-Engineering/tree/main/llm_engineering/domain
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We used Pydantic to model all our domain entities. When we wrote the book, choosing Pydantic 

was a no-brainer, as it is the go-to Python package for writing data structures with out-of-the-box 

type validation. As Python is a dynamically typed language, using Pydantic for type validation at 

runtime makes your system order of times more robust, as you can be sure that you are always 

working with the right type of data.

The domain of our LLM Twin application is split into two dimensions:

• The data category: Post, article, and repository

• The state of the data: Cleaned, chunked, and embedded

We decided to create a base class for each state of the document, resulting in having the following 

base abstract classes:

• class CleanedDocument(VectorBaseDocument, ABC)

• class Chunk(VectorBaseDocument, ABC)

• class EmbeddedChunk(VectorBaseDocument, ABC)

Note that all of them inherit the VectorBaseDocument class, which is our custom OVM implemen-

tation, which we will explain in the next section of this chapter. Also, it inherits from ABC, which 

makes the class abstract. Thus, you cannot initialize an object out of these classes; you may only 

inherit from them. That is why base classes are always marked as abstract.

Each base abstract class from above (which models the state) will have a subclass that adds 

the data category dimension. For example, the CleanedDocument class will have the following 

subclasses:

• class CleanedPostDocument(CleanedDocument)

• class CleanedArticleDocument(CleanedDocument)

• class CleanedRepositoryDocument(CleanedDocument)

As we can see in Figure 8.16, we will repeat the same logic for the Chunk and EmbeddedChunk base 

abstract classes. We will implement a specific document class for each data category and state com-

bination, resulting in nine types of domain entities. For example, when ingesting a raw document, 

the cleaning step will yield a CleanedArticleDocument instance, the chunking step will return a 

list of ArticleChunk objects, and the embedding operation will return EmbeddedArticleChunk in-

stances that encapsulate the embedding and all the necessary metadata to ingest in the vector DB. 
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The same will happen for the posts and repositories.

Figure 4.16: Domain entities class hierarchy and their interaction

We chose this design because the list of states will rarely change, and we want to extend the list 

of data categories. Thus, structuring the classes after the state allows us to plug another data 

category by inheriting these base abstract classes.

Let’s see the complete code for the hierarchy of the cleaned document. All the attributes of a 

cleaned document will be saved within the metadata of the vector DB. For example, the metadata 

of a cleaned article document will always contain the content, platform, author ID, author full 

name, and link of the article.

Another fundamental aspect is the Config internal class, which defines the name of the collection 

within the vector DB, the data category of the entity, and whether to leverage the vector index 

when creating the collection:

class CleanedDocument(VectorBaseDocument, ABC):

    content: str

    platform: str

    author_id: UUID4

    author_full_name: str
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class CleanedPostDocument(CleanedDocument):

    image: Optional[str] = None

    class Config:

        name = "cleaned_posts"

        category = DataCategory.POSTS

        use_vector_index = False

class CleanedArticleDocument(CleanedDocument):

    link: str

    class Config:

        name = "cleaned_articles"

        category = DataCategory.ARTICLES

        use_vector_index = False

class CleanedRepositoryDocument(CleanedDocument):

    name: str

    link: str

    class Config:

        name = "cleaned_repositories"

        category = DataCategory.REPOSITORIES

        use_vector_index = False

To conclude this section, let’s also take a look at the base abstract class of the chunk and embed-

ded chunk:

class Chunk(VectorBaseDocument, ABC):

    content: str

    platform: str

    document_id: UUID4

    author_id: UUID4

    author_full_name: str

    metadata: dict = Field(default_factory=dict)

… # PostChunk, ArticleChunk, RepositoryChunk
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class EmbeddedChunk(VectorBaseDocument, ABC):

    content: str

    embedding: list[float] | None

    platform: str

    document_id: UUID4

    author_id: UUID4

    author_full_name: str

    metadata: dict = Field(default_factory=dict)

… # EmbeddedPostChunk, EmbeddedArticleChunk, EmbeddedRepositoryChunk

We also defined an enum that aggregates all our data categories in a single structure of constants:

class DataCategory(StrEnum):

    POSTS = "posts"

    ARTICLES = "articles"

    REPOSITORIES = "repositories"

The last step to fully understand how the domain objects work is to zoom into the 

VectorBaseDocument OVM class.

OVM
The term OVM is inspired by the object-relational mapping (ORM) pattern we discussed in Chap-

ter 3. We called it OVM because we work with embedding and vector DBs instead of structured 

data and SQL tables. Otherwise, it follows the same principles as an ORM pattern.

Similar to what we did in Chapter 3, we will implement our own OVM version. Even if our custom 

example is simple, it’s a powerful example of how to write modular and extendable classes by 

leveraging OOP best practices and principles.

Our OVM base class is called VectorBaseDocument. It will support CRUD operations on top of 

Qdrant. Based on our application’s demands, we limited it only to create and read operations, but 

it can easily be extended to update and delete functions. 

The full implementation of the VectorBaseDocument class is available on GitHub 

at https://github.com/PacktPublishing/LLM-Engineering/blob/main/llm_

engineering/domain/base/vector.py.

https://github.com/PacktPublishing/LLM-Engineering/blob/main/llm_engineering/domain/base/vector.py
https://github.com/PacktPublishing/LLM-Engineering/blob/main/llm_engineering/domain/base/vector.py
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Let’s take a look at the definition of the VectorBaseDocument class:

from pydantic import UUID4, BaseModel

from typing import Generic

from llm_engineering.infrastructure.db.qdrant import connection

T = TypeVar("T", bound="VectorBaseDocument")

class VectorBaseDocument(BaseModel, Generic[T], ABC):

    id: UUID4 = Field(default_factory=uuid.uuid4)

    @classmethod

    def from_record(cls: Type[T], point: Record) -> T:

        _id = UUID(point.id, version=4)

        payload = point.payload or {}

        attributes = {

            "id": _id,

            **payload,

        }

        if cls._has_class_attribute("embedding"):

            payload["embedding"] = point.vector or None

        return cls(**attributes)

    def to_point(self: T, **kwargs) -> PointStruct:

        exclude_unset = kwargs.pop("exclude_unset", False)

        by_alias = kwargs.pop("by_alias", True)

        payload = self.dict(exclude_unset=exclude_unset, by_alias=by_
alias, **kwargs)

        _id = str(payload.pop("id"))

        vector = payload.pop("embedding", {})

        if vector and isinstance(vector, np.ndarray):
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            vector = vector.tolist()

        return PointStruct(id=_id, vector=vector, payload=payload)

• The VectorBaseDocument class inherits from Pydantic’s BaseModel and helps us structure 

a single record’s attributes from the vector DB. Every OVM will be initialized by default 

with UUID4 as its unique identifier. Using generics—more precisely, by inheriting from 

Generic[T]—the signatures of all the subclasses of the VectorBaseDocument class will 

adapt to that given class. For example, the from_record() method of the Chunk() class, 

which inherits VectorBaseDocument, will return the Chunk type, which drastically helps 

the static analyzer and type checkers such as mypy (https://mypy.readthedocs.io/en/

stable/).

The from_record() method adapts a data point from Qdrant’s format to our internal structure 

based on Pydantic. On the other hand, the to_point() method takes the attributes of the current 

instance and adapts them to Qdrant’s PointStruct() format. We will leverage these two methods 

for our create and read operations.

Ultimately, all operations made to Qdrant will be done through the connection instance, which 

is instantiated in the application’s infrastructure layer.

The bulk_insert() method maps each document to a point. Then, it uses the Qdrant connection

instance to load all the points to a given collection in Qdrant. If the insertion fails once, it tries 

to create the collection and do the insertion again. Often, it is good practice to split your logic 

into two functions. One private function contains the logic, in our case _bulk_insert(), and one 

public function handles all the errors and failure scenarios.

class VectorBaseDocument(BaseModel, Generic[T], ABC):

    … # Rest of the class

    @classmethod

    def bulk_insert(cls: Type[T], documents: list["VectorBaseDocument"]) 
-> bool:

        try:

            cls._bulk_insert(documents)

        except exceptions.UnexpectedResponse:

            logger.info(

                f"Collection '{cls.get_collection_name()}' does not exist. 
Trying to create the collection and reinsert the documents."

https://mypy.readthedocs.io/en/stable/
https://mypy.readthedocs.io/en/stable/
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            )

            cls.create_collection()

            try:

                cls._bulk_insert(documents)

            except exceptions.UnexpectedResponse:

                logger.error(f"Failed to insert documents in '{cls.get_
collection_name()}'.")

                return False

        return True

    @classmethod

    def _bulk_insert(cls: Type[T], documents: list["VectorBaseDocument"]) 
-> None:

        points = [doc.to_point() for doc in documents]

        connection.upsert(collection_name=cls.get_collection_name(), 
points=points)

The collection name is inferred from the Config class defined in the subclasses inheriting the OVM:

class VectorBaseDocument(BaseModel, Generic[T], ABC):

    … # Rest of the class

    @classmethod

    def get_collection_name(cls: Type[T]) -> str:

        if not hasattr(cls, "Config") or not hasattr(cls.Config, "name"):

            raise ImproperlyConfigured(

                "The class should define a Config class with" "the 'name' 
property that reflects the collection's name."

            )

        return cls.Config.name
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Now, we must define a method that lets us read all the records from the vector DB (without using 

vector similarity search logic). The bulk_find() method enables us to scroll (or list) all the records 

from a collection. The function below scrolls the Qdrant vector DB, which returns a list of data 

points, which are ultimately mapped to our internal structure using the from_record() method.

The limit parameters control how many items we return at once, and the offset signals the ID of 

the point from which Qdrant starts returning records.

class VectorBaseDocument(BaseModel, Generic[T], ABC):

    … # Rest of the class

    @classmethod

    def bulk_find(cls: Type[T], limit: int = 10, **kwargs) -> 
tuple[list[T], UUID | None]:

        try:

            documents, next_offset = cls._bulk_find(limit=limit, **kwargs)

        except exceptions.UnexpectedResponse:

            logger.error(f"Failed to search documents in '{cls.get_
collection_name()}'.")

            documents, next_offset = [], None

        return documents, next_offset

    @classmethod

    def _bulk_find(cls: Type[T], limit: int = 10, **kwargs) -> 
tuple[list[T], UUID | None]:

        collection_name = cls.get_collection_name()

        offset = kwargs.pop("offset", None)

        offset = str(offset) if offset else None

        records, next_offset = connection.scroll(

            collection_name=collection_name,

            limit=limit,

            with_payload=kwargs.pop("with_payload", True),

            with_vectors=kwargs.pop("with_vectors", False),

            offset=offset,
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            **kwargs,

        )

        documents = [cls.from_record(record) for record in records]

        if next_offset is not None:

            next_offset = UUID(next_offset, version=4)

        return documents, next_offset

The last piece of the puzzle is to define a method that performs a vector similarity search on a 

provided query embedding. Like before, we defined a public search() and private _search()

method. The search is performed by Qdrant when calling the connection.search() function.

class VectorBaseDocument(BaseModel, Generic[T], ABC):

    … # Rest of the class

    @classmethod

    def search(cls: Type[T], query_vector: list, limit: int = 10, 
**kwargs) -> list[T]:

        try:

            documents = cls._search(query_vector=query_vector, 
limit=limit, **kwargs)

        except exceptions.UnexpectedResponse:

            logger.error(f"Failed to search documents in '{cls.get_
collection_name()}'.")

            documents = []

        return documents

    @classmethod

    def _search(cls: Type[T], query_vector: list, limit: int = 10, 
**kwargs) -> list[T]:

        collection_name = cls.get_collection_name()

        records = connection.search(

            collection_name=collection_name,

            query_vector=query_vector,

            limit=limit,

            with_payload=kwargs.pop("with_payload", True),

            with_vectors=kwargs.pop("with_vectors", False),
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            **kwargs,

        )

        documents = [cls.from_record(record) for record in records]

        return documents

Now that we understand what our domain entities look like and how the OVM works, let’s move 

on to the dispatchers who clean, chunk, and embed the documents.

The dispatcher layer
A dispatcher inputs a document and applies dedicated handlers based on its data category (article, 

post, or repository). A handler can either clean, chunk, or embed a document.

Let’s start by zooming in on the CleaningDispatcher. It mainly implements a dispatch() method 

that inputs a raw document. Based on its data category, it instantiates and calls a handler that 

applies the cleaning logic specific to that data point:

class CleaningDispatcher:

    cleaning_factory = CleaningHandlerFactory()

    @classmethod

    def dispatch(cls, data_model: NoSQLBaseDocument) -> 
VectorBaseDocument:

        data_category = DataCategory(data_model.get_collection_name())

        handler = cls.cleaning_factory.create_handler(data_category)

        clean_model = handler.clean(data_model)

        logger.info(

            "Data cleaned successfully.",

            data_category=data_category,

            cleaned_content_len=len(clean_model.content),

        )

        return clean_model

The key in the dispatcher logic is the CleaningHandlerFactory(), which instantiates a different 

cleaning handler based on the document’s data category:

class CleaningHandlerFactory:

    @staticmethod
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    def create_handler(data_category: DataCategory) -> 
CleaningDataHandler:

        if data_category == DataCategory.POSTS:

            return PostCleaningHandler()

        elif data_category == DataCategory.ARTICLES:

            return ArticleCleaningHandler()

        elif data_category == DataCategory.REPOSITORIES:

            return RepositoryCleaningHandler()

        else:

            raise ValueError("Unsupported data type")

The Dispatcher or Factory classes are nothing fancy, but they offer an intuitive and simple interface 

for applying various operations to your documents. When manipulating documents, instead of 

worrying about their data category and polluting your business logic with if-else statements, you 

have a class dedicated to handling that. You have a single class that cleans any document, which 

respects the DRY (don’t repeat yourself) principles from software engineering. By respecting DRY, 

you have a single point of failure, and the code can easily be extended. For example, if we add 

an extra type, we must extend only the Factory class instead of multiple occurrences in the code.

The ChunkingDispatcher and EmbeddingDispatcher follow the same pattern. They use a 

ChunkingHandlerFactory and, respectively, an EmbeddingHandlerFactory that initializes the 

correct handler based on the data category of the input document. Afterward, they call the han-

dler and return the result.

The Factory class leverages theabstract factory creational pattern (https://refactoring.guru/

design-patterns/abstract-factory), which instantiates a family of classes implementing the 

same interface. In our case, these handlers implement the clean() method regardless of the 

handler type. 

Also, the Handler class family leverages the strategy behavioral pattern (https://refactoring.

guru/design-patterns/strategy) used to instantiate when you want to use different variants of 

an algorithm within an object and be able to switch from one algorithm to another during runtime.

The source code of all the dispatchers and factories can be found on GitHub at 
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/ 
llm_engineering/application/preprocessing/dispatchers.py

https://refactoring.guru/design-patterns/abstract-factory
https://refactoring.guru/design-patterns/abstract-factory
https://refactoring.guru/design-patterns/strategy
https://refactoring.guru/design-patterns/strategy
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/preprocessing/dispatchers.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/preprocessing/dispatchers.py
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Intuitively, in our dispatcher layer, the combination of the factory and strategy patterns works 

as follows:

1. Initially, we knew we wanted to clean the data, but as we knew the data category only at 

runtime, we couldn’t decide on what strategy to apply.

2. We can write the whole code around the cleaning code and abstract away the logic under 

a Handler() interface, which will represent our strategy.

3. When we get a data point, we apply the abstract factory pattern and create the correct 

cleaning handler for its data type.

4. Ultimately, the dispatcher layer uses the handler and executes the right strategy.

By doing so, we:

• Isolate the logic for a given data category.

• Leverage polymorphism to avoid filling up the code with hundreds of if-else statements.

• Make the code modular and extendable. When a new data category arrives, we must 

implement a new handler and modify the Factory class without touching any other part 

of the code.

The last component of the RAG feature pipeline is the implementation of the cleaning, chunking, 

and embedding handlers.

The handlers
The handler has a one-on-one structure with our domain, meaning that every entity has its own 

handler, as shown in Figure 8.17. In total, we will have nine Handler classes that follow the next 

base interfaces:

• class CleaningDataHandler()

• class ChunkingDataHandler()

• class EmbeddingDataHandler()

Until now, we have just modeled our entities and how the data flows in our appli-

cation. We haven’t written a single piece of cleaning, chunking, or embedding code. 

That is one big difference between a quick demo and a production-ready application. 

In a demo, you don’t care about software engineering best practices and structuring 

your code to make it future-proof. However, writing clean, modular, and scalable 

code is critical for its longevity when building a real-world application.
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Figure 4.17: Handler class hierarchy and their interaction

Let’s examine each handler family and see how it is implemented.

The cleaning handlers
The CleaningDataHandler() strategy interface looks as follows:

… # Other imports.

from typing import Generic, TypeVar

DocumentT = TypeVar("DocumentT", bound=Document)

CleanedDocumentT = TypeVar("CleanedDocumentT", bound=CleanedDocument)

class CleaningDataHandler(ABC, Generic[DocumentT, CleanedDocumentT]):

The code for all the handlers is available on GitHub at https://github.com/
PacktPublishing/LLM-Engineering/tree/main/llm_engineering/ 

application/preprocessing.

https://github.com/PacktPublishing/LLM-Engineering/tree/main/llm_engineering/
application/preprocessing
https://github.com/PacktPublishing/LLM-Engineering/tree/main/llm_engineering/
application/preprocessing
https://github.com/PacktPublishing/LLM-Engineering/tree/main/llm_engineering/
application/preprocessing
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    @abstractmethod

    def clean(self, data_model: DocumentT) -> CleanedDocumentT:

        pass

Now, for every post, article and repository, we have to implement a different handler, as follows:

class PostCleaningHandler(CleaningDataHandler):

    def clean(self, data_model: PostDocument) -> CleanedPostDocument:

        return CleanedPostDocument(

            id=data_model.id,

            content=clean_text(" #### ".join(data_model.content.
values())),

            … # Copy the rest of the parameters from the data_model 
object.

        )

class ArticleCleaningHandler(CleaningDataHandler):

    def clean(self, data_model: ArticleDocument) -> 
CleanedArticleDocument:

        valid_content = [content for content in data_model.content.
values() if content]

        return CleanedArticleDocument(

            id=data_model.id,

            content=clean_text(" #### ".join(valid_content)),

            platform=data_model.platform,

            link=data_model.link,

            author_id=data_model.author_id,

            author_full_name=data_model.author_full_name,

        )

class RepositoryCleaningHandler(CleaningDataHandler):

    def clean(self, data_model: RepositoryDocument) -> 
CleanedRepositoryDocument:

        return CleanedRepositoryDocument(

            id=data_model.id,
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            content=clean_text(" #### ".join(data_model.content.
values())),

            … # Copy the rest of the parameters from the data_model 
object.

        )

The handlers input a raw document domain entity, clean the content, and return a cleaned docu-

ment. All the handlers use the clean_text() function to clean the text. Out of simplicity, we used 

the same cleaning technique for all the data categories. Still, in a real-world setup, we would have 

to further optimize and create a different cleaning function for each data category. The strategy 

pattern makes this a breeze, as we swap the cleaning function in the handlers, and that’s it.

The cleaning steps applied in the clean_text() function are the same ones discussed in Chapter 5

in the Creating an instruction dataset section. We don’t want to repeat ourselves. Thus, for a re-

fresher, check out that chapter. At this point, we mostly care about automating and integrating 

the whole logic into the RAG feature pipeline. Thus, after operationalizing the ML system, all the 

cleaned data used for fine-tuning will be accessed from the logical feature store, making it the 

single source of truth for accessing data.

The chunking handlers
First, let’s examine the ChunkingDataHandler() strategy handler. We exposed the metadata dic-

tionary as a property to aggregate all the necessary properties required for chunking in a single 

structure. By structuring it like this, we can easily log everything to ZenML to track and debug our 

chunking logic. The handler takes cleaned documents as input and returns chunk entities. All the 

handlers can be found on GitHub at https://github.com/PacktPublishing/LLM-Engineering/

tree/main/llm_engineering/application/preprocessing.

… # Other imports.

from typing import Generic, TypeVar

CleanedDocumentT = TypeVar("CleanedDocumentT", bound=CleanedDocument)

ChunkT = TypeVar("ChunkT", bound=Chunk)

class ChunkingDataHandler(ABC, Generic[CleanedDocumentT, ChunkT]):

    @property

    def metadata(self) -> dict:

        return {

https://github.com/PacktPublishing/LLM-Engineering/tree/main/llm_engineering/application/preprocessing
https://github.com/PacktPublishing/LLM-Engineering/tree/main/llm_engineering/application/preprocessing
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            "chunk_size": 500,

            "chunk_overlap": 50,

        }

    @abstractmethod

    def chunk(self, data_model: CleanedDocumentT) -> list[ChunkT]:

        pass

Let’s understand how the ArticleChunkingHandler() class is implemented. The first step is to 

override the metadata property and customize the type of properties the chunking logic requires. 

For example, when working with articles, we are interested in the chunk’s minimum and max-

imum length.

The handler’s chunk() method inputs cleaned article documents and returns a list of article chunk 

entities. It uses the chunk_text() function to split the cleaned content into chunks. The chunking 

function is customized based on the min_length and max_length metadata fields. The chunk_id 

is computed as the MD5 hash of the chunk’s content. Thus, if the two chunks have precisely the 

same content, they will have the same ID, and we can easily deduplicate them. Lastly, we create 

a list of chunk entities and return them.

class ArticleChunkingHandler(ChunkingDataHandler):

    @property

    def metadata(self) -> dict:

        return {

            "min_length": 1000,

            "max_length": 1000,

        }

    def chunk(self, data_model: CleanedArticleDocument) -> 
list[ArticleChunk]:

        data_models_list = []

        cleaned_content = data_model.content

        chunks = chunk_article(

            cleaned_content, min_length=self.metadata["min_length"], max_
length=self.metadata["max_length"]

        )

        for chunk in chunks:
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            chunk_id = hashlib.md5(chunk.encode()).hexdigest()

            model = ArticleChunk(

                id=UUID(chunk_id, version=4),

                content=chunk,

                platform=data_model.platform,

                link=data_model.link,

                document_id=data_model.id,

                author_id=data_model.author_id,

                author_full_name=data_model.author_full_name,

                metadata=self.metadata,

            )

            data_models_list.append(model)

        return data_models_list

The last step is to dig into the chunk_article() function, which mainly does two things:

• It uses a regex to find all the sentences within the given text by looking for periods, ques-

tion marks, or exclamation points followed by a space. However, it avoids splitting into 

cases where the punctuation is part of an abbreviation or initialism (like “e.g." or “Dr.")

• It groups sentences into a single chunk until the max_length limit is reached. When the 

maximum size is reached, and the chunk size is bigger than the minimum allowed value, 

it is added to the final list the function returns.

def chunk_article(text: str, min_length: int, max_length: int) -> 
list[str]:

    sentences = re.split(r"(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?|\!)\s", 
text)

    extracts = []

    current_chunk = ""

    for sentence in sentences:

        sentence = sentence.strip()

        if not sentence:

            continue

        if len(current_chunk) + len(sentence) <= max_length:

            current_chunk += sentence + " "

        else:
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            if len(current_chunk) >= min_length:

                extracts.append(current_chunk.strip())

            current_chunk = sentence + " "

    if len(current_chunk) >= min_length:

        extracts.append(current_chunk.strip())

    return extracts

The PostChunkingHandler and RepositoryChunkingHandler, available on GitHub at llm_

engineering/application/preprocessing/chunking_data_handlers.py, have a similar struc-

ture to the ArticleChunkingHandler. However, they use a more generic chunking function called 

chunk_text(), worth looking into. The chunk_text() function is a two-step process that has 

the following logic:

1. It uses a RecursiveCharacterTextSplitter() from LangChain to split the text based on 

a given separator or chunk size. Using the separator, we first try to find paragraphs in the 

given text, but if there are no paragraphs or they are too long, we cut it at a given chunk size.

2. Notice that we want to ensure that the chunk doesn’t exceed the maximum input length 

of the embedding model. Thus, we pass all the chunks created above into a SenteceTrans

formersTokenTextSplitter(), which considers the maximum input length of the model. 

At this point, we also apply the chunk_overlap logic, as we want to do it only after we 

validate that the chunk is small enough.

… # Other imports.

from langchain.text_splitter import RecursiveCharacterTextSplitter, 
SentenceTransformersTokenTextSplitter

from llm_engineering.application.networks import 
EmbeddingModelSingleton

def chunk_text(text: str, chunk_size: int = 500, chunk_overlap: int 
= 50) -> list[str]:

    character_splitter = RecursiveCharacterTextSplitter(separato
rs=["\n\n"], chunk_size=chunk_size, chunk_overlap=0)

    text_split_by_characters = character_splitter.split_text(text)

    token_splitter = SentenceTransformersTokenTextSplitter(

        chunk_overlap=chunk_overlap,
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        tokens_per_chunk=embedding_model.max_input_length,

        model_name=embedding_model.model_id,

    )

    chunks_by_tokens = []

    for section in text_split_by_characters:

        chunks_by_tokens.extend(token_splitter.split_text(section))

    return chunks_by_tokens

To conclude, the function above returns a list of chunks that respect both the provided chunk 

parameters and the embedding model’s max input length.

The embedding handlers
The embedding handlers differ slightly from the others as the EmbeddingDataHandler() interface 

contains most of the logic. We took this approach because, when calling the embedding model, 

we want to batch as many samples as possible to optimize the inference process. When running 

the model on a GPU, the batched samples are processed independently and in parallel. Thus, by 

batching the chunks, we can optimize the inference process by 10x or more, depending on the 

batch size and hardware we use.

We implemented an embed() method, in case you want to run the inference on a single data point, 

and an embed_batch() method. The embed_batch() method takes chunked documents as input, 

gathers their content into a list, passes them to the embedding model, and maps the results to an 

embedded chunk domain entity. The mapping is done through the map_model() abstract method, 

which has to be customized for every data category.

… # Other imports.

from typing import Generic, TypeVar, cast

from llm_engineering.application.networks import EmbeddingModelSingleton

ChunkT = TypeVar("ChunkT", bound=Chunk)

EmbeddedChunkT = TypeVar("EmbeddedChunkT", bound=EmbeddedChunk)

embedding_model = EmbeddingModelSingleton()

class EmbeddingDataHandler(ABC, Generic[ChunkT, EmbeddedChunkT]):

    """

    Abstract class for all embedding data handlers.
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    All data transformations logic for the embedding step is done here

    """

    def embed(self, data_model: ChunkT) -> EmbeddedChunkT:

        return self.embed_batch([data_model])[0]

    def embed_batch(self, data_model: list[ChunkT]) -> 
list[EmbeddedChunkT]:

        embedding_model_input = [data_model.content for data_model in 
data_model]

        embeddings = embedding_model(embedding_model_input, to_list=True)

        embedded_chunk = [

            self.map_model(data_model, cast(list[float], embedding))

            for data_model, embedding in zip(data_model, embeddings, 
strict=False)

        ]

        return embedded_chunk

    @abstractmethod

    def map_model(self, data_model: ChunkT, embedding: list[float]) -> 
EmbeddedChunkT:

        pass

Let’s look only at the implementation of the ArticleEmbeddingHandler(), as the other handlers 

are highly similar. As you can see, we only have to implement the map_model() method, which 

takes a chunk of input and computes the embeddings in batch mode. Its scope is to map this 

information to an EmbeddedArticleChunk Pydantic entity.

class ArticleEmbeddingHandler(EmbeddingDataHandler):

    def map_model(self, data_model: ArticleChunk, embedding: list[float]) 
-> EmbeddedArticleChunk:

        return EmbeddedArticleChunk(

            id=data_model.id,

            content=data_model.content,

            embedding=embedding,

            platform=data_model.platform,

            link=data_model.link,
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            document_id=data_model.document_id,

            author_id=data_model.author_id,

            author_full_name=data_model.author_full_name,

            metadata={

                "embedding_model_id": embedding_model.model_id,

                "embedding_size": embedding_model.embedding_size,

                "max_input_length": embedding_model.max_input_length,

            },

        )

The last step is to understand how the EmbeddingModelSingleton() works. It is a wrapper over 

the SentenceTransformer() class from Sentence Transformers that initializes the embedding 

model. Writing a wrapper over external packages is often good practice. Thus, when you want 

to change the third-party tool, you have to modify only the internal logic of the wrapper instead 

of the whole code base.

The SentenceTransformer() class is initialized with the model_id defined in the Settings class, 

allowing us to quickly test multiple embedding models just by changing the configuration file 

and not the code. That is why I am not insisting at all on what embedding model to use. This 

differs constantly based on your use case, data, hardware, and latency. But by writing a generic 

class, which can quickly be configured, you can experiment with multiple embedding models 

until you find the best one for you.

from sentence_transformers.SentenceTransformer import SentenceTransformer

from llm_engineering.settings import settings

from .base import SingletonMeta

class EmbeddingModelSingleton(metaclass=SingletonMeta):

    def __init__(

        self,

        model_id: str = settings.TEXT_EMBEDDING_MODEL_ID,

        device: str = settings.RAG_MODEL_DEVICE,

        cache_dir: Optional[Path] = None,

    ) -> None:

        self._model_id = model_id

        self._device = device

        self._model = SentenceTransformer(



RAG Feature Pipeline172

            self._model_id,

            device=self._device,

            cache_folder=str(cache_dir) if cache_dir else None,

        )

        self._model.eval()

    @property

    def model_id(self) -> str:

        return self._model_id

    @cached_property

    def embedding_size(self) -> int:

        dummy_embedding = self._model.encode("")

        return dummy_embedding.shape[0]

    @property

    def max_input_length(self) -> int:

        return self._model.max_seq_length

    @property

    def tokenizer(self) -> AutoTokenizer:

        return self._model.tokenizer

    def __call__(

        self, input_text: str | list[str], to_list: bool = True

    ) -> NDArray[np.float32] | list[float] | list[list[float]]:

        try:

            embeddings = self._model.encode(input_text)

        except Exception:

            logger.error(f"Error generating embeddings for {self._model_
id=} and {input_text=}")

            return [] if to_list else np.array([])

        if to_list:
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            embeddings = embeddings.tolist()

        return embeddings

The embedding model class implements the singleton pattern (https://refactoring.guru/

design-patterns/singleton), a creational design pattern that ensures a class has only one instance 

while providing a global access point to this instance. The EmbeddingModelSingleton() class inher-

its from the SingletonMeta class, which ensures that whenever an EmbeddingModelSingleton()

is instantiated, it returns the same instance. This works well with ML models, as you load them 

once in memory through the singleton pattern, and afterward, you can use them anywhere in the 

code base. Otherwise, you risk loading the model in memory every time you use it or loading it 

multiple times, resulting in memory issues. Also, this makes it very convenient to access properties 

such as embedding_size, where you have to make a dummy forward pass into the embedding 

model to find the size of its output. As a singleton, you do this forward pass only once, and then 

you have it accessible all the time during the program’s execution.

Summary
This chapter began with a soft introduction to RAG and why and when you should use it. We 

also understood how embeddings and vector DBs work, representing the cornerstone of any 

RAG system. Then, we looked into advanced RAG and why we need it in the first place. We built 

a strong understanding of what parts of the RAG can be optimized and proposed some popular 

advanced RAG techniques for working with textual data. Next, we applied everything we learned 

about RAG to designing the architecture of LLM Twin’s RAG feature pipeline. We also understood 

the difference between a batch and streaming pipeline and presented a short introduction to the 

CDC pattern, which helps sync two DBs.

Ultimately, we went step-by-step into the implementation of the LLM Twin’s RAG feature pipeline, 

where we saw how to integrate ZenML as an orchestrator, how to design the domain entities of 

the application, and how to implement an OVM module. Also, we understood how to apply some 

software engineering best practices, such as the abstract factory and strategy software patterns, 

to implement a modular and extendable layer that applies different cleaning, chunking, and 

embedding techniques based on the data category of each document.

This chapter focused only on implementing the ingestion pipeline, which is just one component 

of a standard RAG application. In Chapter 9, we will conclude the RAG system by implementing 

the retrieval and generation components and integrating them into the inference pipeline. But 

first, in the next chapter, we will explore how to generate a custom dataset using the data we 

collected and fine-tune an LLM with it. 

https://refactoring.guru/design-patterns/singleton
https://refactoring.guru/design-patterns/singleton
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5
Supervised Fine-Tuning

Supervised Fine-Tuning (SFT) is a crucial step in preparing LLMs for real-world applications. Fol-

lowing the initial pre-training phase, where an LLM learns to predict the next token in a sequence, 

SFT refines the model’s capabilities using carefully curated pairs of instructions and correspond-

ing answers. This process serves two primary purposes: it teaches the model to understand and 

follow a specific chat format, effectively transforming it into a conversational agent, and it allows 

the model to adapt its broad knowledge base to excel in targeted tasks or specialized domains.

The importance of SFT lies in its ability to bridge the gap between a model’s general language 

understanding and its practical utility. By exposing the model to examples of desired input-output 

patterns, SFT shapes the LLM’s behavior to align with specific goals, whether they involve task 

completion (such as summarization or translation) or domain expertise (like medical or legal 

knowledge). This tailored approach not only enhances the model’s performance in intended ar-

eas but also improves its ability to follow instructions and generate more relevant and coherent 

responses.

In this chapter, we will cover the following topics:

• Creating a high-quality instruction dataset

• SFT techniques

• Implementing fine-tuning in practice

By the end of this chapter, you will be able to create your own instruction datasets and efficiently 

fine-tune LLMs on them.
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Creating an instruction dataset
In most use cases, creating an instruction dataset is the most difficult part of the fine-tuning 

process. This is due to multiple factors. Most use cases can be connected to raw text, but it is rare 

to find natural pairs of instructions and answers. This raw text needs to be transformed into a for-

mat that includes both instructions and answers. Moreover, the quality of the data is also crucial. 

Because of this, a lot of time is invested in manually checking and verifying individual samples. 

This careful review helps ensure that the dataset is accurate and useful for training the model.

Figure 5.1 – Overview of the post-training data pipeline covered in this chapter

In this section, we will introduce a general framework to create your own instruction datasets, 

regardless of the final use case. We will then leverage the scraped data from Chapter 3 and trans-

form it into an instruction dataset. The different stages in our data generation pipeline are sum-

marized in Figure 5.1.

General framework
Instruction datasets are defined as pairs of instructions and answers. The instructions are the 

inputs of the model, used as context during fine-tuning. The answers are the expected outputs of 

the model. During fine-tuning, you can choose to train the model on the instructions and answers, 

or on answers only. Pairs of instructions and answers follow a certain template. Some instruction 

templates, such as Alpaca, introduce additional fields like inputs and system. Both of them can 

be considered subfields of the instruction field. In this case, “inputs” contain the data the model 

needs to complete the instruction, and “system” is a meta-prompt to steer the general behavior 

of the model. Here is an example from the SlimOrca dataset, with “system” and “instruction”:

All the code examples from this chapter can be found on GitHub at https://github.

com/PacktPublishing/LLM-Engineering.

https://github.com/PacktPublishing/LLM-Engineering
https://github.com/PacktPublishing/LLM-Engineering
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System

You are a helpful assistant, who always provide explanation. Think like you are answering to a 

five year old.

Instruction

Concepts: building, shop, town

Write a sentence that includes all these words.

Output

In our little town, there is a shop inside a big building where people go to buy their favorite toys 

and candies.

Table 5.1 – Example of sample from the Open-Orca/SlimOrca dataset

This example illustrates how the “system” field is used to define specific behaviors for the model, 

such as being helpful, always providing explanations, and tailoring responses as if speaking to 

a five-year-old. The “instruction” field provides the necessary data (the concepts) and the task 

(constructing a sentence). The output field shows the expected answer, which, while not the only 

possible answer, represents a high-quality response.

To build an instruction dataset, we want to curate data that is representative of how the model will 

be used. Once we have gathered enough samples, our goal is to filter them to only keep high-quality 

data. In this context, high-quality data can be described through three main dimensions:

• Accuracy: It refers to the factual correctness and relevance of the samples. In the context 

of instruction datasets, this means ensuring that responses are not only factually accu-

rate but also relevant to their corresponding instructions. High accuracy is essential for 

training models that can provide reliable and trustworthy information.

• Diversity: A high-quality dataset should encompass a wide range of use cases, covering 

the potential queries and tasks the deployed LLM might encounter. This diversity should 

span topics, contexts, text lengths, and writing styles. By sampling data in a representative 

manner, we allow models to develop robust instruction-following capabilities.

• Complexity: Trivial or overly simplistic samples do little to improve an LLM’s capabilities. 

Instead, datasets should include complex, multi-step reasoning problems and challenging 

tasks that push the boundaries of what the model is expected to handle. This complexity 

helps in developing models capable of tackling complex real-world problems.
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In the following sections, we will see techniques to filter and evaluate instruction samples ac-

cording to these dimensions.

Data quantity
The Hugging Face Hub contains numerous instruction datasets, which can be general-purpose or 

designed for particular tasks or domains. When working on a new use case, it can be beneficial to 

look for related open-source datasets to leverage for fine-tuning. This is particularly important 

if your number of samples is too low (for example, fewer than 1,000), requiring you to augment 

it with high-quality data.

Figure 5.2 – Screenshot of the most-liked datasets on the Hugging Face Hub

Calculating an ideal number of samples is a difficult task, as both the quality of the data and the 

size of the model can have a dramatic impact. For large models (around 70 billion parameters, 

for example), this number can be as low as 1,000 high-quality samples (see the LIMA paper in 

the References section). This is not true for smaller models (around seven billion parameters, for 

instance), as they need more samples to simply learn the correct chat template. In any case, the 

quality of the data is a crucial factor, and a high number of samples is always desirable.

To provide additional numbers, we can look at the fine-tuned models developed by companies 

and the open-source community. We can distinguish two types of finetunes: general-purpose, 

aimed to reproduce the capabilities of models like GPT, and task- or domain-specific models, 

designed to optimize their performance for a particular application.
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General-purpose models cover more topics, which requires additional samples. Among com-

panies, we observe a wide range of values. For instance, Yi models from 01-ai rely on less than 

10,000 samples. At the opposite range of the spectrum, Meta reported using 10 million samples 

for Llama 3 through the entire fine-tuning process (including preference alignment). In the open-

source community, models like OpenHermes and Dolphin use around one million samples. Based 

on the quality of these finetunes, we recommend an instruction dataset of at least one million 

samples to create a good general-purpose instruct model. On the other hand, models fine-tuned 

for a specific purpose require fewer samples. Here, we differentiate task-specific models from 

domain-specific ones.

Task-specific and domain-specific models represent two distinct approaches to fine-tuning LLMs. 

Task-specific models are designed to excel at a particular function, such as translation, summari-

zation, or sentiment analysis. These models benefit from a focused training approach on a single 

task, allowing for efficient performance even with smaller model sizes (typically less than 8 bil-

lion parameters). The data required for task-specific fine-tuning is generally more manageable, 

ranging from 100 to 100,000 samples. This makes task-specific fine-tuning an attractive option

for many applications where resources may be limited.

Domain-specific models, on the other hand, aim to tweak the LLM with specialized knowledge 

and familiarity with the vocabulary and linguistic patterns of a particular field. These models 

are valuable in areas such as medicine, law, finance, e-commerce, engineering, and hospitality. 

The data requirements for domain-specific fine-tuning can vary widely depending on the com-

plexity and breadth of the domain. Some fields, like medicine or law, may require as much data 

as general-purpose fine-tuning due to their vast technical corpora. Others, such as e-commerce 

or hospitality, might need fewer samples, more in line with task-specific fine-tuning.

The key factors determining the data needs for domain-specific models are the “size” of the 

domain (i.e., the extent of its specialized knowledge and vocabulary) and the representation of 

that domain in the model’s pre-training data. Domains that are well-represented in the original 

training data may require less fine-tuning, while those that are more specialized or underrep-

resented may need more extensive datasets. Even with open-source LLMs, many pre-training 

datasets are closed-source, which requires making educated guesses to determine their compo-

sition (e.g., 30% code or 20% math).
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Data curation
When it comes to procuring data for fine-tuning, the approaches differ between task-specific and 

domain-specific models. For task-specific models, data curation often involves collecting examples 

of the desired task from existing datasets or creating new ones. This might involve gathering pairs 

of original and summarized texts for a summarization model or collecting sentences in different 

languages for a translation model.

Domain-specific data curation can be more challenging. It often requires collaboration with sub-

ject matter experts to gather and validate relevant texts, research papers, technical documents, 

and other domain-specific content. In some cases, it may involve partnering with organizations 

or institutions that have access to large repositories of specialized information. The quality and 

relevance of this data is crucial, as it directly impacts the model’s ability to understand and gen-

erate content in the target domain.

It’s worth noting that few-shot prompting has emerged as an alternative strategy to fine-tuning, 

especially for task-specific applications. This approach leverages the capabilities of large, pow-

erful models by providing a few examples of the desired task within the input prompt. While 

not a replacement for fine-tuning in all scenarios (e.g., when you want to learn a new domain), 

few-shot prompting can be an efficient way to adapt models to new tasks without the need for 

extensive additional training.

In practice, the line between task-specific and domain-specific models can sometimes blur. For 

instance, a model fine-tuned for medical diagnosis could be considered both task-specific (focused 

on diagnosis) and domain-specific (specialized in medical knowledge). The key is to understand 

the primary goal of the fine-tuning process and tailor the approach accordingly.

At this point in the process, we should have a collection of datasets suited for our use case. The 

next step consists of refining the quality of the samples through rule-based filtering, data dupli-

cation, data decontamination, and data quality evaluation.

Rule-based filtering
Rule-based filtering is a systematic approach to data quality control that relies on explicit, pre-

defined rules to evaluate and filter data samples. These rules are typically designed to address 

common quality issues and can range from simple checks to more complex logical operations. The 

primary goal of rule-based filtering is to maintain a high standard of data quality by removing 

samples that do not meet specific criteria.
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Length filtering is a straightforward yet effective rule-based filtering technique. This meth-

od involves setting thresholds for the acceptable length of responses in the dataset. Extremely 

short responses often lack sufficient information to be meaningful, while excessively long ones 

may contain irrelevant or redundant content. It’s important to note that the appropriate length 

thresholds can vary significantly depending on the specific task and domain. For example, a 

dataset for generating concise summaries might have a lower maximum threshold compared to 

one for detailed explanations.

Keyword exclusion is another powerful rule-based filtering technique that focuses on the content 

of the samples rather than their structure. This method involves creating a list of keywords or 

phrases associated with low-quality or inappropriate content, and then filtering out any samples 

that contain these terms. The keyword list can include obvious indicators of low quality, such 

as profanities or spam-related terms, as well as domain-specific words that might indicate ir-

relevant or off-topic content. For instance, in a dataset for a professional writing assistant, you 

might exclude samples containing slang terms or informal expressions that don’t align with the 

intended tone and style.

Format checking is recommended for datasets that include structured data or follow specific 

formatting requirements. This technique ensures that all samples adhere to the expected format, 

maintaining consistency and facilitating processing downstream. Format checking can be par-

ticularly important for datasets containing code samples, JSON structures, or other formatted 

text. For example, in a dataset of programming instructions and solutions, you might implement 

rules to verify that code samples are syntactically correct and follow specified style guidelines.

Rule-based filtering offers significant advantages in preparing instruction datasets. Its speed 

and efficiency allow for rapid application to large volumes of data, making it highly scalable. The 

consistency of rule application ensures uniform treatment of data, reducing human error and bias. 

Furthermore, the explicit definition of filtering criteria provides transparency and interpretability, 

facilitating easy understanding, auditing, and adjustment. The ability to automate rule-based 

filtering reduces the need for manual intervention and enables continuous data quality monitoring.

However, rule-based filtering also has limitations that must be considered. Predefined rules may 

lack the nuance required to capture the full complexity of language and context, potentially lead-

ing to the removal of valid but unusual samples. The typically binary nature of rules (pass/fail) 

may not always align with the nuanced nature of language and instruction quality. Additionally, 

as data patterns and quality standards evolve, rules need regular review and updates to remain 

effective. There’s also a risk that poorly designed rules could inadvertently introduce or amplify 

biases in the dataset.
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Data deduplication
Dataset diversity is fundamental to training models that can generalize well to new, unseen data. 

When a dataset contains duplicates or near-duplicates, it can lead to several issues:

• Overfitting: Models may memorize specific examples rather than learning general patterns.

• Biased performance: Overrepresented data points may skew the model’s performance 

towards certain types of inputs.

• Inefficient training: Redundant data can increase training time without providing addi-

tional valuable information.

• Inflated evaluation metrics: Duplicate data in test sets may lead to overly optimistic per-

formance estimates.

To deduplicate datasets, we distinguish between exact and fuzzy deduplication. Exact deduplica-

tion removes identical samples through a straightforward process involving data normalization, 

hash generation, and duplicate removal. Data normalization standardizes the format of entries, 

such as converting text to lowercase. Hash generation then creates unique hashes for each entry 

using algorithms like MD5 or SHA-256. These hashes are compared to find matches, and dupli-

cates are removed, leaving only one instance of each. While effective for identical entries, exact 

deduplication does not detect near-duplicates or semantically similar content, requiring more 

advanced techniques for those cases.

The most popular approach to fuzzy deduplication is MinHash deduplication. Compared to 

other fuzzy techniques, it maintains high accuracy while significantly reducing computational 

complexity. MinHash operates by generating compact representations, or signatures, for each 

data item. These signatures serve as fingerprints that capture the essence of the data while dras-

tically reducing its dimensionality. In practice, MinHash transforms data items (such as text 

documents) into sets of shingles, applies multiple hash functions to these sets, and selects the 

minimum hash values to form signature vectors. These signatures can then be compared using 

similarity measures like Jaccard similarity to efficiently identify near-duplicates.

In addition to exact and fuzzy deduplication, semantic similarity takes a different approach by 

focusing on the meaning of text for deduplication. This method involves converting words or 

entire samples into vector representations using various natural language processing techniques. 

Word embedding models such as Word2Vec, GloVe, and FastText transform individual words into 

dense vectors, capturing semantic relationships. 
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For more context-aware representations, language models like BERT, sentence transformers, or 

cross-encoders can generate embeddings for entire sentences or documents. Once these vec-

tor representations are obtained, deduplication can be performed by comparing the similarity 

between vectors. Common similarity measures include cosine similarity or Euclidean distance. 

Samples with high similarity scores above a predefined threshold can be considered duplicates. 

For large datasets, clustering techniques may be applied to group similar vectors. Methods like 

K-means, DBSCAN, or hierarchical clustering can efficiently organize the vector space, allowing 

for the identification of clusters that represent semantically similar content. Within each cluster, 

a representative sample can be retained while others are marked as duplicates.

Data decontamination
Data decontamination is the process of ensuring that the training dataset does not contain samples 

that are identical or highly similar to those in the evaluation or test sets. This step is important 

for ensuring the quality of the model evaluation and preventing overfitting or memorization of 

test data.

Data decontamination uses techniques from data deduplication. Exact matching can be used to 

remove any training samples that are identical to those in the evaluation sets. This can be done 

using hash functions or direct string comparisons. Next, we can also use near-duplicate detection 

methods to identify and remove training samples that are very similar to evaluation samples, 

even if they are not exactly the same. This often involves techniques like MinHash or computing 

similarity scores based on n-grams or embeddings.

Another aspect of data decontamination is filtering out samples that may have been derived from 

the same source as evaluation data. This can involve checking for overlapping phrases, similar 

sentence structures, or common metadata. Practitioners may also use provenance tracking (source 

the data they use) to identify and exclude data from specific sources that are known to be used 

in evaluation sets.

A simple way to perform data decontamination is to add your evaluation set to the 

instruction dataset during the data deduplication stage. In this case, we want to 

ensure that we only remove samples from the instruction dataset, which can be 

implemented in different ways (only filtering out the first duplicate, recording the 

indexes of the evaluation samples, etc.). Ideally, you can automatically add your 

evaluation sets in the data deduplication stage to fully automate this process. This 

is particularly efficient if you iterate over several versions of custom benchmarks.
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Data quality evaluation
Data quality evaluation is a critical aspect of machine learning, particularly for LLMs. The process 

involves assessing various characteristics of datasets, including accuracy, diversity, and complexity. 

While some aspects like mathematical accuracy can be easily verified using tools such as Python 

interpreters, evaluating subjective or open-ended content remains challenging.

Traditional methods of data quality assessment include human annotation, which generally 

provides high accuracy but is resource-intensive. To address scalability issues, machine learning 

techniques have been developed to automate the evaluation process. These include using LLMs 

as judges, reward models, and classifiers trained for quality prediction.

The LLM-as-a-judge strategy involves prompting LLMs to evaluate the quality of each sample. 

This approach has become popular due to its flexibility and ease of use, though it does present 

some challenges. Different LLMs have different levels of performance across tasks, and their 

evaluations often align more closely with those of non-experts. With domain-specific datasets, 

you might want to use domain-specific models instead of better, general-purpose LLMs. Com-

parative assessment methods (e.g., “Is answer A better than answer B?”) generally outperform 

absolute scoring approaches (e.g., “Rate answer A between 1 and 4”), though both can be used 

at scale with sufficient prompt engineering. We recommend iterating through different prompts 

over a representative subset to manually verify the quality of the responses. Table 5.2 shows an 

example of a custom prompt for a judge LLM.
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Instruction

You are a data quality evaluator. Your goal is to assess an instruction and its corresponding 

answer, determining how effectively the answer addresses the given task.

In your evaluation, you will provide feedback detailing the strengths and weaknesses of the 

answer, followed by a score on a scale of 1 to 4.

A score of 1 means that the answer is terrible and irrelevant to the instruction.

A score of 2 means that the answer is not helpful and misses important aspects of the 

instruction.

A score of 3 means that the answer is helpful but could be improved in terms of relevance, 

accuracy, and depth.

A score of 4 means that the answer is excellent and fully addresses the task.

Provide your evaluation as follows:

Feedback: (strengths and weaknesses you find relevant)

Score: (number between 1 and 4)

Table 5.2 – Example of LLM-as-a-judge prompt for data quality evaluation

LLM-as-a-judge is known to have several biases. First, it has a position bias in comparative scoring, 

where the LLM judge favors the first answer. This can be addressed by randomizing the order of 

answers A and B. In addition, like humans, LLM judges favor long answers. Length normaliza-

tion techniques can be applied to absolute scoring to mitigate this issue. Finally, LLM judges are 

known to have intra-model favoritism, meaning that they prefer models from the same family 

(GPT-4o with GPT-4 and GPT-4o mini, for example). This can be addressed by using several 

models instead of a single one.
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In general, to improve evaluation reliability, strategies such as using multiple LLMs as a jury 

reduce bias and improve consistency. Leveraging a jury of smaller LLMs can also reduce costs 

while increasing accuracy and mitigating intra-model favoritism. For specific applications like 

chatbots, it’s advisable to aim for high agreement between LLM judges and human evaluators 

(around 80%). Simple grading scales (with few-shot prompting) and task-specific benchmarks 

are also recommended to ensure relevant and interpretable evaluations.

Reward models are another way to re-purpose LLMs for data quality evaluation. The term “reward 

model” comes from Reinforcement Learning from Human Feedback (RLHF, see Chapter 6). They 

can be broadly defined as models that take an instruction and answer pair and return a score as 

output. Generally, reward models are created by adding a linear head on top of a decoder-only 

architecture like Gemma or Llama. They are then trained for this specific purpose, using either 

reinforcement learning or traditional fine-tuning. Figure 5.3 shows ArmoRM-Llama3-8B-v0.1’s 

architecture, which adds regression and gating layers on top of a Llama 3 8B model. This model 

outputs multiple scores to target specific dimensions, such as helpfulness, correctness, coherence, 

complexity, and verbosity. This allows for a more fine-grained approach to data quality evaluation.

Figure 5.3 – Architecture of RLHFlow/ArmoRM-Llama3-8B-v0.1, based on Llama 3 (Source: 
https://doi.org/10.48550/arXiv.2406.12845)

https://doi.org/10.48550/arXiv.2406.12845
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The Allen Institute for AI’s RewardBench leaderboard, hosted on Hugging Face (allenai/re-

ward-bench), is a good resource for comparing different reward models. It combines various 

types of reward models (generative, classifiers, DPO, etc.) and evaluates them on a curated set 

of chosen and rejected answers for each instruction. While this task is not directly related to in-

struction data quality, it is a good resource for finding models capable of differentiating between 

good and bad answers.

Classifiers or encoder-only models can be trained to perform data quality evaluation. A good 

example is HuggingFaceFW/fineweb-edu-classifier, a classifier designed to judge the educational 

value of web pages. This model was designed as a quality filter for pretraining data but a similar 

approach can be taken to evaluate instruction samples at scale. In practice, fineweb-edu-classifier 

adds a classification head to an embedding model (Snowflake/snowflake-arctic-embed-m) and 

trains it for 20 epochs on 450,000 samples that are annotated by Llama 3 70B Instruct.

This approach relies on encoder-only models, which are both smaller and better suited to classi-

fication tasks. Thanks to their low number of parameters, these models are faster to run and can 

scale to millions of samples. However, they are not as accurate as bigger models, particularly for 

complex reasoning tasks where they lack the ability to capture nuances. At smaller scale, encod-

er-only models are still valuable to filter out outliers or as part of an automated data pipeline, 

which requires faster processing.

Data exploration
Data exploration is a continuous process that requires practitioners to become familiar with the 

training data. It involves both manual inspection and automated analysis, each playing a crucial 

role in understanding the dataset’s characteristics, strengths, and potential shortcomings.

Manual dataset exploration, though time-consuming, is an important step. It reveals errors and 

inconsistencies that automated processes might miss, including formatting issues, data entry 

mistakes, incoherent reasoning, and factual inaccuracies. This process provides qualitative insights 

into the dataset’s content and style. To enhance efficiency, researchers can employ techniques 

like stratified sampling (selecting diverse samples), systematic review (using a criteria checklist), 

and collaborative review (involving multiple reviewers). 
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Figure 5.4 shows an example with Argilla, a collaborative platform for manual data quality eval-

uation and exploration.

Figure 5.4 – Argilla’s interface for collaborative data quality evaluation and exploration

Statistical analysis is a complementary technique that reveals vocabulary diversity, potential 

biases, and concept representation. This process utilizes natural language processing libraries 

like NLTK or spaCy for tokenization and analysis of large text volumes. Visualization tools such as 

Matplotlib or Seaborn create histograms and word clouds, enabling intuitive pattern recognition. 

These techniques provide insights into dataset composition, language breadth, and possible 

cultural or contextual preferences, which can influence model outputs.

Topic clustering automatically groups similar documents or pieces of text together, revealing 

underlying themes and patterns within the data. This process is especially important for under-

standing the content of large text corpora, identifying trends, and organizing information in a 

meaningful way. It is often associated with data visualization, with figures that show clusters 

of similar samples.

Let’s consider the task of building an instruction dataset about various programming languages. 

You have collected a vast corpus of programming-related text from online forums, documentation, 

and tutorials. First, topic clustering can help identify the distinct programming languages present 

in the dataset (Python, JavaScript, etc.). Second, within each language cluster, you can further 

identify sub-topics like error handling, data structures, and web frameworks. This allows a 

balanced representation of each language and sub-topic in the corpus. 
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This makes sure that each topic is correctly covered for each programming language.

Figure 5.5 – Representation of the historical TikTok dataset made with Nomic Atlas

Several tools are available for performing topic clustering, each with its own strengths and ap-

proaches. For example, Hugging Face’s text-clustering provides a simple pipeline with sentence 

transformers for embedding text into vector space, UMAP for dimensionality reduction, and 

DBSCAN for clustering. It also automatically labels clusters using an LLM and can output visu-

alizations. Nomic Atlas (see Figure 5.5), BunkaTopics, and Lilac are alternatives proposing similar 

approaches with additional features.

Data generation
When the available instruction datasets are not sufficient, creating custom data becomes necessary. 

This is particularly relevant for specialized applications where publicly available data is scarce. 
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Additionally, it serves as a method to augment underrepresented areas in a dataset, like insufficient 

examples of JavaScript error-handling techniques in our previous example. While data can be 

generated manually by individuals or through crowdsourcing, these approaches often incur sig-

nificant costs and time investments. Synthetic data generation using LLMs offers a more efficient 

and scalable alternative. This method, when combined with well-designed prompt engineering, 

can produce high-quality data at a much larger scale, effectively addressing the limitations of 

manual data creation processes.

The process of synthetic data generation typically begins with the preparation of a set of carefully 

designed prompts (sometimes called taxonomy). These serve as the foundation for generating 

new, diverse examples. Five seed prompts used in the original Alpaca dataset can be seen in Table 

5.3. The quality of synthetically generated data largely depends on the prompts and techniques 

used in the generation process. Well-crafted prompts can guide the language model to produce 

diverse, relevant, and high-quality instruction-response pairs. These prompts often include spe-

cific instructions, examples, and constraints to ensure the generated data aligns with the desired 

format and content.

Seed instructions

• Is there anything I can eat for breakfast that doesn’t include eggs, yet includes protein, 

and has roughly 700-1000 calories?

• What is the relation between the given pairs? Input: Night : Day :: Right : Left

• Generate a one-sentence description for each of the following people. Input: -Barack 

Obama\n- Elon Musk\n- Taylor Swift

• Describe a situation in which the given stereotype can harm you. Input: All Asians are 

smart!

• Generate an appropriate subjective title for the following email: Input: “Hi [person 

name],\n\nI’m writing to ask you if you are happy to be a panelist in our workshop on 

multimodality at CVPR. The workshop will be held on June 20, 2023. \n\nBest,\n[my 

name]

Table 5.3 – Examples of seed prompts used in the original Alpaca dataset

Many synthetic data generation pipelines incorporate multiple steps to ensure data quality. This 

may include generating an initial set of questions or instructions, followed by generating corre-

sponding answers or responses. Some systems also implement validation steps, where another 

model or set of rules checks the generated pairs for accuracy, relevance, and adherence to spec-

ified criteria.
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An important aspect of synthetic data generation is the ability to control various attributes of the 

generated data. This includes factors such as the complexity of the instructions, the length of the 

responses, the tone or style of the language used, and the specific topics or domains covered. By 

fine-tuning these parameters, it’s possible to create datasets that are tailored to specific training 

objectives or that complement existing datasets in targeted ways. Structured generation using 

libraries like Outlines can also be beneficial to adhere to specific formats.

Furthermore, synthetic data generation can be particularly useful for addressing biases and gaps 

in existing datasets. By carefully designing the generation process, it’s possible to create more 

balanced and inclusive datasets that represent a wider range of perspectives, topics, and language 

styles. This can help in training LLMs that are more equitable and capable of serving diverse user 

bases.

However, synthetic data generation also comes with challenges. One primary concern is the 

potential for the generated data to inherit biases or errors from the underlying language model 

used for generation. To mitigate this, many approaches incorporate human oversight, diverse 

prompts, and additional filtering mechanisms to ensure the quality and appropriateness of the 

generated data.

Another consideration is the need for the generated data to be sufficiently diverse and challeng-

ing. If the synthetic data is too simplistic or repetitive, it may not provide the level of complexity 

required to train a robust LLM. Advanced techniques in synthetic data generation often focus on 

creating varied and nuanced instruction-response pairs that can push the boundaries of what 

the model can learn.

Data augmentation
In this context, data augmentation refers to the process of increasing both the quantity and 

the quality of data samples. Unlike data generation, we use pre-existing instruction samples 

as inputs in this stage. While it is possible to upsample pairs of instructions and answers, data 

augmentation is mostly used to increase the quality of existing samples. In particular, it focuses 

on two aspects: diversity and complexity.

A pioneering approach in this field is the Evol-Instruct method, which uses LLMs to evolve simple 

instructions into more qualitative ones. The evolved instructions can then be used to generate 

answers using powerful LLMs. This method employs two main strategies: in-depth and in-breadth 

evolving.
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In-depth evolving focuses on enhancing the complexity of existing instructions. It includes 

several techniques:

• Constraints: It involves introducing additional requirements or limitations to the original 

instruction, making it more challenging to fulfill.

• Deepening: Instead of shallow questions, it tries to find more deep questions, requiring 

more comprehensive responses.

• Concretizing: It replaces general concepts with more specific ones, adding detail and 

precision to the instruction.

• Increasing reasoning steps: It modifies instructions to explicitly request multiple-step 

reasoning, promoting more complex problem-solving.

• Complicating input: This involves adding more complex data formats or structures to 

the instruction, such as XML, JSON, or code snippets.

In-breadth evolving, on the other hand, aims to expand the diversity of the instruction dataset. 

It generates entirely new instructions inspired by existing ones, focusing on creating more rare 

or long-tailed examples within the same domain.

As an example of concrete implementation, in-depth evolving can be automated with the fol-

lowing prompt, from the AutoEvol paper. You simply need to provide the instruction you want 

to evolve as input, and a powerful model like GPT-4o will return a more complex version of the 

original instruction.
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You are an Instruction Rewriter that rewrites the given #Instruction# into a more complex 

version. Please follow the steps below to rewrite the given “#Instruction#” into a more complex 

version.

• Step 1: Please read the “#Instruction#” carefully and list all the possible methods 

to make this instruction more complex (to make it a bit harder for well-known AI 

assistants such as ChatGPT and GPT4 to handle). Please do not provide methods to

• change the language of the instruction!

• Step 2: Please create a comprehensive plan based on the #Methods List# generated 

in Step 1 to make the #Instruction# more complex. The plan should include several 

methods from the #Methods List#.

• Step 3: Please execute the plan step by step and provide the #Rewritten Instruction#. 

#Rewritten Instruction# can only add 10 to 20 words into the “#Instruction#”.

• Step 4: Please carefully review the #Rewritten Instruction# and identify any 

unreasonable parts. Ensure that the #Rewritten Instruction# is only a more complex 

version of the #Instruction#. Just provide the #Finally Rewritten Instruction# without 

anyexplanation.

Please reply strictly in the following format:

Step 1 #Methods List#:

Step 2 #Plan#:

Step 3 #Rewritten Instruction#:

Step 4 #Finally Rewritten Instruction#:

#Instruction#:

{Instruction}

Table 5.4 – Evol LLM prompt from the “Automatic Instruction Evolving for Large Language 
Models” paper by Zeng et al. (2024)

The UltraFeedback method is another innovative approach, focused on answer quality instead 

of instruction quality. It employs AI feedback to enhance the quality and diversity of model re-

sponses. Unlike Evol-Instruct, which evolves instructions, UltraFeedback uses a large pool of 

diverse instructions and models to generate a wide range of responses.
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It then leverages advanced language models like GPT-4 to provide detailed critiques and numerical 

scores for these responses across multiple dimensions such as instruction-following, truthfulness, 

honesty, and helpfulness.

Based on these ideas, you can create your own augmentation techniques to create a more challeng-

ing and diverse instruction dataset. By refining and evolving existing instructions and answers, 

the resulting dataset can better train models to handle complex, multi-step tasks, and improve 

their performance across a wider range of applications.

Creating our own instruction dataset
In this section, we will create our own instruction dataset based on the crawled data from Chapter 

3. To create a high-quality instruction dataset, we need to address two main issues: the unstruc-

tured nature of our data and the limited number of articles we can crawl.

This unstructured nature comes from the fact that we are dealing with raw text (articles), instead 

of pairs of instructions and answers. To address this issue, we will use an LLM to perform this 

transformation. Specifically, we will employ a combination of backtranslation and rephrasing. 

Backtranslation refers to the process of providing the expected answer as output and generat-

ing its corresponding instruction. However, using a chunk of text like a paragraph as an answer 

might not always be appropriate. This is why we want to rephrase the raw text to ensure we’re 

outputting properly formatted, high-quality answers. Additionally, we can ask the model to 

follow the author’s writing style to stay close to the original paragraph. While this process in-

volves extensive prompt engineering, it can be automated and used at scale, as we will see in the 

following implementation.

Our second issue regarding the limited number of samples is quite common in real-world use 

cases. The number of articles we can retrieve is limited, which constrains the size of the instruction 

dataset we are able to create. In this example, the more samples we have, the better the model 

becomes at imitating the original authors. To address this problem, we will divide our articles 

into chunks and generate three instruction-answer pairs for each chunk. This will multiply the 

number of samples we create while maintaining diversity in the final dataset. For simplicity, we 

will do it using OpenAI’s GPT-4o-mini model, but you can also use open-source models.

However, LLMs are not reliable when it comes to producing structured output. Even when given 

specific templates or instructions, there’s no guarantee that the model will consistently adhere 

to them. This inconsistency often necessitates additional string parsing to ensure the output 

meets the desired format. 
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To simplify this process and ensure properly structured results, we can employ structured gen-

eration techniques. Structured generation is an effective method to force an LLM to follow a 

predefined template, such as JSON, pydantic classes, or regular expressions. In the following, we 

will use OpenAI’s JSON mode feature, which provides a more robust way to return valid JSON 

objects and reduce the need for extensive post-processing.

Based on this description, the following figure summarizes every step of the synthetic data pipe-

line we want to build.

Figure 5.6 – Synthetic data generation pipeline from raw text to instruction dataset

Let’s now implement it in Python. You can implement it as part of the LLMOps pipeline, or as a 

standalone script:

1. We want to make sure that the following libraries are installed. The OpenAI library will 

allow us to interact with a model to generate the instruction data, and datasets will format 

it into a Hugging Face-compatible format. The tqdm library is installed to visualize the 

progress during the data generation process.

openai==1.37.1

datasets==2.20.0

tqdm==4.66.4
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2. We import all the required libraries as follows.

import concurrent.futures

import json

import random

import re

from concurrent.futures import ThreadPoolExecutor

from typing import List, Tuple

from datasets import Dataset

from openai import OpenAI

from pydantic import BaseModel, Field

from tqdm.auto import tqdm

3. The raw data we have is a JSON file. We create a Hugging Face dataset from this JSON file 

by extracting specific fields from each article: id, content, platform, author_id, author 

name, and link.

def load_articles_from_json(file_path: str) -> Dataset:

    with open(file_path, "r") as file:

        data = json.load(file)

    return Dataset.from_dict(

        {

            "id": [item["id"] for item in data["artifact_data"]],

            "content": [item["content"] for item in data["artifact_
data"]],

            "platform": [item["platform"] for item in 
data["artifact_data"]],

            "author_id": [item["author_id"] for item in 
data["artifact_data"]],

            "author_full_name": [item["author_full_name"] for item 
in data["artifact_data"]],

            "link": [item["link"] for item in data["artifact_
data"]],

        }

    ) 
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If we simply load our dataset as a pandas dataframe, it returns the following table.

id content platform author_id author_

full_

name

link

0 ab2f9e2e-

5459-4dd6-

97d6-

c291de4a7093

The Impor-

tance of Data 

Pipelines in 

the Era of...

medium e6b945ba-

6a9a-

4cde-b2bf-

0890af79732b

Alex Vesa https://medium.
com/decodingml/
t h e -
importance-o...

1 ccfe70f3-

d324-

40b6-ba38-

86e72786dcf4

Change Data 

Capture: 

Enabling 

Event-Driven 

Arc...

medium e6b945ba-

6a9a-

4cde-b2bf-

0890af79732b

Alex Vesa https://medium.
com/decodingml/
the-3nd-out-
of-1...

2 4c9f68ae-

ec8b-4534-

8ad5-

92372bf8bb37

The Role of 

Feature Stores 

in Fine-Tun-

ing LLMs...

medium e6b945ba-

6a9a-

4cde-b2bf-

0890af79732b

Alex Vesa https://medium.
com/decodingml/
the-role-of-
feat...

... ... ... ... ... ... ...

73 68795a4d-

26c2-43b7-

9900-

739a80b9b-

7dc

DML: 4 key 

ideas you 

must know to 

train an LLM...

decod-

ingml.

substack.

com

1519b1d1-

1a5d-444c-

a880-926c9e-

b6539e

Paul 

Iusztin

h t t p s : / /
d e c o d i n g m l .
substack.com/p/
dml-4-key-id...

74 d91b17c0-

05d8-

4838-bf61-

e2abc1573622

DML: How to 

add real-time 

monitoring & 

metrics...

decod-

ingml.

substack.

com

1519b1d1-

1a5d-444c-

a880-926c9e-

b6539e

Paul 

Iusztin

h t t p s : / /
d e c o d i n g m l .
substack.com/p/
dml-how-to-a...

75 dcf55b28-

2814-

4480-a18b-

a77d01d44f5f

DML: Top 6 

ML Platform 

Features You 

Must Know ...

decod-

ingml.

substack.

com

1519b1d1-

1a5d-444c-

a880-926c9e-

b6539e

Paul 

Iusztin

h t t p s : / /
d e c o d i n g m l .
substack.com/p/
dml-top-6-ml...

4. If we inspect the content of some articles a little further, we realize that some of them 

have special characters and redundant whitespaces. We can clean this with a simple regex.

First, we use [^\w\s.,!?'] to remove non-alphanumeric characters except for apostro-

phes, periods, commas, exclamation marks, and question marks. Then, we use \s+ to 

replace multiple consecutive whitespace characters with a single space. 

https://medium.com/decodingml/the-importance-o...
https://medium.com/decodingml/the-importance-o...
https://medium.com/decodingml/the-importance-o...
https://medium.com/decodingml/the-importance-o...
https://medium.com/decodingml/the-3nd-out-of-1...
https://medium.com/decodingml/the-3nd-out-of-1...
https://medium.com/decodingml/the-3nd-out-of-1...
https://medium.com/decodingml/the-3nd-out-of-1...
https://medium.com/decodingml/the-role-of-feat...
https://medium.com/decodingml/the-role-of-feat...
https://medium.com/decodingml/the-role-of-feat...
https://medium.com/decodingml/the-role-of-feat...
https://decodingml.substack.com/p/dml-4-key-id...
https://decodingml.substack.com/p/dml-4-key-id...
https://decodingml.substack.com/p/dml-4-key-id...
https://decodingml.substack.com/p/dml-4-key-id...
https://decodingml.substack.com/p/dml-top-6-ml...
https://decodingml.substack.com/p/dml-top-6-ml...
https://decodingml.substack.com/p/dml-top-6-ml...
https://decodingml.substack.com/p/dml-top-6-ml...
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Finally, we implement strip() to remove any leading or trailing whitespace.

def clean_text(text):

    text = re.sub(r"[^\w\s.,!?']", " ", text)

    text = re.sub(r"\s+", " ", text)

    return text.strip()

5. Now that we can load our articles, we need to chunk them before turning them into pairs 

of instructions and answers. Ideally, you would want to use headlines or paragraphs to 

produce semantically meaningful chunking.

However, in our example, like in the real world, raw data tends to be messy. Due to im-

proper formatting, we cannot extract paragraphs or headlines for every article in our raw 

dataset. Instead, we will extract sentences using a regex to get chunks between 1,000 

and 2,000 characters. This number can be optimized depending on the density of the 

information contained in the text.

The extract_substrings function processes each article in the dataset by first cleaning the 

text and then using a regex to split it into sentences. It then builds chunks of text by con-

catenating these sentences until each chunk is between 1,000 and 2,000 characters long.

def extract_substrings(dataset: Dataset, min_length: int = 1000, 
max_length: int = 2000) -> List[str]:

    extracts = []

    sentence_pattern = r"(?<!\w\.\w.)(?<![A-Z][a-z]\.)
(?<=\.|\?|\!)\s"

    for article in dataset["content"]:

        cleaned_article = clean_text(article)

        sentences = re.split(sentence_pattern, cleaned_article)

        current_chunk = ""

        for sentence in sentences:

            sentence = sentence.strip()

            if not sentence:

                continue

            if len(current_chunk) + len(sentence) <= max_length:

                current_chunk += sentence + " "

            else:
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                if len(current_chunk) >= min_length:

                    extracts.append(current_chunk.strip())

                current_chunk = sentence + " "

        if len(current_chunk) >= min_length:

            extracts.append(current_chunk.strip())

    return extracts

6. Next, we want to create instruction-answer pairs from the extracted chunks of text. To 

manage these pairs effectively, we introduce the InstructionAnswerSet class. This class 

allows us to create instances directly from JSON strings, which is useful when parsing the 

output from the OpenAI API.

class InstructionAnswerSet:

    def __init__(self, pairs: List[Tuple[str, str]]):

        self.pairs = pairs

    @classmethod

    def from_json(cls, json_str: str) -> 'InstructionAnswerSet':

        data = json.loads(json_str)

        pairs = [(pair['instruction'], pair['answer'])

                 for pair in data['instruction_answer_pairs']]

        return cls(pairs)

    def __iter__(self):

        return iter(self.pairs)

7. Now that we have a set of extracts from the articles with a reasonable length, we can use 

an LLM to transform them into pairs of instructions and answers. Note that this step is 

model-agnostic and can be implemented with any open-source or closed-source model. 

Because this output is grounded in the context we provide, it doesn’t require complex 

reasoning or high-performing models.

For convenience, we will use GPT-4o mini in this example. This choice is motivated by the 

low cost and good performance of this model. Prompt engineering is the most important 

aspect of this data transformation stage and requires several iterations to produce the 

expected outputs. We recommend starting with simple prompts and adding complexity 

when required to be more accurate, modify the style, or output multiple responses.
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In our example, we want to create instructions like “Write a paragraph about X topic” and 

corresponding answers that are factual and imitate the writer’s style. To implement this, 

we need to provide an extract that will ground the model’s responses. For efficiency, we 

also choose to generate five instruction-answer pairs for each extract. Here’s the beginning 

of our function for instruction generation, including our prompt.

def generate_instruction_answer_pairs(

    extract: str, client: OpenAI

) -> List[Tuple[str, str]]:

    prompt = f"""Based on the following extract, generate five 
instruction-answer pairs. Each instruction \

must ask to write about a specific topic contained in the context. 
each answer \

must provide a relevant paragraph based on the information found in 
the \

context. Only use concepts from the context to generate the 
instructions. \

Instructions must never explicitly mention a context, a system, a 
course, or an extract. \

Instructions must be self-contained and general. \

Answers must imitate the writing style of the context. \

Example instruction: Explain the concept of an LLM Twin. \

Example answer: An LLM Twin is essentially an AI character that 
mimics your writing style, personality, and voice. \

It's designed to write just like you by incorporating these elements 
into a language model. \

The idea is to create a digital replica of your writing habits using 
advanced AI techniques. \

Provide your response in JSON format with the following structure:

{{

    "instruction_answer_pairs": [

        {{"instruction": "...", "answer": "..."}},

        ...

    ]

}}

Extract:

{extract}

"""
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8. In addition to the user prompt, we can also specify a system prompt to guide the mod-

el into generating the expected instructions. Here, we repeat our high-level task in the 

system prompt.

The concatenation of the system and user prompts is fed to the OpenAI API, using the GPT-

4o mini model in JSON mode and a maximum of 1,200 tokens in the answer. We also use a 

standard temperature of 0.7 to encourage diverse responses. The generated text is directly 

parsed using the InstructionAnswerSet class to return pairs of instructions and answers.

    completion = client.chat.completions.create(

        model="gpt-4o-mini",

        messages=[

            {

                "role": "system", "content": "You are a helpful 
assistant who \

            generates instruction-answer pairs based on the given 
context. \

            Provide your response in JSON format.",

            },

            {"role": "user", "content": prompt},

        ],

        response_format={"type": "json_object"},

        max_tokens=1200,

        temperature=0.7,

    )

    # Parse the structured output

    result = InstructionAnswerSet.from_json(completion.choices[0].
message.content)

    # Convert to list of tuples

    return result.pairs

9. Let’s create a main function to automate the process. It extracts substrings from the input 

dataset, then uses concurrent processing via Python’s ThreadPoolExecutor to efficiently 

generate instruction-answer pairs for each extract. 
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We use a default max_workers value of 4 because higher values tend to exceed OpenAI’s 

rate limits, potentially causing API request failures or throttling.

def create_instruction_dataset(

    dataset: Dataset, client: OpenAI, num_workers: int = 4

) -> Dataset:

    extracts = extract_substrings(dataset)

    instruction_answer_pairs = []

    with concurrent.futures.ThreadPoolExecutor(max_workers=num_
workers) as executor:

        futures = [executor.submit(generate_instruction_answer_
pairs, extract, client)

            for extract in extracts

        ]

        for future in tqdm(concurrent.futures.as_completed(futures), 
total=len(futures)

        ):

            instruction_answer_pairs.extend(future.result())

    instructions, answers = zip(*instruction_answer_pairs)

    return Dataset.from_dict(

        {"instruction": list(instructions), "output": list(answers)}

    )

10. We can create our instruction dataset by calling this function. Running it over the raw 

data with GPT-4o mini costs less than 0.5$.

11. We can now create a main function to orchestrate the entire pipeline. It loads the raw 

data, creates the instruction dataset, splits it into training and testing sets, and pushes 

the result to the Hugging Face Hub.

def main(dataset_id: str) -> Dataset:

    client = OpenAI()

    # 1. Load the raw data

    raw_dataset = load_articles_from_json("cleaned_documents.json")

    print("Raw dataset:")

    print(raw_dataset.to_pandas())

    # 2. Create instructiondataset
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instruction_dataset = create_instruction_dataset(raw_dataset, 
client)

    print("Instruction dataset:")

    print(instruction_dataset.to_pandas())

    # 3. Train/test split and export

    filtered_dataset = instruction_dataset.train_test_split(test_
size=0.1)

    filtered_dataset.push_to_hub("mlabonne/llmtwin")

    return filtered_dataset

Dataset({

    features: ['instruction', 'output'],

    num_rows: 3335

})

We obtained 3,335 pairs with this process. You can find our version of the dataset at https://

huggingface.co/datasets/mlabonne/llmtwin. The Hugging Face Hub provides a convenient 

dataset viewer (see Figure 5.7) to explore instructions and answers and make sure that there are 

no obvious mistakes in these samples. Due to the small size of the dataset, there is no need for 

comprehensive exploration and topic clustering.

Figure 5.7 – The mlabonne/llmtwin instruction dataset on the Hugging Face Hub

https://huggingface.co/datasets/mlabonne/llmtwin
https://huggingface.co/datasets/mlabonne/llmtwin
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As seen in the previous section, we could refine this instruction dataset by increasing the diver-

sity and complexity of our samples. More advanced prompt engineering could also increase the 

quality of the generated data by providing examples of the expected results, for instance. Finally, 

quality evaluation could help filter out low-quality samples by reviewing them individually. For 

conciseness and simplicity, we will keep a straightforward approach for this instruction dataset 

and explore more advanced methods in Chapter 6 when we create a preference dataset.

In the next section, we will introduce SFT techniques, as well as related concepts.

Exploring SFT and its techniques
SFT consists of re-training pre-trained models on a smaller dataset composed of pairs of instruc-

tions and answers. The goal of SFT is to turn a base model, which can only perform next-token 

prediction, into a useful assistant, capable of answering questions and following instructions. 

SFT can also be used to improve the general performance of the base model (general-purpose 

SFT), instill new knowledge (e.g., new languages, domains, etc.), focus on specific tasks, adopt 

a particular voice, and so on.

In this section, we will discuss when to use fine-tuning and explore related concepts with storage 

formats and chat templates. Finally, we will introduce three popular ways of implementing SFT: 

full-finetuning, Low-Rank Adaptation (LoRA) and Quantization-aware Low-Rank Adaptation

(QLoRA).

When to fine-tune
In most scenarios, it is recommended to start with prompt engineering instead of directly fine-tun-

ing models. Prompt engineering can be used with either open-weight or closed-source models. By 

using techniques like few-shot prompting or retrieval augmented generation (RAG), numerous 

problems can efficiently be tackled without SFT. Prompt engineering also allows us to build a 

robust evaluation pipeline, which measures metrics like accuracy, but also cost and latency. If 

these results do not match the requirements, we can explore the possibility of creating an in-

struction dataset, as illustrated in the previous section. If enough data is available, fine-tuning 

becomes an option.
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Figure 5.8 – Basic flowchart to determine when fine-tuning is an option on a technical level

Beyond these technical considerations, SFT answers common needs in terms of control (“know 

your data”) and customizability (the fine-tuned model is unique). Instead of building applications 

around a chatbot, fine-tuning allows developers to create more diverse interactions with LLMs, 

like tool analytics, moderation, and additional context. Note that if we focus on open-weight 

models in this book, several LLM providers offer automated fine-tuning services. While they don’t 

offer the same level of control and customizability as managing your own fine-tuning pipeline, it 

can be an interesting trade-off in specific scenarios (e.g., limited resources in terms of machine 

learning engineering).

Despite these advantages, fine-tuning also has limitations. It is generally understood that SFT 

leverages pre-existing knowledge in the base model’s weights and refocuses the parameters for 

a specific purpose. This has several implications. First of all, knowledge that is too distant from 

what has been learned in the pre-training set (such as an unknown or rare language) can be 

difficult to learn effectively. 

Even worse, a study showed that fine-tuning a model on new knowledge could result in more 

frequent hallucinations. Depending on the SFT technique that is used, we’re also at risk of eras-

ing knowledge that was present in the base model (a common issue referred to as “catastrophic 

forgetting”).
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Instruction dataset formats
Instruction datasets are stored in a particular format to organize instructions and answers. Typi-

cally, each sample in the dataset can be represented as a Python dictionary, where keys are prompt 

types like system, instruction, output, and values corresponding to the actual text. The three 

most standard formats are Alpaca, ShareGPT, and OpenAI. The following table shows how these 

data formats are generally organized.

Name JSONL format

Alpaca {“instruction”: “...”, “input”: “...”, “output”: “...”}

{“instruction”: “...”, “output”: “...”}

ShareGPT {“conversations”: [{“from”: “...”, “value”: “...”}, …]}

OpenAI {“conversations”: [{“role”: “...”, “content”: “...”}, …]}

OASST {“INSTRUCTION”: “...”, “RESPONSE”: “...”}

Raw text {“text”: “...”}

Table 5.5 – Examples of instruction data storage format

Note that for Alpaca, the “input" key is optional. The content of the “input" key is only appended 

to the content of the “instruction" key when it exists. We also added the “raw text" data format 

to show that SFT is not inherently different from pre-training. If you choose to re-train a model 

on raw text, this is a type of fine-tuning generally called “continual pre-training.”

The dataset we created in the previous section has two columns (“instruction" and “output") 

and corresponds to the Alpaca format. Alpaca is sufficient for single-turn instructions and an-

swers, which means it is limited to one instruction and one answer. When you want to process 

conversations (multiple instructions and answers), formats like ShareGPT or OpenAI are a better 

fit. By storing each message as a dictionary in a list, they can represent an arbitrarily long con-

versation in each sample.

The choice of single-turn and multi-turn conversations directly impacts the storage type and 

depends on the end use case.

Chat templates
Once the instruction-answer pairs are parsed from the dataset format, we want to structure them 

in a chat template. Chat templates offer a unified way to present the instructions and answers 

to the model.
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In general, they also include special tokens to identify the beginning and the end of a message, or 

who is the author of the message. Since base models are not designed to follow instructions, they 

don’t have a chat template. This means that you can choose any template when you fine-tune 

a based model. If you want to fine-tune an instruct model (not recommended), you need to use 

the same template or it might degrade your performance.

Like instruction dataset formats, there are different chat templates: ChatML, Llama 3, Mistral, and 

many others. In the open-source community, the ChatML template (originally from OpenAI) is a 

popular option. It simply adds two special tokens (<|im_start|> and <|im_end|>) to indicate 

who is speaking. To give you an example, here is what we obtain when we apply the ChatML 

template to the instruction-answer pair shown in Table 5.1:

<|im_start|>system

You are a helpful assistant, who always provide explanation. Think like you 
are answering to a five year old.<|im_end|>

<|im_start|>user

Concepts: building, shop, town

Write a sentence that includes all these words.<|im_end|>

<|im_start|>assistant

In our little town, there is a shop inside a big building where people go 
to buy their favorite toys and candies.<|im_end|>

Table 5.6 – Sample from Table 5.1 with the ChatML chat template

As you can see, we still have three distinct parts: system, user, and assistant. Each part starts with 

the <|im_start|> token and ends with <|im_end|>. The current speaker is identified by a string 

(like “system") instead of a special token. This is the exact string that is tokenized and used as 

input by the model during fine-tuning.

However, during inference, we can’t provide the expected answer. In this case, we provide the 

system and user part as shown in Figure 5.6, and prompt the model to answer by adding <|im_

start|>assistant\n. 

Because the model has been fine-tuned with this template, it understands that the next tokens 

should be an answer relevant to the user instruction and guided by the system prompt. This is 

how fine-tuned models acquire instruction-following capabilities.
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A common issue with chat templates is that every single whitespace and line break is extremely 

important. Adding or removing any character would result in a wrong tokenization, which neg-

atively impacts the performance of the model. For this reason, it is recommended to use reliable 

templates like Jinja, as implemented in the Transformers library. Table 5.7 shows a few examples 

of such templates, including Alpaca, which is both the name of an instruction dataset format 

and a chat template.

Name Jinja template

Alpaca ### Instruction: What is the capital of France?

### Response: The capital of France is Paris.<EOS>

ChatML <|im_start|>user

What is the capital of France?<|im_end|>

<|im_start|>assistant

The capital of France is Paris.<|im_end|>

Llama 3 <|begin_of_text|><|start_header_id|>user<|end_header_id|>

What is the capital of France?<|eot_id|><|start_header_
id|>assistant<|end_header_id|>

The capital of France is Paris.<|eot_id|>

Phi-3 <|user|>

What is the capital of France?<|end|>

<|assistant|>

The capital of France is Paris.<|end|>

Gemma <bos><start_of_turn>user

What is the capital of France?<end_of_turn>

<start_of_turn>model

The capital of France is Paris.<end_of_turn>

Table 5.7 – Example of common chat templates

Jinja implements loops and conditions, which allow the same template to be used for training 

and inference (add_generation_prompt).
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Parameter-efficient fine-tuning techniques
While many techniques exist in the literature, SFT has converged on three main techniques: full 

fine-tuning, LoRA, and QLoRA. We will introduce each technique individually, and weigh their 

pros and cons depending on your use cases.

Figure 5.9 – Architectural differences of the three main SFT techniques at the module level

Full fine-tuning
Full fine-tuning refers to the most straightforward SFT technique, consisting of re-training every 

parameter in the base model. Like pre-training, SFT uses next-token prediction as its training 

objective. This means that the previously discussed structure of the dataset can be seen as the 

main difference between continual pre-training and full fine-tuning.

This method often provides the best results but requires significant computational resources. 

Memory usage depends on several factors, including model size, training techniques, and op-

timization methods. At its simplest, using a single-GPU setting, the memory required can be 

estimated using the following formula:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 

For a basic setup using 32-bit floating point (fp32) precision, we can estimate:

• Parameters: Learnable weights and biases within a neural network. In a large language 

model, these are typically the weights in the attention mechanisms, feed-forward layers, 

and embedding layers. Cost: 4 bytes/parameter (FP32) or 2 bytes/parameter (FP16/BF16).

• Gradients: Gradients are the partial derivatives of the loss function with respect to each 

model parameter. They indicate how much each parameter should be adjusted to minimize 

the loss. During training, gradients are computed for each parameter through backprop-

agation and are used to update the model parameters. Cost: 4 bytes/parameter.
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• Optimizer states: Optimizer states are additional values maintained by optimization 

algorithms like Adam or AdamW. These typically include running averages of past gra-

dients and past squared gradients for each parameter. They help in adapting the learning 

rate for each parameter and navigating the loss landscape more effectively. For instance, 

Adam maintains two additional values (momentum and variance) per parameter. Cost: 

8 bytes/parameter (for Adam optimizer).

• Activations: Activations are the intermediate outputs of each layer in the neural network 

during the forward pass. For transformer-based models, this includes the outputs of 

attention mechanisms, feed-forward layers, and normalization layers. Activations need 

to be kept in memory during the forward pass to compute gradients in the backward 

pass, unless techniques like activation checkpointing are used. Cost: variable, but often 

negligible for small batch sizes.

This gives us a baseline of 16 bytes per parameter. This translates into 112 GB of VRAM for a 7 

B model and 1,120 GB for a 70 B model. However, this is often an underestimate, as it doesn’t 

account for additional memory needed for activations, temporary buffers, and overhead from 

various training techniques.

Several techniques can be employed to reduce memory usage during LLM fine-tuning. Model 

parallelism spreads the workload across multiple GPUs, though it adds some overhead. Gradient 

accumulation enables larger effective batch sizes without proportional memory increase. Mem-

ory-efficient optimizers like 8-bit Adam can reduce the footprint of optimizer states. Activation 

checkpointing trades computation for memory by recalculating certain activations. When com-

bined, these techniques can significantly lower memory usage. For instance, using mixed precision 

with model parallelism might reduce costs to around 14-15 bytes per parameter, compared to the 

16-byte baseline. However, memory requirements remain substantial for large models even with 

these optimizations.

In addition, full fine-tuning directly modifies the pre-training weights, which makes it destructive 

by nature. If training doesn’t behave as expected, it might erase previous knowledge and skills – a 

phenomenon referred to as “catastrophic forgetting.” The same phenomenon can happen with 

continual pre-training, which generally makes these techniques more difficult to use. Due to this 

additional complexity and its high computational requirements, parameter-efficient techniques 

are often preferred to full fine-tuning to create task and domain-specific models.
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LoRA
LoRA is a parameter-efficient technique for fine-tuning LLMs. Developed to address the compu-

tational challenges associated with adapting massive neural networks, LoRA has quickly become 

a cornerstone technique in LLM fine-tuning.

The primary purpose of LoRA is to enable the fine-tuning of LLMs with significantly reduced 

computational resources. This is achieved by introducing trainable low-rank matrices that mod-

ify the behavior of the model without changing its original parameters. The key advantages of 

LoRA include:

• Dramatically reduced memory usage during training

• Faster fine-tuning process

• Preservation of pre-trained model weights (non-destructive)

• Ability to switch between tasks efficiently by swapping LoRA weights

These benefits have made LoRA particularly attractive for researchers and developers working 

with limited computational resources, effectively democratizing the process of LLM fine-tuning.

At its core, LoRA employs a low-rank decomposition technique to update model weights efficiently. 

Instead of directly modifying the original weight matrix 𝑊𝑊 , LoRA introduces two smaller matrices, 𝐴𝐴  and 𝐵𝐵 , which together form a low-rank update to 𝑊𝑊 .

Figure 5.10 – LoRA adds the two trainable matrices 𝐴𝐴  and 𝐵𝐵  and keeps the pre-trained weights 𝑊𝑊  frozen



Supervised Fine-Tuning214

Mathematically, this can be represented as:𝑊𝑊𝑊 𝑊 𝑊𝑊 𝑊 𝐵𝐵𝐵𝐵 

Here, 𝑊𝑊  is the original weight matrix, 𝐵𝐵  and 𝐴𝐴  are the LoRA matrices, and 𝑊𝑊𝑊  is the effective weight 

matrix used during inference.

The dimensions of matrices A and B are chosen such that their product has the same shape as 𝑊𝑊 , but with a much lower rank. This rank, typically denoted as 𝑟𝑟 , is a crucial hyperparameter 

in LoRA. During training, the original weights 𝑊𝑊  remain frozen, while only 𝐴𝐴  and 𝐵𝐵  are updated. 

This approach significantly reduces the number of trainable parameters, leading to substantial 

memory savings and faster training times.

To implement LoRA effectively, we need to select the correct hyperparameters and target modules. 

LoRA comes with two hyperparameters:

• Rank (𝑟𝑟 ): Determines the size of the LoRA matrices. A common starting point is 𝑟𝑟 𝑟 𝑟 , but 

values up to 256 have shown good results in some cases. Larger ranks may capture more 

diverse tasks but could lead to overfitting.

• Alpha (𝛼𝛼 ): A scaling factor applied to the LoRA update. In practice, we update the frozen 

weights 𝑊𝑊  by a factor of 𝛼𝛼𝛼𝛼𝛼 . This is why a common heuristic is to set 𝛼𝛼  to twice the 

value of 𝑟𝑟 , effectively applying a scaling factor of 2 to the LoRA update. You can experiment 

with different ratios in case of overfitting or underfitting.

In addition, it is possible to add a drop-out layer to prevent overfitting. The dropout rate is usually 

set between 0 and 0.1 as an optional regularization factor, which slightly decreases training speed.

LoRA can be applied to various parts of the model architecture. Initially, LoRA was primarily fo-

cused on modifying the attention mechanism, specifically the query (Q) and value (V) matrices 

in transformer layers. However, experiments have demonstrated significant benefits in extending 

LoRA’s application to other key components of the model. These additional target modules include:

• Key (K) matrices in attention layers

• Output projection layers (often denoted as O) in attention mechanisms

• Feed-forward or Multi-Layer Perceptron (MLP) blocks between attention layers

• Linear output layers

However, it’s important to note that increasing the number of LoRA-adapted modules also in-

creases the number of trainable parameters and, consequently, the memory requirements.
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Using LoRA, it’s possible to fine-tune a 7B parameter model on a single GPU with as little as 14-

18 GB of VRAM, depending on the specific configuration. This is a dramatic reduction compared 

to full fine-tuning, which would typically require multiple high-end GPUs. In terms of trainable 

parameters, LoRA drastically reduces the number compared to full fine-tuning. For example, even 

when targeting every module with a rank of 16, a Llama 3 8 B model only has 42 million trainable 

LoRA parameters out of 8 billion parameters, which is 0.5196% of the model’s parameters.

In terms of quality, LoRA can also achieve comparable or sometimes better results than full-fine-

tuning. Multiple sets of LoRA weights can be combined for different tasks or domains, allowing 

flexible deployment and task switching without retraining. Different projects are specialized 

in multiple-LoRA serving, such as LoRAX. It’s also a feature supported by Hugging Face’s Text 

Generation Inference (TGI) and Nvidia Inference Microservices (NIM).

QLoRA
Introduced by Dettmers et al., QLoRA is a method for fine-tuning LLMs that addresses the chal-

lenges of high computational costs. By combining quantization techniques with LoRA, QLoRA 

allows developers to fine-tune models on relatively small, widely available GPUs.

The core of QLoRA’s approach involves quantizing the base model parameters to a custom 4-bit 

NormalFloat (NF4) data type, which significantly reduces memory usage. Like LoRA, instead 

of updating all model parameters during fine-tuning, QLoRA introduces small, trainable low-

rank matrices (adapters) to specific layers of the model. Only these adapters are updated during 

training, while the original model weights remain unchanged. To further reduce memory usage, 

QLoRA employs double quantization, which quantizes the quantization constants themselves. 

Additionally, it uses paged optimizers to manage memory spikes during training by leveraging 

Nvidia’s unified memory feature.

QLoRA provides significant memory savings compared to LoRA, reducing peak GPU memory 

usage by up to 75%. For example, for a 7B model, QLoRA reduces peak memory usage from 14 GB 

to 9.1 GB during initialization, a 35% reduction. During fine-tuning, the memory savings increase 

to 40%, from 15.6 GB for LoRA to 9.3 GB for QLoRA. However, this memory efficiency comes at 

the cost of increased training time, with QLoRA being about 30% slower than LoRA. In terms of 

model performance, QLoRA shows only minor differences compared to LoRA.

In summary, QLoRA is particularly beneficial when memory constraints are the primary concern, 

such as when working with very large models or on hardware with limited GPU memory. However, 

if training speed is crucial and sufficient memory is available, LoRA might be the preferred choice. 
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The decision between QLoRA and LoRA should be based on the specific requirements of the 

project, available hardware, and the need to balance memory usage, training speed, and model 

performance.

Training parameters
When fine-tuning LLMs, several hyperparameters guide the training process and significantly 

impact the model’s convergence, generalization, and overall effectiveness.

Learning rate and scheduler
The learning rate is the most important hyperparameter. It controls how much the model’s pa-

rameters are updated during training. It typically ranges from very small values like 1e-6 to larger 

values like 1e-3. A common starting point for transformer models is often around 1e-5. If the 

learning rate is too low, training progresses slowly and may get stuck in suboptimal solutions. 

Conversely, if it’s too high, training can become unstable or diverge, leading to poor performance. 

It’s often beneficial to experiment with different learning rates to find the optimal value for your 

specific task and model.

The learning rate scheduler adjusts the learning rate throughout the training process. It typically 

starts with a higher learning rate to enable rapid initial progress, then gradually decreases it in 

later stages to fine-tune the model more precisely. The two most common types of schedulers are 

linear and cosine. A linear scheduler decreases the learning rate steadily over time, while a cosine 

scheduler follows a cosine curve, decreasing more slowly at first and then more rapidly toward 

the end of training. For example, you might start with a learning rate of 3e-4 and decrease it to 

1e-7 over the course of training. The specific values and decay schedule depend on your model 

and dataset, but a common approach is to use a warmup period (e.g., 5% of total steps) where the 

learning rate increases from 0 to the initial value, followed by a decay period for the remaining 95% 

of steps. This approach helps stabilize early training and allows for more refined updates as the 

model converges. In general, linear and cosine schedulers provide the same level of performance.

Batch size
The batch size determines the number of samples processed before the model’s weights are up-

dated. Typical batch sizes for LLM fine-tuning range from 1 to 32, with common values being 1, 2, 

4, 8, or 16. Larger batch sizes generally lead to more stable gradient estimates and can improve 

training speed, as they provide a better approximation of the true gradient of the entire dataset.
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However, they also require more memory, which can be a limiting factor on GPUs with less VRAM. 

For instance, a batch size of 16 might work well on a high-end GPU with 24GB of memory, while 

a smaller GPU with 8 GB might only handle a batch size of 2 or 4.

To overcome memory constraints while still benefiting from larger batch sizes, a technique called 

gradient accumulation can be used. It works by performing multiple forward and backward passes 

with smaller mini-batches, accumulating the gradients over these steps before applying a single 

update to the model’s parameters. This approach is particularly useful when working with large 

models or limited GPU memory. For example, if you want to achieve an effective batch size of 32 

but your GPU can only handle 8 samples at a time, you can set the gradient accumulation steps 

to 4. This means you’ll process 4 mini-batches of 8 samples each, accumulating the gradients, 

and then update the model as if you had processed all 32 samples at once.

The number of gradient accumulation steps typically ranges from 1 (no accumulation) to 8 or 

16, depending on the desired effective batch size and available computational resources. When 

choosing the number of steps, consider the trade-off between training speed and memory usage. 

More accumulation steps allow for larger effective batch sizes but increase the time required for 

each update. Here’s a simple formula to determine the effective batch size:𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 

For instance, if you’re using 2 GPUs, each processing a batch of 4 samples, with 4 gradient accu-

mulation steps, your effective batch size would be 4 * 2 * 4 = 32 samples.

Maximum length and packing
The maximum sequence length determines the longest input the model can process. It’s typically 

set between 512 and 4,096 tokens but can go up to 128,000 or more, depending on the task and 

available GPU memory. For example, a maximum length of 2,048 tokens is common for many 

language generation tasks, while RAG applications might use up to 8,192 tokens or more. When 

processing input data, sequences longer than this limit are truncated, meaning excess tokens 

are removed. Truncation can occur at the beginning (left truncation) or end (right truncation) of 

the sequence. For instance, with a maximum length of 1,024 tokens, a 1,500-token input would 

have 476 tokens removed. This parameter directly impacts batch size and memory usage; a batch 

size of 12 with a max length of 1,024 would contain 12,288 tokens (12 * 1,024), while the same 

batch size with a max length of 512 would only contain 6,144 tokens. It’s important to balance 

this parameter with your GPU capabilities and the nature of your training data to optimize per-

formance and resource utilization.
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Packing maximizes the utilization of each training batch. Instead of assigning one sample per 

batch, packing combines multiple smaller samples into a single batch, effectively increasing the 

amount of data processed in each iteration. For example, if your maximum sequence length is 

1,024 tokens, but many of your samples are only 200-300 tokens long, packing could allow you 

to fit 3-4 samples into each batch slot. This approach can significantly improve training efficien-

cy, especially when dealing with datasets containing many short sequences. However, packing 

requires careful implementation to ensure that model attention doesn’t cross between packed 

samples. This is typically achieved by using attention masks that prevent the model from attend-

ing to tokens from different samples within the same packed sequence.

Number of epochs
The number of epochs is another important parameter, representing the number of complete 

passes through the entire training dataset. For LLM fine-tuning, the typical range is 1 to 10 epochs, 

with many successful runs using 2 to 5 epochs. The optimal number depends on factors such as 

task complexity, dataset size, and model architecture. More epochs allow the model to refine its 

learning, potentially improving performance. However, there’s a crucial trade-off: too few epochs 

may lead to underfitting, while too many can cause overfitting. For example, a large model fine-

tuned on a small dataset might only need 1-3 epochs, while a smaller model fine-tuned on a larger 

dataset could benefit from 5-10 epochs. It is helpful to monitor validation performance during 

training and implement early stopping if the model’s performance plateaus or degrades. This 

approach helps determine the optimal number of epochs dynamically and prevents overfitting.

Optimizers
Optimizers adjust the model’s parameters to minimize the loss function. For LLM fine-tuning, 

AdamW (Adaptive Moment Estimation with Weight Decay) is highly recommended, particularly 

its 8-bit version. AdamW 8-bit performs comparably to the 32-bit version while using less GPU 

memory (but it doesn’t improve training speed). AdamW combines adaptive learning rates with 

weight decay regularization, often leading to better training stability and model performance.

For scenarios with severe memory constraints, AdaFactor presents an alternative designed for 

memory efficiency. It works well without explicit learning rate tuning, making it particularly 

useful in resource-constrained environments. However, it may not always match AdamW’s perfor-

mance in all cases. In situations involving extremely large models or limited GPU memory, paged 

versions of optimizers, such as paged AdamW 8-bit, can further reduce memory consumption 

by offloading to CPU RAM. If memory allows and maximum performance is the priority, the 

non-quantized adamw_torch optimizer may be the best choice.
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Weight decay
Weight decay works by adding a penalty for large weights to the loss function, encouraging the 

model to learn simpler, more generalizable features. This helps the model avoid relying too heavily 

on any single input feature, which can improve its performance on unseen data. Typically, weight 

decay values range from 0.01 to 0.1, with 0.01 being a common starting point. For example, if 

you’re using the AdamW optimizer, you might set the weight decay to 0.01.

While weight decay can be beneficial, setting it too high can impede learning by making it difficult 

for the model to capture important patterns in the data. Conversely, setting it too low may not 

provide sufficient regularization. The optimal weight decay value often depends on the specific 

model architecture and dataset, so it’s generally a good practice to experiment with different 

values.

Gradient checkpointing
Gradient checkpointing is a technique that reduces memory consumption during training by stor-

ing only a subset of intermediate activations generated in the forward pass. In standard training 

procedures, all intermediate activations are retained in memory to facilitate gradient calculation 

during the backward pass. However, for very deep networks like LLMs, this approach can quickly 

become impractical due to hardware limitations, especially on GPUs with limited memory capacity.

Gradient checkpointing addresses this challenge by selectively saving activations at specific layers 

within the network. For layers where activations are not saved, they are recomputed during the 

backward pass as needed for gradient computation. This approach creates a trade-off between 

computation time and memory usage. While it significantly reduces memory requirements, it 

may increase overall computation time due to the need to recalculate some activations.

Other parameters and techniques exist but play a minor role compared to those previously dis-

cussed. In the next section, we will explore how to select and tune these parameters using a 

concrete example.

Fine-tuning in practice
Let’s now fine-tune an open-source model on our custom dataset. In this section, we will show an 

example that implements LoRA and QLoRA for efficiency. Depending on the hardware you have 

available, you can select the technique that best corresponds to your configuration.

There are many efficient open-weight models we can leverage for task or domain-specific use 

cases. To select the most relevant LLM, we need to consider three main parameters:
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• License: Some model licenses only allow non-commercial work, which is a problem if 

we want to fine-tune for a company. Custom licenses are common in this field, and can 

target companies with a certain number of users, for example.

• Budget: Models with smaller parameter sizes (<10 B) are a lot cheaper to fine-tune and 

deploy for inference than larger models. This is due to the fact that they can be run on 

cheaper GPUs and process more tokens per second.

• Performance: Evaluating the base model on general-purpose benchmarks or, even better, 

domain- or task-specific benchmarks relevant to the final use case, is crucial. This helps 

ensure that the model has the necessary capabilities to perform well on the intended 

tasks after fine-tuning.

In this chapter, we will choose Llama 3.1 8B, an open-weight model released by Meta. It has a 

permissive custom license (“Llama 3.1 Community License Agreement”) that allows commercial 

use. With 8B parameters, it is small enough to fit on most GPUs while reaching a high level of 

performance compared to its competitors. We can verify this using the Open LLM Leaderboard, 

as well as other benchmarks detailed in the model card.

There are specialized tools and libraries to fine-tune models. In particular, we recommend the 

following:

• TRL: This is a library created and maintained by Hugging Face to train LLMs using SFT 

and preference alignment. It is a popular and reliable library that tends to be the most 

up-to-date in terms of algorithms. It works in single and multi-GPU settings with FSDP 

and DeepSpeed.

• Axolotl: Created by Wing Lian, this tool streamlines the fine-tuning of LLMs with reusable 

YAML configuration files. It is based on TRL but includes many additional features, such as 

automatically combining datasets stored in various formats. It also supports single- and 

multi-GPU settings with FSDP and DeepSpeed.

• Unsloth: Created by Daniel and Michael Han, Unsloth uses custom kernels to speed up 

training (2-5x) and reduce memory use (up to 80% less memory). It is based on TRL and 

provides many utilities, such as automatically converting models into the GGUF quanti-

zation format. At the time of writing, it is only available for single-GPU settings.

To maximize efficiency, we will perform fine-tuning using the Unsloth library. The following 

code is designed as part of our LLMOps pipeline, but can also be used as a stand-alone script. It 

can also be executed in different environments, like SageMaker, cloud GPUs (like Lambda Labs or 

RunPod), Google Colab, and many others. We tested it on different GPUs, like A40, A100, and L4.
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To install the Unsloth library and its dependencies, we recommend directly installing from the 

GitHub repository of the book (https://github.com/PacktPublishing/LLM-Engineering) or 

Unsloth’s repo (https://github.com/unslothai/unsloth). This approach is recommended be-

cause the installation steps are regularly updated to address potential conflicts with dependencies:

1. First, we want to access a gated model and (optionally) upload our fine-tuned model to 

Hugging Face (https://huggingface.co/). This requires being logged in to an account. 

If you don’t have an account, you can create it and store your API key (Settings | Access 

Tokens | Create new token) in the .env file:

HF_TOKEN = YOUR_API_KEY

2. Make sure that your Comet ML API key is also in the .env file:

COMET_API_KEY = YOUR_API_KEY

3. Import all the necessary packages:

import os

import torch

from trl import SFTTrainer

from datasets import load_dataset, concatenate_datasets

from transformers import TrainingArguments, TextStreamerfrom unsloth 
import FastLanguageModel, is_bfloat16_supported

4. Let’s now load the model to fine-tune and its corresponding tokenizer. We use Unsloth’s 

FastLaguageModel class with the .from_pretrained() method. In addition to the mod-

el name, we need to specify the max sequence length (2,048 in this example). Finally, 

the load_in_4bit argument indicates if we want to use QLoRA (quantized pre-trained 

weights) or LoRA.

We’ll use LoRA in this example because of faster training and higher quality, but you can 

easily switch to QLoRA if you don’t meet the VRAM requirements.

max_seq_length = 2048

model, tokenizer = FastLanguageModel.from_pretrained(

    model_name="meta-llama/Meta-Llama-3.1-8B",

    max_seq_length=max_seq_length,

    load_in_4bit=False,

)

https://github.com/PacktPublishing/LLM-Engineering
https://github.com/unslothai/unsloth
https://huggingface.co/
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5. Now that the model is loaded, we can define our LoRA configuration. Here, we use a rank 

of 32 that is large enough to imitate the writing style and copy the knowledge from our in-

struction samples. You can increase this value to 64 or 128 if your results are underwhelm-

ing. We also set an alpha of 32, without dropout and without bias, to speed up training. 

Finally, we target every linear layer to maximize the quality of the fine-tuning process.

model = FastLanguageModel.get_peft_model(

    model,

    r=32,

    lora_alpha=32,

    lora_dropout=0,

    target_modules=["q_proj", "k_proj", "v_proj", "up_proj", "down_
proj", "o_proj", "gate_proj"],

)

6. Next, we need to prepare the data in the right format for fine-tuning. In this example, 

we don’t have a lot of samples in the llmtwin dataset (3,000 samples). This is an issue 

because the model might not correctly learn the chat template. To address this, we will 

upsample it with a high-quality general-purpose dataset called FineTome. This is a filtered 

version of arcee-ai/The-Tome using the fineweb-edu-classifier. Instead of using 

the 100,000 samples of this dataset, we will specify we only want 10,000 in the train split. 

We concatenate these two datasets to create our final set.

dataset1 = load_dataset("mlabonne/llmtwin")

dataset2 = load_dataset("mlabonne/FineTome-Alpaca-100k", 
split="train[:10000]")

dataset = concatenate_datasets([dataset1, dataset2])

7. Now, we need to format this data using a chat template. Let’s use the Alpaca template 

for convenience. This template doesn’t require additional tokens, which makes it less 

error-prone (but can slightly impact performance compared to ChatML). Here, we map 

all the instructions and answers to the Alpaca template. We manually add the end of sen-

tence (EOS) token at the end of each message to ensure that the model learns to output 

it. Without it, it will keep generating answers without ever stopping.

alpaca_template = """Below is an instruction that describes a task. 
Write a response that appropriately completes the request.

### Instruction:
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{}

### Response:

{}"""

EOS_TOKEN = tokenizer.eos_token

dataset = dataset.map(format_samples, batched=True, remove_
columns=dataset.column_names)

8. Once the dataset is ready, we can divide it into training (95%) and test (5%) sets for val-

idation during training.

dataset = dataset.train_test_split(test_size=0.05)

9. The model is now ready to be trained. The SFTTrainer() class stores all the hyperparameters 

for our training. In addition, we provide the model, tokenizer, LoRA configuration, and 

datasets. Following the recommendations from the previous section, we set a learning 

rate of 3e-4 with a linear scheduler and a maximum sequence length of 2048. We train 

this model for three epochs with a batch size of 2 and 8 gradient accumulation steps (for 

an effective batch size of 16). We also choose the adamw_8bit optimizer with a weight_

decay of 0.01. Depending on the GPU we use, it will automatically use FP16 or BF16 for 

the activations. Finally, we report our training run to Comet ML for experiment tracking.

trainer = SFTTrainer(

    model=model,

   tokenizer=tokenizer,

    train_dataset=dataset["train"],

    eval_dataset=dataset["test"],

    dataset_text_field="text",

    max_seq_length=max_seq_length,

    dataset_num_proc=2,

    packing=True,

    args=TrainingArguments(

        learning_rate=3e-4,

        lr_scheduler_type="linear",

        per_device_train_batch_size=2,

        gradient_accumulation_steps=8,

        num_train_epochs=3,

        fp16=not is_bfloat16_supported(),
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        bf16=is_bfloat16_supported(),

        logging_steps=1,

        optim="adamw_8bit",

        weight_decay=0.01,

        warmup_steps=10,

        output_dir="output",

        report_to="comet_ml",

        seed=0,

    ),

)

trainer.train()

Training this model on our concatenated dataset can take a few hours. For example, it 

takes 50 minutes on an A100 GPU.

10. Once it’s done, we can test it with a quick example. The goal is not to properly evaluate 

the fine-tuned model, but to make sure that there are no obvious errors related to the 

tokenizer or chat template.

For fast inference, we can use FastLanguageModel.for_inference() from Unsloth. We 

directly format an instruction with the Alpaca format. Note that we provide an empty 

answer to append the assistant header (### Response): at the end of the user instruction. 

This forces the model to answer the instruction instead of completing it. We also use a text 

streamer to stream the generation instead of waiting for it to be complete before printing it.

FastLanguageModel.for_inference(model)

message = alpaca_prompt.format("Write a paragraph to introduce 
supervised fine-tuning.", "")

inputs = tokenizer([message], return_tensors="pt").to("cuda")

text_streamer = TextStreamer(tokenizer)

_ = model.generate(**inputs, streamer=text_streamer, max_new_
tokens=256, use_cache=True)

11. Here is the answer provided by our model:

Supervised fine-tuning is a method used to enhance a language model 
by providing it with a curated dataset of instructions and their 
corresponding answers. This process is designed to align the model's 
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responses with human expectations, thereby improving its accuracy 
and relevance. The goal is to ensure that the model can respond 
effectively to a wide range of queries, making it a valuable tool 
for applications such as chatbots and virtual assistants.

This is correct and properly formatted with the Alpaca chat template.

12. Now that our model has been successfully fine-tuned, we can save it locally and/or push 

it to the Hugging Face Hub using the following functions.

model.save_pretrained_merged("model", tokenizer, save_
method="merged_16bit")

model.push_to_hub_merged("mlabonne/TwinLlama-3.1-8B", tokenizer, 
save_method="merged_16bit")

Congratulations on fine-tuning a base model from scratch! During training, you can access Comet 

ML to monitor your training loss, validation loss, and many other metrics. You want to make sure 

that these metrics correspond to what is expected. Figure 5.11 shows the training run correspond-

ing to the previous code in Comet ML.

Figure 5.11 – Four monitored metrics during fine-tuning in Comet ML
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In particular, three of these metrics are important to monitor:

• Training loss: It measures how well the model is performing on the task it’s being trained 

for. The loss should continuously decrease on average, indicating improving performance. 

We expect a rapid decrease at the beginning of training, followed by a long plateau. Spikes 

and continuous increases in the loss value are signs that the training is failing. In this 

case, you might want to check the quality of your data, issues with the tokenizer, and 

tune parameters like learning rate and batch size. In Figure 5.11 (loss), you can see three 

different phases corresponding to our three epochs.

• Validation loss: It measures the loss using the validation set instead of the training set; 

a well-fitted model typically shows both training and validation losses decreasing and 

eventually stabilizing, with a small gap between them. This gap should be minimal but 

is expected to exist as the model will always perform slightly better on the training data. 

If the training loss continues to decrease while the validation loss starts to increase, it’s a 

sign of overfitting. Conversely, if both curves remain flat at a relatively high loss value, it 

indicates underfitting. There are no universal “recommended ranges” for loss values, as 

these depend on the specific problem and loss function used. However, you should look for 

convergence and stability in both curves. In Figure 4.11 (eval_loss), we see a slight increase 

at step 340. This is still acceptable but might indicate that the model starts to overfit.

• Gradient norm: It represents the magnitude of the gradient vector during training. Large 

gradient norms can indicate training instability like overfitting, especially if accompanied 

by a divergence between training and validation losses. On the other hand, a stable or 

decreasing gradient norm generally means that the model is converging toward a local 

optimum. To mitigate issues associated with large gradient norms, gradient clipping can 

be employed. This technique involves setting a maximum threshold for the gradient norm, 

effectively limiting the size of parameter updates.

It is often interesting to try different learning rates and select the best model based on the minimal 

loss. Note that this is a proxy for real evaluations, which are covered in the next chapter.

Summary
This chapter covered essential aspects of LLM fine-tuning, both in theory and practice. We ex-

amined the instruction data pipeline and how to create high-quality datasets, from curation 

to augmentation. Each pipeline stage offers optimization opportunities, particularly in quality 

assessment, data generation, and enhancement. This flexible pipeline can be adapted to your use 

cases by selecting the most relevant stages and techniques. 
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We applied this framework to real-world data from Chapter 3, using an LLM to convert raw text 

into instruction-answer pairs. We then explored SFT techniques. This included an analysis of 

SFT’s advantages and limitations, methods for storing and parsing instruction datasets with chat 

templates, and an overview of three primary SFT techniques: full fine-tuning, LoRA, and QLoRA. 

We compared these methods based on their impact on memory usage, training efficiency, and 

output quality. The chapter concluded with a practical demonstration that involved fine-tuning 

a Llama 3.1 8 B model on our custom instruction dataset. This example highlighted key steps and 

implementation details for successful fine-tuning.

In the next chapter, we will use preference alignment techniques to create a new version of Twin-

Llama-3.1-8B. We will generate a new dataset with chosen and rejected answers that will help us 

calibrate the type of answers we expect from our model. We will detail many applications that 

can benefit from this framework and how to implement it.
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6
Fine-Tuning with Preference 
Alignment

Supervised Fine-Tuning (SFT) has been crucial in adapting LLMs to perform specific tasks. How-

ever, SFT struggles to capture the nuances of human preferences and the long tail of potential 

interactions that a model might encounter. This limitation has led to the development of more 

advanced techniques for aligning AI systems with human preferences, grouped under the um-

brella term preference alignment.

Preference alignment addresses the shortcomings of SFT by incorporating direct human or AI 

feedback into the training process. This method allows a more nuanced understanding of human 

preferences, especially in complex scenarios where simple supervised learning falls short. While 

numerous techniques exist for preference alignment, this chapter will primarily focus on Direct 

Preference Optimization (DPO) for simplicity and efficiency.

In this chapter, we will talk about the type of data that is required by preference alignment algo-

rithms like DPO. We will build our own dataset to modify the writing style of our model, making 

it less artificial and more authentic. We will introduce the DPO algorithm and implement it to 

align the model trained in Chapter 5.

In this chapter, we will cover the following topics:

• Understanding preference datasets

• How to create our own preference dataset

• Direct preference optimization (DPO)

• Implementing DPO in practice to align our model
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By the end of this chapter, you will be able to create your own preference datasets and align 

models with diverse techniques.

Understanding preference datasets
The principles for creating high-quality preference datasets are the same as those discussed in 

Chapter 5 for instruction datasets. We want to maximize the accuracy, diversity, and complexity 

of our samples. To achieve this, we follow the same stages, as outlined in Figure 6.1: data curation, 

deduplication, decontamination, quality evaluation, exploration, generation, and augmentation.

Figure 6.1 – Overview of the post-training data pipeline covered in this chapter

To avoid repetition, this section will focus on the main differences between instruction and pref-

erence datasets. We will introduce the structure of preference samples and the ideal size for pref-

erence datasets. Then, we will focus on the two stages that differ most from creating instruction 

datasets: data generation and evaluation.

Preference data
Preference datasets lack the standardization of instruction datasets due to varying data require-

ments across different training algorithms. Preference data comprises a collection of responses 

to a given instruction, ranked by humans or language models. This chapter focuses on DPO, so 

we will examine the specific data format required by this algorithm.

As illustrated in Table 6.1, the structure of DPO datasets is straightforward: each instruction is 

paired with one preferred answer and one rejected answer. The objective is to train the model to 

generate the preferred response rather than the rejected one.

All the code examples from this chapter can be found on GitHub at https://github.

com/PacktPublishing/LLM-Engineering.

https://github.com/PacktPublishing/LLM-Engineering
https://github.com/PacktPublishing/LLM-Engineering


Chapter 6 231

Instruction

Tell me a joke about octopuses.

Chosen answer

Why don’t octopuses play cards in casinos? 

Because they can’t count past eight.

Rejected answer

How many tickles does it take to make an 

octopus laugh? Ten tickles.

Table 6.1 – Example of sample from the mlabonne/orpo-dpo-mix-40k dataset

In preference datasets, the rejected response is as important as the chosen one. Without the 

rejected response, the dataset would be a simple instruction set. Rejected responses represent 

the behavior we aim to eliminate from the model. This provides a lot of flexibility and allows us 

to use preference datasets in many contexts. Here is a list of examples where preference datasets 

are more beneficial to use compared to using SFT alone:

• Chatbots: In conversational AI, the quality of responses often depends on subjective fac-

tors like naturalness, engagement, and contextual appropriateness. A preference dataset 

allows the model to learn these nuanced aspects by comparing better and worse responses. 

Simple SFT might not capture the subtleties of what makes one response preferable over 

another in a given context.

• Content moderation: Determining whether content is appropriate or violates guidelines 

often involves nuanced judgments. Preference datasets can help the model learn to dis-

tinguish between borderline cases by comparing examples of content that is and isn’t 

acceptable. This is more effective than binary classification through SFT, as it helps the 

model understand the reasoning behind moderation decisions.

• Summarization: The quality of a summary often depends on factors like conciseness, 

relevance, and coherence. By using preference datasets, models can learn to generate 

summaries that humans find more useful and informative. Simple SFT might result in 

summaries that are technically correct but less preferable to human readers.

• Code generation: In coding tasks, there are often multiple correct solutions, but some 

are more efficient or readable, or follow better practices than others. Preference datasets 

can help the model learn these qualitative aspects of code quality, which might not be 

captured by simple correctness-based SFT.
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• Creative writing: For tasks like story generation or poetry writing, the quality of the 

output is highly subjective and multifaceted. Preference datasets can capture human 

judgments about style, creativity, and emotional impact better than instruction datasets, 

which might focus more on technical correctness or adherence to prompts.

• Translation: While traditional metrics like BLEU scores can measure translation accu-

racy, they don’t always capture the fluency or naturalness of the translation. Preference 

datasets can help models learn to produce translations that native speakers prefer, even 

when multiple translations are technically correct.

In all these scenarios, preference datasets enable a more refined training approach. They capture 

subjective quality assessments and human preferences that extend beyond simple correctness or 

adherence to instructions. This method can produce models that generate output that is not only 

technically accurate but also better aligned with human judgment and preferences in complex, 

open-ended tasks.

Unlike instruction datasets, there are no standardized storage formats like Alpaca or ShareGPT. 

Most preference datasets follow a structure similar to that shown in Table 6.1, with columns for 

an instruction, a preferred answer, and a rejected answer. Multi-turn conversations are uncom-

mon in preference alignment. At the time of writing, major fine-tuning libraries do not support 

multi-turn conversations and typically extract only the first or last message in a conversation.

Data quantity
DPO datasets typically require fewer samples than instruction datasets to significantly impact 

model behavior. As with instruction datasets, the required sample count depends on model size 

and task complexity. Larger models are more sample-efficient and thus require less data, while 

complex tasks demand more examples to capture the desired behavior. Once again, data quality 

is crucial, and a large number of preference pairs is generally beneficial.

General-purpose alignment is used by LLM providers to improve the overall performance of the 

fine-tuned models. This requires preference datasets with millions of samples. Major players in 

the AI industry, including Nvidia and Meta, are converging on similar post-training pipelines, 

involving multiple rounds of preference alignment, and extensive use of synthetic data. This 

consensus suggests that these methods are proving to be the most effective for pushing the 

boundaries of language model capabilities.

On a smaller scale, the open-source community uses datasets ranging from 10,000 to 100,000 

samples to enhance model performance. This approach has proven effective not only in improving 

benchmark scores but also in healing networks after merging, pruning, and other modifications. 

Generally, DPO is less destructive than SFT and has a milder impact on the final model.
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On the other hand, tasks like the ones previously described require fewer preference pairs. 

Task-specific alignment focuses on improving model performance for a particular function, such 

as modifying the writing style, refusing certain instructions, and so on. These alignments can 

often be achieved with smaller datasets, ranging from 100 to 10,000 preference pairs, depending 

on the task’s complexity.

An example of an application that requires few samples is instructing the model to state that it 

wasn’t trained by OpenAI, Meta, or another LLM provider. This can be achieved using a prefer-

ence dataset, where the rejected answers are those claiming alternative origins, and the chosen 

answers are responses where the model correctly states that it was trained by you. A relatively 

small dataset of 200 to 500 pairs can be enough for this task.

Data generation and evaluation
When creating preference datasets, data generation and evaluation are closely linked. We first 

create answers and then rate them to make the final dataset. In the following, we introduce both 

steps as one process instead of two separate ones.

Generating preferences
Before making new preference data, it’s good to look at relevant open-source datasets. There are 

fewer of these compared to instruction datasets, but you can find high-quality preference data-

sets on the Hugging Face Hub. These can be used for specific tasks or to add to your own dataset. 

Well-known preference datasets include the Anthropic HH-RLHF dataset, which has human 

preferences for helpful and harmless AI responses, and the OpenAI Summarize from Human 

Feedback dataset, which focuses on article summaries.

DPO datasets can be created using various methods, each with its own trade-offs between quality, 

cost, and scalability. These methods can be tailored to specific applications and require varying 

degrees of human feedback. We divide them into four main categories:

• Human-generated, human-evaluated datasets: This method involves hiring people to 

both create responses to prompts and evaluate the quality of these responses. While this 

approach can capture nuanced human preferences and is ideal for complex tasks, it’s 

extremely resource-intensive and difficult to scale. As a result, it’s primarily used by large 

AI companies with substantial resources.

• Human-generated, LLM-evaluated datasets: This method can be useful if you have 

a lot of existing human-generated content. However, it’s rarely used in practice due to 

inefficiency, as it still requires significant human input for response generation while 

potentially missing nuanced preferences during the LLM evaluation stage.
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• LLM-generated, human-evaluated datasets: This method offers a good balance between 

quality and efficiency. LLMs generate multiple responses to prompts, and humans rank 

these responses. This approach is often preferred because humans are generally better at 

judging answers than writing them from scratch. It allows the rapid generation of diverse 

responses while still capturing human preferences effectively. However, it may not provide 

creative or unexpected responses that humans might generate.

• LLM-generated, LLM-evaluated datasets: Fully synthetic datasets, where both gener-

ation and evaluation are done by LLMs, are becoming increasingly common due to their 

scalability and cost-effectiveness. This method can produce massive datasets quickly and 

improves as LLM capabilities advance. However, it requires careful prompt engineering to 

ensure quality and diversity, and may perpetuate biases or limitations of the generating 

LLM.

In practice, human-generated datasets are expensive, difficult to scale, and not necessarily of 

the highest quality. On the other hand, human evaluation is quite valuable but can be difficult 

to scale, which is why large datasets benefit from LLM evaluation. In addition to these high-level 

considerations, the way you obtain your data and how you plan to use it also need to be considered. 

For example, applications with many users can embed a feedback mechanism to provide prefer-

ences. This can be as simple as a like and dislike score, or something more in-depth with text.

Note that evaluation is not always required and preferences can emerge naturally from the gen-

eration process. For instance, it is possible to use a high-quality model to generate preferred 

outputs and a lower-quality or intentionally flawed model to produce less preferred alternatives. 

This creates a clear distinction in the preference dataset, allowing more effective training of AI 

systems to recognize and emulate high-quality outputs. The Intel/orca_dpo_pairs dataset 

available on the Hugging Face Hub was created with this process.

Another approach is to compare model-generated outputs with human-written responses, which 

can provide insights into how well the model aligns with actual human preferences and highlight 

areas where the model may be lacking. This can be used to copy a particular style and give a more 

authentic tone to the model.

Tips for data generation
The data generation is consistent between instruction and preference datasets. Prompts should 

be designed to encourage diversity and complexity in the model’s responses. By crafting prompts 

that explicitly request different approaches or styles, we can ensure a wide range of outputs that 

capture the varied nature of human preferences. 
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For instance, when generating summaries, one might request variations such as concise sum-

maries, detailed summaries, and summaries focusing on key points. This approach not only 

produces a diverse dataset but also helps in understanding how different styles and approaches 

align with human preferences.

Introducing variability in the outputs is another crucial aspect of generating synthetic preference 

datasets. This can be achieved by manipulating the temperature settings or employing other 

sampling methods in the LLM. Higher temperature settings tend to produce more creative and 

diverse responses, while lower settings result in more focused and deterministic outputs. This 

creates a trade-off between diversity and coherence, which depends on the kind of data we want 

to generate. For example, generating code requires low creativity, thus low temperature, while 

writing articles can be high temperature.

Using multiple LLMs to generate samples can be better than using just one model. Some LLMs are 

better at specific tasks, and this approach also adds more variety. This approach is used by popular 

open-source datasets like argilla/Capybara-Preferences, combining GPT-4 with open-weight 

models. The evaluation process then selects the chosen and the rejected answers.

Evaluating preferences
Data evaluation can be performed by human raters or automated with LLMs. LLM evaluation

involves developing detailed criteria, creating a prompt that clearly communicates these guide-

lines to the LLM, and using the model to select preferred and rejected responses. While more 

scalable than human rating and allowing the consistent application of criteria, this quality of 

LLM evaluation depends directly on the model’s performance and the provided guidelines. It 

may miss subtle human preferences or cultural nuances. However, as LLMs continue to improve, 

their ability to make nuanced judgments improves as well, potentially leading to higher-quality 

datasets over time.

Implementing LLM evaluation for preference datasets can be done through absolute scoring or 

pairwise ranking. In absolute scoring, the LLM assigns a numerical score or categorical rating to 

each response based on predefined criteria. This method is straightforward but may suffer from 

inconsistency across different prompts or evaluation sessions. Pairwise ranking, on the other 

hand, involves presenting the LLM with two responses and asking it to choose the better one or 

rank them. This approach more closely mimics the format of human evaluation and can lead to 

more consistent results.
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For absolute scoring, you would create a prompt that outlines the evaluation criteria and asks 

the LLM to rate the response on a specific scale (e.g., 1-5 or poor/fair/good/excellent). The prompt 

might look like this: “Rate the following response on a scale of 1-5 based on relevance, coherence, 

and helpfulness: [INSERT RESPONSE].” For pairwise ranking, the prompt could be: “Compare the 

following two responses. Which one is better in terms of relevance, coherence, and helpfulness? 

Response A: [INSERT RESPONSE A] Response B: [INSERT RESPONSE B].”

The comparative nature of preference datasets makes pairwise ranking an ideal approach for 

evaluation. This method is generally more accurate and more closely correlated to human judg-

ment than absolute scoring. Pairwise ranking mimics the natural way humans compare options, 

making it easier for both human raters and LLMs to provide consistent and meaningful evaluations.

We can further improve the accuracy of pairwise ranking by providing a ground-truth answer 

and using chain-of-thought reasoning. This approach encourages the evaluating LLM to consider 

multiple aspects of the responses and articulate its decision-making process, leading to more 

thorough and justified evaluations. When no ground-truth answer is available, we can prompt 

the LLM to create a grading note, which is a description of the expected answer. This technique 

works particularly well in scenarios where the LLM doesn’t have extensive knowledge about a 

given topic, as it forces the model to establish clear criteria for evaluation before assessing the 

responses.

Here’s a concrete implementation of an LLM-as-a-judge prompt to perform pairwise ranking:

Instruction

You are an answer judge. Your goal is to compare answer A and answer B. I want to know 

which answer does a better job of answering the instruction in terms of relevance, accuracy, 

completeness, clarity, structure, and conciseness.

Instruction: {instruction}

Answer A: {answer_a}

Answer B: {answer_b}

Explain your reasoning step by step and output the letter of the best answer using the following 

structure:

Reasoning: (compare the two answers)

Best answer: (A or B)

Table 6.2 – Example of LLM-as-a-judge prompt for pairwise ranking with one instruction 
and two answers
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However, it’s important to note that LLM-based evaluation can be subject to several types of bias:

• Position bias: In relative scoring, LLM judges tend to favor the first answer presented. 

This bias can skew results and lead to inaccurate preferences.

• Length bias: Similar to humans, LLM judges often show a preference for longer answers, 

potentially overlooking the quality of shorter, more concise responses.

• Family bias: LLM judges may favor responses that are generated by themselves or models 

from the same family, potentially due to similarities in language patterns or knowledge 

bases.

To mitigate these biases and enhance the quality of preference datasets, several solutions can 

be implemented. One key approach is to randomize the order of answer A and answer B in each 

comparison, which can counteract position bias by ensuring that the order of presentation doesn’t 

consistently influence the evaluation. Another valuable strategy involves providing few-shot 

examples that demonstrate a balanced distribution of scores. These examples serve to calibrate 

the judge LLM’s internal scoring mechanism and can effectively address both length and family 

bias by illustrating that shorter answers or those from different model families can also be of 

high quality. Additionally, employing multiple models as a jury, rather than relying on a single 

LLM judge, can significantly improve the robustness of the evaluation process. This multi-model 

approach helps to balance out individual biases that may be present in any single model, leading 

to a more comprehensive and accurate assessment of the responses.

In the next section, we will create our own preference dataset. We will rely on the data generation 

process to naturally create chosen (human-generated) and rejected (LLM-generated) answers.

Creating our own preference dataset
Our model can currently write paragraphs about topics related to machine learning, but it doesn’t 

have the same writing style as the original authors. This is a typical use case for preference align-

ment, where we want to change the “voice” of the model to closely imitate the source data. It’s 

important to note that, experimentally, DPO tends to make models more verbose and pushes 

them to use very formal language. Therefore, the training will need to use DPO surgically to avoid 

this pitfall and instead adopt the less formal style of these blog articles.

In this section, we will create a preference dataset where the chosen answers are extracts from 

the text, while rejected answers are generated by the model. To implement it, we will modify the 

code created in Chapter 5, which was designed to generate instruction datasets.
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As seen in the previous section, preference and instruction datasets rely on the same principles. 

Instead of pairs of instructions and answers, we need triples (instruction, answer 1, answer 2). 

What’s interesting in this setting is that we have ground-truth answers in the text chunks, which 

means we don’t need complex evaluation processes like LLM judges. To make sure that these 

extracts are high-quality, we will implement two additional quality filters, based on length and 

punctuation. Figure 6.2 summarizes the end-to-end process:

Figure 6.2 – Synthetic data generation pipeline from raw text to preference dataset

We are now ready to implement the preference data generation pipeline:

1. We start by importing the necessary libraries.

import concurrent.futures

import json

import re

from typing import List, Tuple

from datasets import Dataset

from openai import OpenAI

from tqdm.auto import tqdm
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2. Instead of the InstructionAnswerSet class, we now have a PreferenceSet class. This 

class is designed to handle triples of instructions, generated answers (rejected), and ex-

tracted answers (chosen).

class PreferenceSet:

    def __init__(self, triples: List[Tuple[str, str, str]]):

        self.triples = triples

    @classmethod

    def from_json(cls, json_str: str) -> 'PreferenceSet':

        data = json.loads(json_str)

        triples = [(triple['instruction'], triple['generated_
answer'], triple['extracted_answer'])

                   for triple in data['preference_triples']]

        return cls(triples)

    def __iter__(self):

        return iter(self.triples)

3. The load_articles_from_json, clean_text, and extract_substrings functions remain 

unchanged from the original code. Let’s start with load_articles_from_json, which takes 

our JSON file (cleaned_documents.json) containing the articles as input and returns a 

Hugging Face dataset with the text and metadata (ID, platform, author ID, author full 

name, link).

def load_articles_from_json(file_path: str) -> Dataset:

    with open(file_path, "r") as file:

        data = json.load(file)

    return Dataset.from_dict(

        {

            "id": [item["id"] for item in data["artifact_data"]],

            "content": [item["content"] for item in data["artifact_
data"]],

            "platform": [item["platform"] for item in 
data["artifact_data"]],

            "author_id": [item["author_id"] for item in 
data["artifact_data"]],
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            "author_full_name": [item["author_full_name"] for item 
in data["artifact_data"]],

            "link": [item["link"] for item in data["artifact_
data"]],

        }

    )

4. The clean_text function removes non-alphanumeric characters except for apostrophes, 

periods, commas, exclamation marks, and question marks. It also replaces multiple 

whitespaces with a single space to ensure proper formatting.

def clean_text(text: str) -> str:    text = re.sub(r"[^\w\s.,!?']", 
" ", text)    text = re.sub(r"\s+", " ", text)

    return text.strip()

5. The extract_substrings function splits articles into chunks with a length between 1,000 

and 2,000 characters. To make sure that the splitting doesn’t break sentences, which could 

modify their meanings, we use a regex to only split after the end of a sentence.

def extract_substrings(dataset: Dataset, min_length: int = 1000, 
max_length: int = 2000) -> List[str]:

    extracts = []

    sentence_pattern = r"(?<!\w\.\w.)(?<![A-Z][a-z]\.)
(?<=\.|\?|\!)\s"

    for article in dataset["content"]:

        cleaned_article = clean_text(article)

        sentences = re.split(sentence_pattern, cleaned_article)

        current_chunk = ""

        for sentence in sentences:

            sentence = sentence.strip()

            if not sentence:

                continue

            if len(current_chunk) + len(sentence) <= max_length:

                current_chunk += sentence + " "

            else:

                if len(current_chunk) >= min_length:

                    extracts.append(current_chunk.strip())
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                current_chunk = sentence + " "

        if len(current_chunk) >= min_length:

            extracts.append(current_chunk.strip())

    return extracts

6. The generate_preference_triples function replaces the original generate_instruction_

answer_pairs function. The prompt is adapted from the instruction version and is de-

signed to generate triples instead of pairs. It also provides general guidance about the 

type of instructions we’re interested in, how to extract answers from articles, and how 

to style them:

def generate_preference_triples(extract: str, client: OpenAI) -> 
List[Tuple[str, str, str]]:

    prompt = f"""Based on the following extract, generate five 
instruction-answer triples. Each triple should consist of:

1. An instruction asking about a specific topic in the context.

2. A generated answer that attempts to answer the instruction based 
on the context.

3. An extracted answer that is a relevant excerpt directly from the 
given context.

Instructions must be self-contained and general, without explicitly 
mentioning a context, system, course, or extract.

Important:

- Ensure that the extracted answer is a verbatim copy from the 
context, including all punctuation and apostrophes.

- Do not add any ellipsis (...) or [...]  to indicate skipped text 
in the extracted answer.

- If the relevant text is not continuous, use two separate sentences 
from the context instead of skipping text.

Provide your response in JSON format with the following structure:

{{

    "preference_triples": [

        {{

            "instruction": "...",
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            "generated_answer": "...",

            "extracted_answer": "..."

        }},

        ...

    ]

}}

    Extract:

    {extract}

"""

7. In the same function, we use GPT-4o-mini to generate our answers using JSON mode. We 

specify in the system prompt that we want triples instead of pairs. The JSON answers are 

directly parsed by our PreferenceSet class to return the expected list of tuples.

    completion = client.chat.completions.create(

        model="gpt-4o-mini",

        messages=[

            {

                "role": "system",

                "content": "You are a helpful assistant who 
generates instruction-answer triples based on the given context. 
Each triple should include an instruction, a generated answer, and 
an extracted answer from the context. Provide your response in JSON 
format.",

            },

            {"role": "user", "content": prompt},

        ],

        response_format={"type": "json_object"},

        max_tokens=2000,

        temperature=0.7,

    )

    result = PreferenceSet.from_json(completion.choices[0].message.
content)

    return result.triples
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8. Two new filtering functions are introduced for the preference data pipeline: filter_short_

answers and filter_answer_format. These functions filter out short answers and ensure 

that answers start with an uppercase letter and end with proper punctuation. We use 

them as heuristics to filter out samples with poor quality.

def filter_short_answers(dataset: Dataset, min_length: int = 100) -> 
Dataset:

    def is_long_enough(example):

        return len(example['chosen']) >= min_length

    return dataset.filter(is_long_enough)

def filter_answer_format(dataset: Dataset) -> Dataset:

    def is_valid_format(example):

        chosen = example['chosen']

        return (len(chosen) > 0 and

                chosen[0].isupper() and

                chosen[-1] in ('.', '!', '?'))

    return dataset.filter(is_valid_format)

9. The create_preference_dataset function replaces the original create_instruction_

dataset function. This function now works with triples instead of pairs and uses different 

column names in the resulting dataset.

def create_preference_dataset(dataset: Dataset, client: OpenAI, num_
workers: int = 4) -> Dataset:

    extracts = extract_substrings(dataset)

    preference_triples = []

    with concurrent.futures.ThreadPoolExecutor(max_workers=num_
workers) as executor:

        futures = [

            executor.submit(generate_preference_triples, extract, 
client)

            for extract in extracts

        ]

        for future in tqdm(concurrent.futures.as_completed(futures), 
total=len(futures)):
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            preference_triples.extend(future.result())

    instructions, generated_answers, extracted_answers = 
zip(*preference_triples)

    return Dataset.from_dict(

        {

            "prompt": list(instructions),

            "rejected": list(generated_answers),

            "chosen": list(extracted_answers)

        }

    )

10. The main function is updated to include the new filtering steps and to use the preference 

dataset creation function:

def main(dataset_id: str) -> Dataset:

    client = OpenAI()

    # 1. Load the raw data

    raw_dataset = load_articles_from_json("cleaned_documents.json")

    print("Raw dataset:")

    print(raw_dataset.to_pandas())

    # 2. Create preference dataset

    dataset = create_preference_dataset(raw_dataset, client)

    print("Preference dataset:")

    print(dataset.to_pandas())

    # 3. Filter out samples with short answers

    dataset = filter_short_answers(dataset)

    # 4. Filter answers based on format

    dataset = filter_answer_format(dataset)

    # 5. Export

    dataset.push_to_hub(dataset_id)

    return dataset
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The create_preference_dataset() function generated 2,970 samples. This dataset is then heav-

ily filtered to only retain 1,467 samples by removing answers that are too short or not properly 

formatted (for example, answers that start with an uppercase letter or end with a period, excla-

mation mark, or question mark).

The final dataset is available on the Hugging Face Hub at the following address: https://

huggingface.co/datasets/mlabonne/llmtwin-dpo. You can see in Figure 6.3 an example that 

captures a subtle nuance in terms of writing style. Both answers are correct, but the chosen (ex-

tracted) answer sounds slightly more casual.

Figure 6.3 – Screenshot of the mlabonne/llmtwin-dpo preference dataset on the Hugging 
Face Hub

To produce this dataset, we iterated many times over the prompt to generate the data. This re-

quired some manual evaluation and experiments until we reached satisfying results. The quality 

of the prompt is fundamental in this process, which is why it is recommended to follow a similar 

process to generate your own preference datasets.

In the next section, we will introduce concepts related to Reinforcement Learning from Human 

Feedback (RLHF) and DPO. This will cover new parameters and ideas that are implemented in 

the final section of this chapter.

Preference alignment
Preference alignment regroups techniques to fine-tune models on preference data. In this section, 

we provide an overview of this field and then focus on the technique we will implement: Direct 

Preference Optimization (DPO).

https://huggingface.co/datasets/mlabonne/llmtwin-dpo
https://huggingface.co/datasets/mlabonne/llmtwin-dpo
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Reinforcement Learning from Human Feedback
Reinforcement Learning from Human Feedback (RLHF) combines reinforcement learning

(RL) with human input to align models with human preferences and values. RLHF emerged as a 

response to challenges in traditional RL methods, particularly the difficulty of specifying reward 

functions for complex tasks and the potential for misalignment between engineered rewards 

and intended objectives.

The origins of RLHF can be traced back to the field of preference-based reinforcement learning

(PbRL), which was independently introduced by Akrour et al. and Cheng et al. in 2011. PbRL aimed 

to infer objectives from qualitative feedback, such as pairwise preferences between behaviors, 

rather than relying on quantitative reward signals. This approach addressed some of the limita-

tions of conventional RL, where defining appropriate reward functions can be challenging and 

prone to reward hacking or unintended behaviors.

The term RLHF was coined later, around 2021-2022, as the approach gained prominence in the 

context of training LLMs. However, the core ideas had been developing for years prior. A seminal 

paper by Christiano et al. in 2017 demonstrated the effectiveness of learning reward models from 

human preferences and using them to train RL agents. This work showed that RLHF could match 

or exceed the performance of agents trained on hand-engineered rewards, but with significantly 

less human effort.

At its core, RLHF works by iteratively improving both a reward model and a policy:

• Reward model learning: Instead of using a pre-defined reward function, RLHF learns a 

reward model from human feedback. This is typically done by presenting humans with 

different answers and asking them to indicate which one they prefer. These preferences 

are used to train a reward model, often using a Bradley-Terry model or similar approaches 

that map preferences to underlying utility functions.

• Policy optimization: With the learned reward model, standard RL algorithms can be 

used to optimize a policy. This policy generates new behaviors that aim to maximize the 

predicted rewards from the learned model.

• Iterative improvement: As the policy improves, it generates new behaviors that can be 

evaluated by humans, leading to refinements in the reward model. This cycle continues, 

ideally resulting in a policy that aligns well with human preferences.

A key innovation in RLHF is its approach to handling the high cost of human feedback. Rather 

than requiring constant human oversight, RLHF allows for asynchronous and sparse feedback.
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The learned reward model serves as a proxy for human preferences, enabling the RL algorithm 

to train continuously without direct human input for every action.

As an example, Figure 6.4 shows a high-level view of the Proximal Policy Optimization (PPO) 

algorithm, which is one of the most popular RLHF algorithms. Here, the reward model is used to 

score the text that is generated by the trained model. This reward is regularized by an additional 

Kullback–Leibler (KL) divergence factor, ensuring that the distribution of tokens stays similar 

to the model before training (frozen model).

Figure 6.4 – High-level view of the PPO algorithm for preference alignment

While RLHF has proven effective for aligning AI systems with human preferences, it faces chal-

lenges due to its iterative nature and reliance on a separate reward model, which can be compu-

tationally expensive and potentially unstable. Despite theoretical superiority, RLHF algorithms 

have also experimentally underperformed compared to simpler approaches. One such approach 

that has gained significant attention is DPO.
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Direct Preference Optimization
Introduced by Rafailov et al. in their 2023 paper Direct Preference Optimization: Your Language 

Model is Secretly a Reward Model, DPO offers a streamlined alternative to traditional RLHF methods.

DPO’s core innovation lies in its reformulation of the preference learning problem. Unlike RLHF, 

which typically involves training a separate reward model and then using reinforcement learning 

algorithms like PPO to fine-tune the language model, DPO takes a more direct approach. 

It derives a closed-form expression for the optimal policy under the standard RLHF objective of 

maximizing expected reward subject to a KL-divergence constraint with a reference policy. This 

mathematical insight allows DPO to express the preference learning problem directly in terms of 

the policy, eliminating the need for a separate reward model or complex reinforcement learning 

algorithms.

In practical terms, DPO can be implemented as a simple binary cross-entropy loss function that 

operates directly on the language model’s output probabilities. This loss function encourages the 

model to assign higher probability to preferred responses and lower probability to non-preferred 

responses, while maintaining closeness to a reference (frozen) model. The importance of the ref-

erence model is directly controlled via a beta parameter between 0 and 1. The reference model is 

ignored when beta is equal to 0, which means that the trained model can be very different from 

the SFT one. In practice, a value of 0.1 is the most popular one, but this can be tweaked, as we’ll 

see in the next section.

The simplicity of this approach allows optimization using standard gradient descent techniques, 

without the need for sampling from the model during training or implementing complex RL 

algorithms. Figure 6.5 shows a high-level view of the DPO algorithm, greatly simplifying the 

training process compared to Figure 6.4.
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Figure 6.5 – High-level view of the DPO algorithm for preference alignment

DPO has several advantages over traditional RLHF methods. As previously mentioned, it signifi-

cantly simplifies the preference learning pipeline, reducing the engineering complexity associated 

with RLHF methods. By eliminating the need for a separate reward model and RL algorithms, DPO 

is more computationally efficient than traditional RLHF approaches. Particularly when trained 

with adapters (LoRA, QLoRA), the frozen and trained models don’t have to be separated. Indeed, 

since we’re only training adapters, the trained model is not modified. This allows us to only load 

one model instead of two, which saves additional VRAM.

Despite its simplicity, DPO often matches the performance of more complex RLHF methods. It 

also tends to be more stable during training and less sensitive to hyperparameters. The simpli-

fied approach makes DPO easier to implement and scale, particularly for small teams without 

extensive RL knowledge.
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While RLHF allows iterative improvement through multiple training rounds and can dynamically 

adapt to new preferences, DPO offers a more straightforward path to achieving similar results. 

The choice between DPO and PPO-based RLHF often comes down to a trade-off between ease of 

implementation and potential peak performance. For large-scale training runs with millions of 

preference samples, PPO-inspired methods still have a higher performance ceiling. However, for 

most applications, DPO provides the majority of the performance benefits at a lower computa-

tional and engineering cost.

Both RLHF and DPO benefit significantly from the integration of synthetic data. As LLMs become 

more capable, they can generate data that surpasses human-created content in quality and di-

versity. This enables a virtuous cycle where better models produce better training data, which 

in turn leads to further model improvements. The iterative nature of both approaches allows 

multiple rounds of model refinement, each focusing on different aspects of model performance 

and gradually enhancing capabilities across various domains.

Despite its advantages, DPO is not without drawbacks. Like RLHF, DPO still requires paired pref-

erence data, which can be expensive and time-consuming to collect. DPO lacks some of the the-

oretical guarantees associated with reinforcement learning approaches. There may be scenarios 

where the added flexibility of RLHF is beneficial, particularly for complex tasks or environments.

Nonetheless, DPO is ideal in most cases, including our twin LLM example. In the next section, 

we will implement it using Unsloth.

Implementing DPO
In this section, we will DPO fine-tune the TwinLlama-3�1-8B model we created in Chapter 5. For 

ease of use and to maximize performance, we will again use the Unsloth library for our DPO im-

plementation. Depending on the available VRAM, you can choose between LoRA (higher quality, 

speed, and VRAM usage) and QLoRA (lower quality, speed, and VRAM usage). This technique, 

along with other preference alignment algorithms, is also available in TRL and Axolotl.

This example can be seen as an advanced application of DPO. Indeed, our objective of imitating 

a writing style conflicts with the natural tendency of DPO to encourage formal language. This is 

partly due to the fact that chosen answers are often more formal than rejected ones. In practice, 

this will force us to do light fine-tuning, with a low learning rate and number of epochs. To find 

the best hyperparameters, we trained over 20 models and compared their outputs on a set of 

questions, including “Write a paragraph to introduce supervised fine-tuning.” This allowed us 

to select the model and parameters that worked best for this task.
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The dependencies are the same as those in Chapter 5 with SFT and can be found in the book’s 

GitHub repository (https://github.com/PacktPublishing/LLM-Engineering) or in Unsloth’s 

repo (https://github.com/unslothai/unsloth):

1. First, we want to access a gated model and (optionally) upload our fine-tuned model to 

Hugging Face (https://huggingface.co/). This requires us to log in to an account. If 

you don’t have an account, you can create one and store your API key (Settings | Access 

Tokens | Create new token) in the .env file:

HF_TOKEN = YOUR_API_KEY

2. Make sure that your Comet ML API key is also in the .env file. Otherwise, the code will 

crash and raise an error when training starts.

COMET_API_KEY = YOUR_API_KEY

3. Before we import all the necessary packages, we want to apply a patch for the DPOTrainer

class from TRL. This fixes the DPO logs in notebook environments.

from unsloth import PatchDPOTrainer

PatchDPOTrainer()

4. We can now import the other libraries. The main difference between DPO and SFT is the 

import of DPOConfig and DPOTrainer from TRL, which are specific to DPO training.

import os

import torch

from datasets import load_dataset

from transformers import TrainingArguments, TextStreamer

from unsloth import FastLanguageModel, is_bfloat16_supportedfrom trl 
import DPOConfig, DPOTrainer

5. This step loads our fine-tuned model from Chapter 5. We use the same configuration with 

a max_seq_length of 2048. You can activate QLoRA by setting load_in_4bit to True. In 

the following, we will perform LoRA DPO fine-tuning for increased speed and quality.

max_seq_length = 2048

model, tokenizer = FastLanguageModel.from_pretrained(

    model_name="mlabonne/TwinLlama-3.1-8B",

    max_seq_length=max_seq_length,

    load_in_4bit=False,

)

https://github.com/PacktPublishing/LLM-Engineering
https://github.com/unslothai/unsloth
https://huggingface.co/
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6. Let’s now prepare the model for PEFT with the LoRA configuration. We increase the rank 

(r) and lora_alpha from 32 (as it was in Chapter 5) to 64. This will allow more expressive 

fine-tuning. We keep a dropout of 0 for speed and we target every linear module as per 

usual.

model = FastLanguageModel.get_peft_model(

    model,

    r=32,

    lora_alpha=32,

    lora_dropout=0,

    target_modules=["q_proj", "k_proj", "v_proj", "up_proj", "down_
proj", "o_proj", "gate_proj"],

)

7. We load the llmtwin-dpo dataset (training split), which contains our prompts, chosen, 

and rejected answers.

dataset = load_dataset("mlabonne/llmtwin-dpo", split="train")

8. The data preparation is significantly different from the SFT example in Chapter 5. Here, we 

have triples with a prompt, a chosen answer, and a rejected answer. In the format_samples

function, we apply the Alpaca chat template to each individual message. Note that the 

instruction is the only one that requires the chat format: chosen and rejected answers 

only need to be concatenated with the end of sentence (EOS) token. Finally, we create a 

train/test split with a 95%/5% ratio.

alpaca_template = """Below is an instruction that describes a task. 
Write a response that appropriately completes the request.

### Instruction:

{}

### Response:

"""

EOS_TOKEN = tokenizer.eos_token

def format_samples(example):

    example["prompt"] = alpaca_template.format(example["prompt"])

    example["chosen"] = example['chosen'] + EOS_TOKEN
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    example["rejected"] = example['rejected'] + EOS_TOKEN

    return {"prompt": example["prompt"], "chosen": 
example["chosen"], "rejected": example["rejected"]}

dataset = dataset.map(format_samples)

dataset = dataset.train_test_split(test_size=0.05)

9. The model and data are now ready, so we can start fine-tuning. Compared to SFT, there 

are a few new parameters, like ref_model and beta. Since we’re using LoRA (or QLoRA), 

we don’t directly train the model but instead the adapters. This means we can use the 

original model (without adapters) as a reference, saving a lot of VRAM. The beta param-

eter controls the importance of the reference model. A standard value of 0.1 works well 

in most scenarios, but we decided to increase it to 0.5 based on our experiments. This is 

due to the fact that the trained model used formal language with lower values. Having it 

closer to the reference model helps to fix this issue.

The learning rate is also lower (from 3e-4 for SFT to 2e-6 here). We train for 1 epoch instead 

of 3, and the max_seq_length parameter is now broken down into two new parameters: 

max_prompt_length (prompt only) and max_length (prompt and answer). Note that we 

also replaced the TrainingArguments class with DPOConfig.

trainer = DPOTrainer(

    model=model,

    ref_model=None,

    tokenizer=tokenizer,

    beta=0.5,

    train_dataset=dataset["train"],

    eval_dataset=dataset["test"],

    max_length=max_seq_length//2,

    max_prompt_length=max_seq_length//2,

    args=DPOConfig(

        learning_rate=2e-6,

        lr_scheduler_type="linear",

        per_device_train_batch_size=2,

        per_device_eval_batch_size=2,

        gradient_accumulation_steps=8,

        num_train_epochs=1,
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        fp16=not is_bfloat16_supported(),

        bf16=is_bfloat16_supported(),

        optim="adamw_8bit",

        weight_decay=0.01,

        warmup_steps=10,

        output_dir="output",

        eval_strategy="steps",

        eval_steps=0.2,

        logging_steps=1,

        report_to="comet_ml",

        seed=0,

    ),

)

trainer.train()

10. Once the model is trained, we can run it for a quick sanity check. This step is similar to the 

SFT example. It prepares the model for inference and generates a response to a prompt.

FastLanguageModel.for_inference(model)

message = alpaca_template.format("Write a paragraph to introduce 
supervised fine-tuning.", "")

inputs = tokenizer([message], return_tensors="pt").to("cuda")

text_streamer = TextStreamer(tokenizer)

_ = model.generate(**inputs, streamer=text_streamer, max_new_
tokens=256, use_cache=True)

11. The trained DPO model returns the following response:

Supervised fine-tuning is a method used to enhance the performance 
of pre-trained language models by utilizing labeled data. This 
technique involves taking a pre-trained model and refining it on 
a specific task, such as content creation or customer service. By 
providing the model with relevant data and guidance, it can learn to 
generate outputs that align more closely with the desired outcomes. 
This approach allows for the creation of more specialized models 
that can tackle complex tasks with greater accuracy and efficiency.
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We can compare it with the answer provided by the SFT model:

Supervised fine-tuning is a method used to enhance a language model 
by providing it with a curated dataset of instructions and their 
corresponding answers. This process is designed to align the model's 
responses with human expectations, thereby improving its accuracy 
and relevance. The goal is to ensure that the model can respond 
effectively to a wide range of queries, making it a valuable tool 
for applications such as chatbots and virtual assistants.

The DPO model provides an answer that is both more accurate and closer to the desired 

writing style. It correctly identifies pre-training language models as source models for 

SFT. It also mentions domain or task-specific finetunes instead of alignment with “human 

expectations,” which is closer to the preference alignment stage. The answer is also less 

formal and something we would use in a blog post.

12. Finally, the last step consists of saving the trained model locally and pushing it to the 

Hugging Face Hub.

model.save_pretrained_merged("model", tokenizer, save_
method="merged_16bit")

Congratulations! We have trained and exported our DPO model. It is now available on the Hug-

ging Face Hub at https://huggingface.co/mlabonne/TwinLlama-3.1-8B-DPO. Compared to 

SFT, DPO has a few additional metrics that need to be tracked during training. Figure 6.6 shows 

the Comet ML dashboard with the main metrics. You can publicly access it using the following 

URL: https://www.comet.com/mlabonne/llm-twin-training/

https://huggingface.co/mlabonne/TwinLlama-3.1-8B-DPO
https://www.comet.com/mlabonne/llm-twin-training/
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Figure 6.6 – Experiment tracking in Comet ML with DPO metrics

Let’s review these metrics:

• Training loss: We still want the loss to continuously decrease on average. Note that it can 

rapidly fall to zero, meaning that the model is no longer learning anything. This behavior 

doesn’t necessarily lead to overfitting or bad models but needs to be monitored closely.

• Validation loss: The same thing can be said about the validation loss. We expect a small 

gap compared to the training loss.

• Gradient norm: We expect small gradient norms with few spikes.

• Rewards: We have two different rewards: chosen and rejected. They correspond to the 

mean difference between the log probabilities output by the trained and reference mod-

els. Over time, we expect the model to choose the chosen answers and reject the rejected 

answers, which means that the gap between them should increase. This difference is 

directly tracked by the margins metric, defined as the difference between chosen and 

rejected rewards. A well-trained model’s margin will quickly increase and then plateau.
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• Accuracies: This metric represents the percentage of times the model correctly identifies 

the chosen answers. We want this accuracy to gradually increase during training, but it 

doesn’t need to reach 100%. An accuracy of 100%, especially if it’s achieved quickly, in-

dicates that the preference dataset might be too easy for the model. While the LLM can 

still learn from such a dataset, it might be beneficial to add more challenging examples.

In general, DPO is slightly harder to monitor and debug than SFT because it’s a more complex pro-

cess, involving a reference model. However, it’s also significantly easier to use than PPO and other 

RLHF algorithms. As long as you have a high-quality preference dataset and a strong fine-tuned 

model, you can experiment with different ranks, beta parameters, learning rates, and number of 

epochs to see which experiment best captures your preferences.

While this is not the purpose of this chapter, it is possible to automate the evaluation of models 

designed to imitate a writing style. A possible solution consists of comparing the distribution of 

words in the text generated by different models (SFT and DPO) with our ground-truth dataset. 

In this example, we expect the SFT model to output a lot of words that are overrepresented in 

GPT-4o-mini (like “delve into”). The distribution output by our DPO model should be a lot closer 

to the chosen answers.

Summary
This chapter explored preference alignment techniques for improving LLMs. It introduced the 

concept of preference datasets, explaining their structure and importance in capturing nuanced 

human preferences. We implemented our own custom preference data generation pipeline by 

comparing original and AI-generated text from real articles. This pipeline can be reused and 

customized based on your use case.

We also provided an overview of the evolution of RLHF, leading to the introduction of DPO as a 

simpler and more efficient alternative. Finally, we implemented DPO using the Unsloth library to 

fine-tune our TwinLlama-3.1-8B model from Chapter 5. Our step-by-step tutorial gave practical 

instructions for training the model, as well as highlighting key differences from SFT. The final 

model is available on the Hugging Face Hub.

In the next chapter, we will explore the crucial topic of LLM evaluation, addressing the challenges 

and current approaches in assessing LLM performance. We’ll cover the creation of domain-specific 

evaluation sets, examine why evaluation remains a persistent problem in the field, and introduce 

the concept of using larger models to evaluate smaller ones (LLM-as-a-judge). The chapter will 

conclude with a comprehensive evaluation pipeline, providing a structured framework for con-

sistent and effective LLM evaluation.
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7
Evaluating LLMs

LLM evaluation is a crucial process used to assess the performance and capabilities of LLM models. 

It can take multiple forms, such as multiple-choice question answering, open-ended instructions, 

and feedback from real users. Currently, there is no unified approach to measuring a model’s 

performance but there are patterns and recipes that we can adapt to specific use cases.

While general-purpose evaluations are the most popular ones, with benchmarks like Massive 

Multi-Task Language Understanding (MMLU) or LMSYS Chatbot Arena, domain- and task-spe-

cific models benefit from more narrow approaches. This is particularly true when dealing with 

entire LLM systems (as opposed to models), often centered around a retrieval-augmented gen-

eration (RAG) pipeline. In these scenarios, we need to expand our evaluation framework to en-

compass the entire system, including new modules like retrievers and post-processors.

In this chapter, we will cover the following topics:

• Model evaluation

• RAG evaluation

• Evaluating TwinLlama-3.1-8B

By the end of this chapter, you will know the most popular LLM evaluations and how to evaluate 

models and RAG systems using different techniques.

Model evaluation
In model evaluation, the objective is to assess the capabilities of a single model without any 

prompt engineering, RAG pipeline, and so on. 
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This evaluation is essential for several reasons, such as selecting the most relevant LLM or making 

sure that the fine-tuning process actually improved the model. In this section, we will compare 

ML and LLM evaluation to understand the main differences between these two fields. We will 

then explore benchmarks for general-purpose, domain-specific, and task-specific models.

Comparing ML and LLM evaluation
ML evaluation is centered on assessing the performance of models designed for tasks like pre-

diction, classification, and regression. Unlike the evaluation of LLMs, which often focuses on 

how well a model understands and generates language, ML evaluation is more concerned with 

how accurately and efficiently a model can process structured data to produce specific outcomes.

This difference comes from the nature of the tasks these models handle. ML models are gener-

ally designed for narrowly defined problems, such as predicting stock prices or detecting out-

liers, which often involve numerical or categorical data, making the evaluation process more 

straightforward. On the other hand, LLMs are tasked with interpreting and generating language, 

which adds a layer of subjectivity to the evaluation process. Instead of relying solely on numerical 

benchmarks, LLM evaluation requires a more nuanced approach and often incorporates qualita-

tive assessments, examining how well the model produces coherent, relevant, and contextually 

accurate responses in natural language.

In particular, we can see three key differences in how these models work, which impact the 

evaluation process:

• Numerical metrics: Evaluating ML models typically involves measuring objective per-

formance metrics, such as accuracy, precision, recall, or mean squared error, depending 

on the type of task at hand. This is less clear with LLMs, which can handle multiple tasks 

(hence, multiple evaluations) and can rarely rely on the same numerical metrics.

• Feature engineering: In traditional ML, a critical part of the process involves manually 

selecting and transforming relevant data features before training the model. Evaluating 

the success of this feature engineering often becomes part of the broader model evalua-

tion. LLMs, however, are designed to handle raw text data directly, reducing the need for 

manual feature engineering.

• Interpretability: With ML models, it is easier to interpret why a model made certain pre-

dictions or classifications, and this interpretability can be a core part of their evaluation. 

This direct interpretation is not possible with LLMs. However, requesting explanations 

during the generation process can give insights into the model’s decision-making process.
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In the following section, we will see a more fine-grained exploration of different types of LLMs. 

While evaluating general-purpose models is fairly disconnected from ML evaluation, task-specific 

LLMs are more closely aligned with traditional ML.

General-purpose LLM evaluations
General-purpose evaluations refer to metrics dedicated to base and general-purpose fine-tuned 

models. They cover a breadth of capabilities that are correlated with knowledge and usefulness 

without focusing on specific tasks or domains. This allows developers to get an overview of 

these capabilities, compare themselves with competitors, and identify strengths and weaknesses. 

Based on these results, it is possible to tweak the dataset and hyperparameters, or even modify 

the architecture.

We can broadly categorize general-purpose evaluations in three phases: during pre-training, after 

pre-training, and after fine-tuning.

During pre-training, we closely monitor how the model learns, as shown at the end of Chapter 

5. The most straightforward metrics are low-level and correspond to how models are trained:

• Training loss: Based on the cross-entropy loss, measures the difference between the 

model’s predicted probability distribution and the true distribution of the next token

• Validation loss: Calculates the same loss as training loss, but on a held-out validation 

set to assess generalization

• Perplexity: Exponential of the cross-entropy loss, representing how “surprised” the model 

is by the data (lower is better)

• Gradient norm: Monitors the magnitude of gradients during training to detect potential 

instabilities or vanishing/exploding gradients

It’s also possible to include benchmarks like HellaSwag (common sense reasoning) during this 

stage but there’s a risk of overfitting these evaluations.

After pre-training, it is common to use a suite of evaluations to evaluate the base model. This 

suite can include internal and public benchmarks. Here’s a non-exhaustive list of common public 

pre-training evaluations:

• MMLU (knowledge): Tests models on multiple-choice questions across 57 subjects, from 

elementary to professional levels

• HellaSwag (reasoning): Challenges models to complete a given situation with the most 

plausible ending from multiple choices
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• ARC-C (reasoning): Evaluates models on grade-school-level multiple-choice science 

questions requiring causal reasoning

• Winogrande (reasoning): Assesses common sense reasoning through pronoun resolution 

in carefully crafted sentences

• PIQA (reasoning): Measures physical common sense understanding through questions 

about everyday physical interactions

Many of these datasets are also used to evaluate general-purpose fine-tuned models. In this 

case, we focus on the difference in a given score between the base and the fine-tuned model. For 

example, bad fine-tuning can degrade the knowledge of the model, measured by MMLU. On the 

contrary, a good one might instill even more knowledge and increase the MMLU score.

This can also help identify any contamination issues, where the model might have been fine-

tuned on data that is too close to a test set. For instance, improving the MMLU score of a base 

model by 10 points during the fine-tuning phase is unlikely. This is a sign that the instruction 

data might be contaminated.

In addition to these pre-trained evaluations, fine-tuned models also have their own benchmarks. 

Here, we use the term “fine-tuned model” to designate a model that has been trained with su-

pervised fine-tuning (SFT) and preference alignment. These benchmarks target capabilities 

connected to the ability of fine-tuned models to understand and answer questions. In particular, 

they test instruction-following, multi-turn conversation, and agentic skills:

• IFEval (instruction following): Assesses a model’s ability to follow instructions with 

particular constraints, like not outputting any commas in your answer

• Chatbot Arena (conversation): A framework where humans vote for the best answer to 

an instruction, comparing two models in head-to-head conversations

• AlpacaEval (instruction following): Automatic evaluation for fine-tuned models that is 

highly correlated with Chatbot Arena

• MT-Bench (conversation): Evaluates models on multi-turn conversations, testing their 

ability to maintain context and provide coherent responses

• GAIA (agentic): Tests a wide range of abilities like tool use and web browsing, in a multi-

step fashion

Understanding how these evaluations are designed and used is important to choose the best LLM 

for your application. For example, if you want to fine-tune a model, you want the best base model 

in terms of knowledge and reasoning for a given size. This allows you to compare the capabilities 

of different LLMs and pick the one that will offer the strongest foundation for your fine-tuning.
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Even if you don’t want to fine-tune a model, benchmarks like Chatbot Arena or IFEval are a good 

way to compare different instruct models. For instance, you want great conversational abilities 

if you’re building a chatbot. However, this is not necessary if your end goal is something like 

information extraction from unstructured documents. In this case, you will benefit more from 

excellent instruction-following skills to understand and execute tasks.

While these benchmarks are popular and useful, they also suffer from inherent flaws. For exam-

ple, public benchmarks can be gamed by training models on test data or samples that are very 

similar to benchmark datasets. Even human evaluation is not perfect and is often biased toward 

long and confident answers, especially when they’re nicely formatted (e.g., using Markdown). 

On the other hand, private test sets have not been scrutinized as much as public ones and might 

have their own issues and biases.

This means that benchmarks are not a single source of truth but should be used as signals. Once 

multiple evaluations provide a similar answer, you can raise your confidence level about the real 

capabilities of a model.

Domain-specific LLM evaluations
Domain-specific LLMs don’t have the same scope as general-purpose models. This is helpful to 

target more fine-grained capabilities with more depth than the previous benchmarks.

Within the category, the choice of benchmarks entirely depends on the domain in question. For 

common applications like a language-specific model or a code model, it is recommended to 

search for relevant evaluations and even benchmark suites. These suites encompass different 

benchmarks and are designed to be reproducible. By targeting different aspects of a domain, they 

often capture domain performance more accurately.

To illustrate this, here is a list of domain-specific evaluations with leaderboards on the Hugging 

Face Hub:

• Open Medical-LLM Leaderboard: Evaluates the performance of LLMs in medical ques-

tion-answering tasks. It regroups 9 metrics, with 1,273 questions from the US medical li-

cense exams (MedQA), 500 questions from PubMed articles (PubMedQA), 4,183 questions 

from Indian medical entrance exams (MedMCQA), and 1,089 questions from 6 sub-cate-

gories of MMLU (clinical knowledge, medical genetics, anatomy, professional medicine, 

college biology, and college medicine).
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• BigCodeBench Leaderboard: Evaluates the performance of code LLMs, featuring two main 

categories: BigCodeBench-Complete for code completion based on structured docstrings, 

and BigCodeBench-Instruct for code generation from natural language instructions. Mod-

els are ranked by their Pass@1 scores using greedy decoding, with an additional Elo rating 

for the Complete variant. It covers a wide range of programming scenarios that test LLMs’ 

compositional reasoning and instruction-following capabilities.

• Hallucinations Leaderboard: Evaluates LLMs’ tendency to produce false or unsupported 

information across 16 diverse tasks spanning 5 categories. These include Question Answer-

ing (with datasets like NQ Open, TruthfulQA, and SQuADv2), Reading Comprehension (using 

TriviaQA and RACE), Summarization (employing HaluEval Summ, XSum, and CNN/DM), 

Dialogue (featuring HaluEval Dial and FaithDial), and Fact Checking (utilizing MemoTrap, 

SelfCheckGPT, FEVER, and TrueFalse). The leaderboard also assesses instruction-follow-

ing ability using IFEval.

• Enterprise Scenarios Leaderboard: Evaluates the performance of LLMs on six real-world 

enterprise use cases, covering diverse tasks relevant to business applications. The bench-

marks include FinanceBench (100 financial questions with retrieved context), Legal Con-

fidentiality (100 prompts from LegalBench for legal reasoning), Writing Prompts (cre-

ative writing evaluation), Customer Support Dialogue (relevance in customer service 

interactions), Toxic Prompts (safety assessment for harmful content generation), and 

Enterprise PII (business safety for sensitive information protection). Some test sets are 

closed-source to prevent gaming of the leaderboard. The evaluation focuses on specific 

capabilities such as answer accuracy, legal reasoning, creative writing, contextual rele-

vance, and safety measures, providing a comprehensive assessment of LLMs’ suitability 

for enterprise environments.

Leaderboards can have different approaches based on their domain. For example, BigCodeBench 

is significantly different from others because it relies on only two metrics that sufficiently cap-

ture the entire domain. On the other hand, the Hallucinations Leaderboard regroups 16 metrics, 

including many general-purpose evaluations. It shows that in addition to custom benchmarks, 

reusing general-purpose ones can complete your own suite.

In particular, language-specific LLMs often reuse translated versions of general-purpose bench-

marks. This can be completed with original evaluations in the native language. While some of 

these benchmarks use machine translation, it is better to rely on human-translated evaluations 

to improve their quality. We selected the following three task-specific leaderboards and their 

respective evaluation suites to give you an idea of how to build your own:
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• OpenKo-LLM Leaderboard: Evaluates the performance of Korean LLMs using nine metrics. 

These metrics are a combination of general-purpose benchmarks translated into Korean 

(GPQA, Winogrande, GSM8K, EQ-Bench, and IFEval) and custom evaluations (Knowledge, 

Social Value, Harmlessness, and Helpfulness).

• Open Portuguese LLM Leaderboard: Evaluates the performance of Portuguese language 

LLMs using nine diverse benchmarks. These benchmarks include educational assessments 

(ENEM with 1,430 questions, and BLUEX with 724 questions from university entrance ex-

ams), professional exams (OAB Exams with over 2,000 questions), language understand-

ing tasks (ASSIN2 RTE and STS, FAQUAD NLI), and social media content analysis (HateBR 

with 7,000 Instagram comments, PT Hate Speech with 5,668 tweets, and tweetSentBR).

• Open Arabic LLM Leaderboard: Evaluates the performance of Arabic language LLMs 

using a comprehensive set of benchmarks, including both native Arabic tasks and trans-

lated datasets. The leaderboard features two native Arabic benchmarks: AlGhafa and 

Arabic-Culture-Value-Alignment. Additionally, it incorporates 12 translated benchmarks 

covering various domains, such as MMLU, ARC-Challenge, HellaSwag, and PIQA.

Both general-purpose and domain-specific evaluations are designed with three main principles. 

First, they should be complex and challenge models to distinguish good and bad outputs. Second, 

they should be diverse and cover as many topics and scenarios as possible. When one benchmark 

is not enough, additional ones can create a stronger suite. Finally, they should be practical and 

easy to run. This is more connected to evaluation libraries, which can be more or less complex to 

work with. We recommend lm-evaluation-harness (github.com/EleutherAI/lm-evaluation-

harness) from Eleuther AI and lighteval (github.com/huggingface/lighteval) from Hugging 

Face to run your benchmarks.

Task-specific LLM evaluations
While general-purpose and domain-specific evaluations indicate strong base or instruct models, 

they cannot provide insights into how well these models work for a given task. This requires 

benchmarks specifically designed for this purpose, measuring downstream performance.

Because of their narrow focus, task-specific LLMs can rarely rely on pre-existing evaluation data-

sets. This can be advantageous because their outputs also tend to be more structured and easier 

to evaluate using traditional ML metrics. For example, a summarization task can leverage the 

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metric, which measures the over-

lap between the generated text and reference text using n-grams.

github.com/EleutherAI/lm-evaluation-harness
github.com/EleutherAI/lm-evaluation-harness
github.com/huggingface/lighteval
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Likewise, classification tasks also benefit from it and use the following classic metrics, among 

others:

• Accuracy: Accuracy refers to the proportion of correctly predicted instances compared 

to the total instances. It’s particularly useful for tasks with categorical outputs or where 

there is a clear distinction between right and wrong answers, such as named entity rec-

ognition (NER).

• Precision: The ratio of true positive predictions to the total positive predictions made 

by the model.

• Recall: The ratio of true positive predictions to the total actual positive instances.

• F1 Score: The harmonic mean of precision and recall, used to balance both metrics. These 

are particularly useful in tasks such as classification or entity extraction.

When the task cannot be directly mapped to a traditional ML task, it is possible to create a custom 

benchmark. This benchmark can be inspired by general-purpose and domain-specific evaluation 

datasets. A common and successful pattern is the use of multiple-choice question answering. In 

this framework, the instruction consists of a question with several options. See the following 

example with a question from the MMLU dataset (abstract algebra):

Instruction

Find the degree for the given field extension Q(sqrt(2), sqrt(3)) over Q.

A. 0

B. 4

C. 2

D. 6

Output

B

Table 7.1: Example from the MMLU dataset
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There are two main ways of evaluating models with this scheme—text generation and log-like-

lihood evaluations:

• The first approach involves having the model generate text responses and comparing 

those to predefined answer choices. For example, the model generates a letter (A, B, C, or 

D) as its answer, which is then checked against the correct answer. This method tests the 

model’s ability to produce coherent and accurate responses in a format similar to how it 

would be used in real-world applications.

• Evaluation using probabilities, on the other hand, looks at the model’s predicted probabil-

ities for different answer options without requiring text generation. For MMLU, lm-eval-

uation-harness compares the probabilities for the full text of each answer choice. This 

approach allows for a more nuanced assessment of the model’s understanding, as it can 

capture the relative confidence the model has in different options, even if it wouldn’t 

necessarily generate the exact correct answer text.

For simplicity, we recommend the text-generation version of the evaluation that mimics human 

test-taking. It is easier to implement, and generally more discriminative, as low-quality models 

tend to overperform on probability-based evaluations. You can adapt this technique to quiz your 

models about a particular task, and even expand it to specific domains.

Conversely, if the task is too open-ended, traditional ML metrics and multiple-choice question 

answering might not be relevant. In this scenario, the LLM-as-a-judge technique introduced in 

Chapter 5 can be used to evaluate the quality of the answers. If you have ground-truth answers, 

providing them as additional context improves the accuracy of the evaluation. Otherwise, defining 

different dimensions (such as relevance or toxicity, depending on your task) can also ground the 

evaluation in more interpretable categories.

It is recommended to use large models for evaluation and to iteratively refine your prompt. In 

this process, the explanations outputted by the model are important for understanding errors in 

its reasoning and fixing them through additional prompt engineering. 
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In order to easily parse answers, one can specify a structure in the instruction or use some kind 

of structured generation (like Outlines or OpenAI’s JSON mode). Here is an example of an in-

struction with a structure:

You are an evaluator who assesses the quality of an answer to an 
instruction.

Your goal is to provide a score that represents how well the answer 
addresses the instruction.

You will use a scale of 1 to 4, where each number represents the following:

1. The answer is not relevant to the instruction.

2. The answer is relevant but not helpful.

3. The answer is relevant and helpful but could be more detailed.

4. The answer is relevant, helpful, and detailed.

Please provide your evaluation as follows:

##Evaluation##

Explanation: (analyze the relevant, helpfulness, and complexity of the 
answer)

Total rating: (final score as a number between 1 and 4)

Instruction:

{instruction}

Answer:

{answer}

##Evaluation##

Explanation: 

Table 7.2: Example of general-purpose LLM-as-a-judge prompt for answer evaluation

Naturally, you can tweak the scale, add a ground-truth answer to this prompt, and customize it 

for your own use cases.
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However, judge LLMs can exhibit biases favoring assertive or verbose responses, potentially 

overrating answers that sound more confident but are less accurate. They may also lack domain 

expertise for specialized topics, leading to misjudgments. Consistency is also a concern, as LLMs 

might score similar responses differently. Additionally, they could have implicit preferences for 

certain writing styles unrelated to actual answer quality. To mitigate these issues, it’s possible to 

combine LLM evaluations with other metrics, use multiple judges, and carefully design prompts 

to address biases.

Once a model has been properly evaluated and works as intended, it might be included within a 

broader system. In the next section, we will see how systems change the evaluation framework.

RAG evaluation
While traditional LLM evaluation focuses on the model’s inherent capabilities, RAG evaluation 

requires a more comprehensive approach that considers both the model’s generative abilities 

and its interaction with external information sources.

RAG systems combine the strengths of LLMs with information retrieval mechanisms, allowing 

them to generate responses that are not only coherent and contextually appropriate but also 

grounded in up-to-date, externally sourced information. This makes RAG particularly valuable 

in fields where current and accurate information is crucial, such as news reporting, research, and 

customer support.

The evaluation of RAG systems goes beyond assessing a standalone LLM. It requires examining 

the entire system’s performance, including:

• Retrieval accuracy: How well does the system fetch relevant information?

• Integration quality: How effectively is the retrieved information incorporated into the 

generated response?

• Factuality and relevance: Does the final output address the query appropriately while 

seamlessly blending retrieved and generated content?

Key metrics for RAG evaluation include retrieval precision and recall, which measure the accura-

cy and comprehensiveness of the retrieved information. Additionally, the quality of integration 

between retrieved data and generated text is crucial, as is the overall factuality and coherence 

of the output.
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To illustrate how these metrics are applied in practice, consider a RAG system designed for a 

customer support chatbot in an e-commerce setting. In this scenario, the user asks “What’s your 

return policy for laptops purchased during the holiday sale?” The RAG pipeline finds relevant 

documents on the electronics return policy and documents on holiday sale terms. This additional 

context is appended at the end of the question, and the model uses it to respond:

For laptops purchased during our holiday sale, you have an extended return 
period of 60 days from the date of purchase. This is longer than our 
standard 30-day return policy for electronics. Please ensure the laptop is 
in its original packaging with all accessories to be eligible for a full 
refund.

Table 7.3: Example of output from a RAG pipeline designed for customer support

In this pipeline, we can evaluate if the retrieved documents correspond to what was expected 

(retrieval accuracy). We can also measure the difference between responses with and without 

additional context (integration quality). Finally, we can assess whether the output is relevant and 

grounded in the information provided by the documents (factuality and relevance).

In this section, we will cover two methods to evaluate how well RAG models incorporate external 

information into their responses.

Ragas
Retrieval-Augmented Generation Assessment (Ragas) is an open-source toolkit designed to 

provide developers with a comprehensive set of tools for RAG evaluation and optimization. It’s 

designed around the idea of metrics-driven development (MDD), a product development ap-

proach that relies on data to make well-informed decisions, involving the ongoing monitoring 

of essential metrics over time to gain valuable insights into an application’s performance. By 

embracing this methodology, Ragas enables developers to objectively assess their RAG systems, 

identify areas for improvement, and track the impact of changes over time.

One of the key capabilities of Ragas is its ability to synthetically generate diverse and complex 

test datasets. This feature addresses a significant pain point in RAG development, as manually 

creating hundreds of questions, answers, and contexts is both time-consuming and labor-inten-

sive. Instead, it uses an evolutionary approach paradigm inspired by works like Evol-Instruct to 

craft questions with varying characteristics such as reasoning complexity, conditional elements, 

and multi-context requirements. This approach ensures a comprehensive evaluation of different 

components within the RAG pipeline. 
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Additionally, Ragas can generate conversational samples that simulate chat-based question-and-

follow-up interactions, allowing developers to evaluate their systems in more realistic scenarios.

Figure 7.1: Overview of the Ragas evaluation framework

As illustrated in Figure 7.1, Ragas provides a suite of LLM-assisted evaluation metrics designed to 

objectively measure different aspects of RAG system performance. These metrics include:

• Faithfulness: This metric measures the factual consistency of the generated answer against 

the given context. It works by breaking down the answer into individual claims and ver-

ifying if each claim can be inferred from the provided context. The faithfulness score is 

calculated as the ratio of verifiable claims to the total number of claims in the answer.

• Answer relevancy: This metric evaluates how pertinent the generated answer is to the 

given prompt. It uses an innovative approach where an LLM is prompted to generate 

multiple questions based on the answer and then calculates the mean cosine similarity 

between these generated questions and the original question. This method helps identify 

answers that may be factually correct but off-topic or incomplete.

• Context precision: This metric evaluates whether all the ground-truth relevant items 

present in the contexts are ranked appropriately. It considers the position of relevant in-

formation within the retrieved context, rewarding systems that place the most pertinent 

information at the top.

• Context recall: This metric measures the extent to which the retrieved context aligns with 

the annotated answer (ground truth). It analyzes each claim in the ground truth answer 

to determine whether it can be attributed to the retrieved context, providing insights into 

the completeness of the retrieved information.
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Finally, Ragas also provides building blocks for monitoring RAG quality in production environ-

ments. This facilitates continuous improvement of RAG systems. By leveraging the evaluation 

results from test datasets and insights gathered from production monitoring, developers can 

iteratively enhance their applications. This might involve fine-tuning retrieval algorithms, ad-

justing prompt engineering strategies, or optimizing the balance between retrieved context and 

LLM generation.

Ragas can be complemented with another approach, based on custom classifiers.

ARES
ARES (an automated evaluation framework for RAG systems) is a comprehensive tool designed 

to evaluate RAG systems. It offers an automated process that combines synthetic data genera-

tion with fine-tuned classifiers to assess various aspects of RAG performance, including context 

relevance, answer faithfulness, and answer relevance.

The ARES framework operates in three main stages: synthetic data generation, classifier training, 

and RAG evaluation. Each stage is configurable, allowing users to tailor the evaluation process 

to their specific needs and datasets.

In the synthetic data generation stage, ARES creates datasets that closely mimic real-world sce-

narios for robust RAG testing. Users can configure this process by specifying document file paths, 

few-shot prompt files, and output locations for the synthetic queries. The framework supports 

various pre-trained language models for this task, with the default being google/flan-t5-xxl. 

Users can control the number of documents sampled and other parameters to balance between 

comprehensive coverage and computational efficiency.

Figure 7.2: Overview of the ARES evaluation framework
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The classifier training stage involves creating high-precision classifiers to determine the relevance 

and faithfulness of RAG outputs. Users can specify the classification dataset (typically generated 

from the previous stage), test set for evaluation, label columns, and model choice. ARES uses mi-

crosoft/deberta-v3-large as the default model but supports other Hugging Face models. Training 

parameters such as the number of epochs, patience value for early stopping, and learning rate 

can be fine-tuned to optimize classifier performance.

The final stage, RAG evaluation, leverages the trained classifiers and synthetic data to assess the 

RAG model’s performance. Users provide evaluation datasets, few-shot examples for guiding the 

evaluation, classifier checkpoints, and gold label paths. ARES supports various evaluation metrics 

and can generate confidence intervals for its assessments.

ARES offers flexible model execution options, supporting both cloud-based and local runs through 

vLLM integration. The framework also supports various artifact types (code snippets, documents, 

HTML, images, and so on), enabling comprehensive evaluation across different RAG system 

outputs.

In summary, Ragas and ARES complement each other through their distinct approaches to eval-

uation and dataset generation. Ragas’s strength in production monitoring and LLM-assisted 

metrics can be combined with ARES’s highly configurable evaluation process and classifier-based 

assessments. While Ragas may offer more nuanced evaluations based on LLM capabilities, ARES 

provides consistent and potentially faster evaluations once its classifiers are trained. Combining 

them offers a comprehensive evaluation framework, benefiting from quick iterations with Ragas 

and in-depth, customized evaluations with ARES at key stages.

In the next section, we will create our own evaluation framework to evaluate our task-specific 

TwinLlama-3.1-8B model.

Evaluating TwinLlama-3.1-8B
In the previous chapters, we created two models fine-tuned to generate high-quality posts and 

articles: TwinLlama-3.1-8B and TwinLlama-3.1-8B-DPO. Based on this summary, we want to 

assess their abilities to write text that is both accurate and well-written. In comparison, gener-

al-purpose fine-tuned models are accurate thanks to their extensive knowledge but often use 

overly formal and verbose language. With this fine-tuning, we want to adopt a more natural 

writing style, based on the original articles from the training set.
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Due to the open-ended nature of this problem, we will leverage a judge LLM to evaluate the quality 

of the generated text. It will take both the instruction and the answer as inputs, and score it on 

a 1–3 scale based on two criteria:

• Accuracy: The degree of factual correctness and comprehensiveness of the information 

presented in the answer

• Style: The appropriateness of the tone and writing style for blog posts or social media 

content (no formal or academic expressions)

In our evaluation framework, we will use the test split of our instruction dataset to get test in-

structions. We will feed them to our models and generate answers. These answers will then be 

evaluated by our judge LLM (GPT-4o-mini), based on a prompt that specifies our criteria. Finally, 

we will analyze the scores and draw conclusions based on qualitative and quantitative evaluations.

Generating answers
The first step consists of efficiently generating answers for each instruction in our test set. In ad-

dition to our two models, we will also use meta-llama/Meta-Llama-3.1-8B-Instruct, the official 

instruct version of Llama-3.1-8B, as a reference point to better understand the trade-offs we made.

Let’s start the first stage of the implementation:

1. We import the relevant libraries, including vLLM for fast generation. This library is a lot 

faster than transformers for batch generation with local models:

from vllm import LLM, SamplingParams

from datasets import load_dataset

from tqdm.auto import tqdm

import gc

2. We define a function called generate_answers that will process our dataset and generate 

responses using a specified model. It takes two inputs—the ID of the model we want to 

use and the name of the test dataset:

def generate_answers(model_id, dataset_name):

    dataset = load_dataset(dataset_name, split="test")

3. We need to format the raw instructions using the chat template our models have been 

trained on. Note that Llama-3.1-8B-Instruct has been used with a different template, but 

it can follow this simple format. Here, we use the same chat template with every model 

for simplicity. We map the entire test set to this template with the format() function:
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    def format(sample):

        return "Below is an instruction that describes a task. 
Write a response that appropriately completes the request.\n\n### 
Instruction:\n{}\n\n### Response:\n".format(sample["instruction"])

    dataset = dataset.map(lambda sample: {"prompt": format(sample)})

4. Let’s initialize the LLM object used by vLLM with a maximum length of 4,096 tokens. We 

can also specify sampling parameters, which correspond to variables used in the decod-

ing strategy. Here, we use parameters to encourage diversity (high temperature) while 

removing the most unlikely tokens (top_p and min_p). Finally, we start the generation 

by providing the list of prompts with dataset["prompt"]:

    llm = LLM(model=model_id, max_model_len=4096)

    sampling_params = SamplingParams(temperature=0.8, top_p=0.95, 
min_p=0.05, max_tokens=4096)

    outputs = llm.generate(dataset["prompt"], sampling_params)

5. This process should take a few minutes with our 334 prompts. Once this is done, we ex-

tract the answers from the object that is outputted by vLLM. We then add these answers 

as a new column to our dataset. This is useful to log the answers and review them later:

    answers = [output.outputs[0].text for output in outputs]

    dataset = dataset.add_column("answers", answers)

6. We save our results to the Hugging Face Hub for easy access later. Then, we clear our GPU 

memory to prevent running out of space when we process the next model:

    print(f"Uploading results for {model_id}")

    dataset.push_to_hub(f"mlabonne/{model_id.split('/')
[-1]}-results")

    gc.collect()

    return dataset

7. We create a list of the three models we want to test. Then, we run our generate_answers()

function for each of these models, one at a time. This will create and upload a separate 

set of results for each model:

model_ids = [

    'mlabonne/TwinLlama-3.1-8B',

    'mlabonne/TwinLlama-3.1-8B-DPO',
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    'meta-llama/Meta-Llama-3.1-8B-Instruct'

]

for model_id in model_ids:

    generate_answers(model_id, "mlabonne/llmtwin")

Now that we have the answer generation, we can move on to the evaluation process.

Evaluating answers
To evaluate our answers, we will rely on GPT-4o-mini as a judge. This strategy is similar to what 

we used for data generation. As a matter of fact, you could adapt it to filter out bad samples during 

the data generation process. Here, we will score every generated answer from every model in 

terms of accuracy and style. The average scores will inform us about the quality of our fine-tuning 

compared to Llama-3.1-8B-Instruct:

1. First, we import the required libraries, including openai:

import json

from typing import List

from datasets import Dataset, load_dataset

from openai import OpenAI

from tqdm.auto import tqdm

import concurrent.futures

2. We then define the evaluate_answer() function. This function contains our evaluation 

prompt, which sets up the context for evaluating answers based on accuracy and style:

def evaluate_answer(

    instruction: str, answer: str, client: OpenAI

) -> dict:

    prompt = f"""You are an expert judge. Please evaluate the 
quality of a given answer to an instruction based on two criteria:

1. Accuracy: How factually correct is the information presented in 
the answer? You are a technical expert in this topic.

2. Style: Is the tone and writing style appropriate for a blog post 
or social media content? It should use simple but technical words 
and avoid formal or academic language.

3. In the same prompt, we define our scales for each metric. Those are three-point Likert 

scales with a precise definition for each score:

Accuracy scale:
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1 (Poor): Contains factual errors or misleading information

2 (Good): Mostly accurate with minor errors or omissions

3 (Excellent): Highly accurate and comprehensive

Style scale:

1 (Poor): Too formal, uses some overly complex words

2 (Good): Good balance of technical content and accessibility, but 
still uses formal words and expressions

3 (Excellent): Perfectly accessible language for blog/social media, 
uses simple but precise technical terms when necessary

4. Finally, we conclude the prompt with two examples to illustrate what we mean by “complex 

words” and “formal or academic language.” We provide the corresponding instruction-an-

swer pair and ask the model to return a response in JSON:

Example of bad style: The Llama2 7B model constitutes a noteworthy 
progression in the field of artificial intelligence, serving as the 
successor to its predecessor, the original Llama architecture.

Example of excellent style: Llama2 7B outperforms the original Llama 
model across multiple benchmarks.

Instruction: {instruction}

Answer: {answer}

Provide your evaluation in JSON format with the following structure:

{{

    "accuracy": {{

        "analysis": "...",

        "score": 0

    }},

    "style": {{

        "analysis": "...",

        "score": 0

    }}

}}

"""
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5. This prompt is given as a user query to the GPT-4o-mini model. The system prompt rein-

forces that we are interested in answer evaluation based on accuracy and style:

    completion = client.chat.completions.create(

        model="gpt-4o-mini",

        messages=[

            {

                "role": "system",

                "content": "You are a helpful assistant who 
evaluates answers based on accuracy and style. Provide your response 
in JSON format with a short analysis and score for each criterion.",

            },

            {"role": "user", "content": prompt},

        ],

        response_format={"type": "json_object"},

        max_tokens=1000,

        temperature=0.8,

    )

6. As in the previous chapters, we will batch our requests to speed up the process. This is 

why we create an evaluate_batch() function, which returns a list of parsed structured 

outputs with their corresponding indices. These indices are important to ensure a correct 

ordering of the evaluations:

def evaluate_batch(batch, start_index):

    client = OpenAI(api_key=OPENAI_KEY)

    return [

        (i, evaluate_answer(instr, ans, client))

        for i, (instr, ans) in enumerate(batch, start=start_index)

    ]

7. We can now orchestrate the previous code in the evaluate_answers() function. It takes 

the model ID, number of threads, and batch size as inputs. First, we load the dataset with 

the generations we previously saved:

def evaluate_answers(model_id: str, num_threads: int = 10, batch_
size: int = 5) -> Dataset:

    dataset = load_dataset(f"mlabonne/{model_id.split('/')
[-1]}-results", split="all")
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8. We create batches of instruction-answer pairs from our dataset. Each batch contains 

batch_size number of pairs:

    batches = [

        (i, list(zip(dataset["instruction"][i:i+batch_size], 
dataset["answers"][i:i+batch_size])))

        for i in range(0, len(dataset), batch_size)

    ]

9. We perform parallel evaluation of batches of instruction-answer pairs using multiple 

threads. We use parallel processing to evaluate multiple batches simultaneously, speed-

ing up the overall evaluation process. The ThreadPoolExecutor submits each batch to 

evaluate_batch(). The results are stored in the evaluations list:

    evaluations = [None] * len(dataset)

    with concurrent.futures.ThreadPoolExecutor(max_workers=num_
threads) as executor:

        futures = [executor.submit(evaluate_batch, batch, start_
index) for start_index, batch in batches]

        for future in tqdm(concurrent.futures.as_completed(futures), 
total=len(futures)):

            for index, evaluation in future.result():

                evaluations[index] = evaluation

10. We create a new column with the result of the evaluation process. This column will store 

the raw JSON output of the judge model, including scores and explanations:

    if 'evaluation' in dataset.column_names:

        dataset = dataset.remove_columns(['evaluation'])

    dataset = dataset.add_column("evaluation", evaluations)

11. We can directly parse this JSON object with json.loads() and try to retrieve the accuracy 

and style scores that should have been generated. This generation is in best-effort mode, 

which means that scores are not guaranteed. If there’s an error in parsing, we use None

values as a fallback:

    accuracy_scores = []

    style_scores = []
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    for evaluation in dataset['evaluation']:

        try:

            eval_dict = json.loads(evaluation) if 
isinstance(evaluation, str) else evaluation

            accuracy_score = eval_dict['accuracy']['score']

            style_score = eval_dict['style']['score']

            accuracy_scores.append(accuracy_score)

            style_scores.append(style_score)

        except (json.JSONDecodeError, KeyError, TypeError):

            accuracy_scores.append(None)

            style_scores.append(None)

12. We add two new columns to store the accuracy and style scores for further analysis:

    if 'accuracy' in dataset.column_names:

        dataset = dataset.remove_columns(['accuracy'])

    dataset = dataset.add_column('accuracy', accuracy_scores)

    if 'style' in dataset.column_names:

        dataset = dataset.remove_columns(['style'])

    dataset = dataset.add_column('style', style_scores)

13. Let’s push the final dataset with generated answers, evaluations, and scores to the Hug-

ging Face Hub:

    dataset.push_to_hub(f"mlabonne/{model_id.split('/')
[-1]}-results")

    return dataset

14. We can now call the evaluate_answers() function with the three models we selected:

model_ids = [

    'mlabonne/TwinLlama-3.1-8B',

    'mlabonne/TwinLlama-3.1-8B-DPO',

    'meta-llama/Meta-Llama-3.1-8B-Instruct'
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]

for model_id in model_ids:

    evaluate_answers(model_id)

By saving intermediate results, our evaluation framework becomes more robust to failures. It is 

also easily extendable to other models, datasets, and criteria.

Analyzing results
There are three elements we can review at the end of this evaluation process: model answers, 

explanations from evaluations, and scores.

While reviewing answers is not scalable, it is a crucial step that can help to identify a lot of com-

mon mistakes, such as a wrong chat template or incorrect model. Here, we will focus on a single 

instruction and read the answers provided by our two models and Llama-3.1-8B-Instruct.

Instruction

Discuss the concept of algorithm bias and its implications.

TwinLlama-3�1-8B

Algorithm bias refers to the tendency of algorithms to produce outcomes that are skewed 

or unfair due to underlying assumptions or programming biases. This can have significant 

implications, particularly in fields like machine learning and AI, where algorithms are relied 

upon to make critical decisions. If an algorithm is not properly vetted for bias, it may lead 

to discriminatory outcomes, such as lending practices that disproportionately affect certain 

demographic groups or recruitment processes that unfairly favor certain candidates. It is 

essential to ensure that algorithms are designed and implemented with fairness and accuracy 

in mind to mitigate these risks.

TwinLlama-3�1-8B-DPO

Algorithm bias refers to the tendency of algorithms to produce outcomes that are skewed 

or unfair due to underlying assumptions or programming biases. This can have significant 

implications, particularly in fields like machine learning and AI, where algorithms are relied 

upon to make critical decisions. If an algorithm is not properly vetted for bias, it could 

lead to discriminatory outcomes, such as denying loans to certain demographic groups or 

perpetuating stereotypes. Therefore, it is essential to address algorithmic bias proactively to 

ensure that the technology we develop is equitable and just.
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Llama-3�1-8B-Instruct

Algorithm bias, also known as algorithmic bias, refers to the unintended or inherent bias in 

machine learning models that can affect their performance, accuracy, and fairness. This bias 

can be caused by various factors, including the data used to train the model, the algorithm 

itself, and the biases present in the society or culture. One of the most significant implications 

of algorithm bias is its potential to perpetuate and exacerbate existing social inequalities. For 

instance, facial recognition software has been shown to be less accurate for people of color, 

leading to wrongful arrests and discrimination. Similarly, language processing models have 

been found to be biased towards the language and dialect of the dominant group, making it 

difficult for marginalized communities to access information and services. Algorithm bias 

can also have severe consequences in areas such as healthcare, education, and employment. 

For example, a medical diagnosis algorithm that is biased towards certain demographics 

may misdiagnose or underdiagnose conditions in other groups, leading to delayed or 

inadequate treatment. In education, an algorithm that is biased towards certain learning 

styles may disproportionately affect students with different learning abilities, leading to 

unequal opportunities. To mitigate the effects of algorithm bias, it is essential to address 

the root causes of bias and implement measures to ensure fairness and transparency in 

machine learning models. This can be achieved through techniques such as data cleansing, 

regularization, and debiasing, as well as implementing diverse and representative datasets. 

Additionally, it is crucial to involve diverse stakeholders, including members of marginalized 

communities, in the development and testing of algorithms to ensure that they are fair and 

equitable. In conclusion, algorithm bias is a significant concern that can have far-reaching 

implications for individuals and society as a whole. It is essential to recognize the potential 

biases in machine learning models and take proactive steps to mitigate their effects. By doing 

so, we can create more equitable and just systems that benefit everyone, regardless of their 

background or demographic characteristics.

Table 7.4: Example of generated answers for a given instruction

Immediately, we can see that the answers from our models are very close to each other. This is not 

the case with Llama-3.1-8B-Instruct’s answer, which is extremely verbose and lists many examples. 

This is typically the kind of answer that is correct but can feel artificial and unpleasant to read 

because of its length. On the other hand, the DPO model slightly simplifies the language of the 

SFT version, making it less academic. This is exactly the behavior we want to capture, modifying 

the writing style but not the actual content of the answer.

Let’s now review the evaluations provided by GPT-4o-mini for each answer.
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TwinLlama-3.1-8B
Accuracy

The answer accurately defines algorithm bias 
and highlights its implications in fields like 
machine learning and AI. It correctly identi-
fies the risks of discriminatory outcomes due 
to biased algorithms. There are no apparent 
factual errors, making this a comprehensive 
response.

Score: 3

Style

The tone is informative and relatively ac-
cessible, though it tends towards a formal 
tone in some sections (e.g., ‘underlying 
assumptions or programming biases’). 
While it does use some technical terms 
appropriately, it could be simplified further 
for a broader audience, especially for blog 
or social media content.

Score: 2
TwinLlama-3.1-8B-DPO
Accuracy

The answer accurately defines algorithm bias 
and outlines its implications in critical fields 
like machine learning and AI. It highlights the 
potential for discriminatory outcomes, making 
it a comprehensive overview of the topic with-
out any factual errors.

Score: 3

Style

The writing style is clear, accessible, and ef-
fectively communicates the technical con-
cept of algorithm bias without becoming 
overly formal. While it uses some technical 
terms, they are appropriate and explained 
well for a general audience.

Score: 3

Llama-3.1-8B-Instruct

Accuracy

The answer accurately defines algorithm bias 
and discusses its causes and implications in 
various domains such as facial recognition, 
healthcare, and education. It also correctly 
identifies methods to mitigate bias, such as 
involving diverse stakeholders and employing 
debiasing techniques. Overall, the information 
is factually correct and comprehensive.

Score: 3

Style

The tone is informative and accessible, 
with technical terms explained clearly. 
However, some phrases like ‘unintended 
or inherent bias’ and ‘implementation of 
diverse and representative datasets’ could 
be simplified for broader audience appeal. 
The writing is generally suitable for blog or 
social media content, but it could benefit 
from a more conversational tone.

Score: 2

Table 7.5: Evaluations of each answer made by GPT-4o-mini, according to style and ac-
curacy
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According to our judge LLM, there is no issue with the accuracy of the answers, which get a perfect 

score. However, the style is considered too formal for TwinLlama-3.1-8B (SFT) and Llama-3.1-

8B-Instruct, with a score of 2. The judge LLM agreed with our previous analysis and assigned a 

perfect score to TwinLlama-3.1-8B-DPO’s answer for communicating “the technical concept of 

algorithm bias without becoming overly formal.”

This trend is confirmed by the average scores obtained by each model:

TwinLlama-3.1-8B - Accuracy: 2.45

TwinLlama-3.1-8B - Style: 2.04

TwinLlama-3.1-8B-DPO - Accuracy: 2.46

TwinLlama-3.1-8B-DPO - Style: 2.12

Llama-3.1-8B-Instruct - Accuracy: 2.62

Llama-3.1-8B-Instruct - Style: 1.86

In terms of accuracy, our two fine-tuned models get similar scores, while Llama-3.1-8B-Instruct 

achieves the highest accuracy score of 2.62. This suggests that the instruct-tuned Llama model 

may have a slight edge in providing factually correct information. This is probably due to its 

extensive post-training process with over 10 million samples (compared to 13,000 in our case).

However, when it comes to style, we see a different pattern. TwinLlama-3.1-8B-DPO leads with 

a score of 2.12, successfully achieving a more accessible and less formal writing style without 

sacrificing content quality. TwinLlama-3.1-8B (SFT) follows with 2.04, showing improvement but 

retaining some formality, while Llama-3.1-8B-Instruct trails with 1.86, tending toward verbosity.

Based on this feedback and the manual review of the generated answers, we can detect mistakes 

and identify areas for improvement. This is essential for refining the data generation process 

through additional filtering or augmenting the dataset with missing information. While this first 

version already shows promising results, iterating over different datasets and models will allow 

us to significantly outperform our baseline and create the best possible model for our use case.

Summary
In this chapter, we explored LLM evaluation with models and RAG systems. We saw how to 

interpret classic benchmarks like MMLU to select strong candidates to use or fine-tune. We also 

detailed how domain-specific and task-specific evaluations work, and how to create our own 

based on publicly available examples. 
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We focused on two techniques (multiple-choice question answering and LLM-as-a-judge) as the 

backbone of these custom evaluation frameworks.

However, models are commonly integrated into broader systems that provide additional context. 

We introduced two evaluation frameworks for RAG systems, Ragas and ARES. We saw both simi-

larities (for example, synthetic data generation) and differences in how they evaluate RAG systems 

(context-based metrics versus trained classifiers). Finally, we evaluated TwinLlama-3.1-8B with 

a judge LLM according to three criteria: relevance, coherence, and conciseness. This provided 

insights into how we can improve it.

In the next chapter, we will explore inference optimization techniques to improve speed and 

reduce memory usage, without significantly compromising model performance. We will also 

delve into optimization methods, model parallelism techniques and examine different quanti-

zation approaches.
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8
Inference Optimization

Deploying LLMs is challenging due to their significant computational and memory requirements. 

Efficiently running these models necessitates the use of specialized accelerators, such as GPUs or 

TPUs, which can parallelize operations and achieve higher throughput. While some tasks, like 

document generation, can be processed in batches overnight, others require low latency and fast 

generation, such as code completion. As a result, optimizing the inference process – how these 

models make predictions based on input data – is critical for many practical applications. This 

includes reducing the time it takes to generate the first token (latency), increasing the number 

of tokens generated per second (throughput), and minimizing the memory footprint of LLMs.

Indeed, naive deployment approaches lead to poor hardware utilization and underwhelming 

throughput and latency. Fortunately, a variety of optimization techniques have emerged to dra-

matically speed up inference. This chapter will explore key methods like speculative decoding, 

model parallelism, and weight quantization, demonstrating how thoughtful implementations 

can achieve speedups of 2–4X or more. We will also introduce three popular inference engines 

(Text Generation Inference, vLLM, and TensorRT-LLM) and compare their features in terms of 

inference optimization.

In this chapter, we will cover the following topics:

• Model optimization strategies

• Model parallelism

• Model quantization
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By the end of this chapter, you will understand the core challenges in LLM inference and be fa-

miliar with state-of-the-art optimization techniques, including model parallelism and weight 

quantization.

Model optimization strategies
Most of the LLMs used nowadays, like GPT or Llama, are powered by a decoder-only Transformer 

architecture. The decoder-only architecture is designed for text-generation tasks. It predicts the 

next word in a sequence based on preceding words, making it effective for generating contextually 

appropriate text continuations.

In contrast, an encoder-only architecture, like BERT, focuses on understanding and representing 

the input text with detailed embeddings. It excels in tasks that require comprehensive context 

understanding, such as text classification and named entity recognition. Finally, the encoder-de-

coder architecture, like T5, combines both functionalities. The encoder processes the input text 

to generate a context-rich representation, which the decoder then uses to produce the output 

text. This dual structure is particularly powerful for sequence-to-sequence tasks like translation 

and summarization, where understanding the input context and generating a relevant output 

are equally important.

In this book, we only focus on the decoder-only architecture, which dominates the LLM field.

Figure 8.1 – Inference process with decoder-only models. We provide “I have a dream” as 
input and obtain “of” as output.

All the code examples from this chapter can be found on GitHub at https://github.

com/PacktPublishing/LLM-Engineering.

https://github.com/PacktPublishing/LLM-Engineering
https://github.com/PacktPublishing/LLM-Engineering


Chapter 8 291

As shown in Figure 8.1, the basic inference process for a decoder-only model involves:

1. Tokenizing the input prompt and passing it through an embedding layer and positional 

encoding.

2. Computing key and value pairs for each input token using the multi-head attention 

mechanism.

3. Generating output tokens sequentially, one at a time, using the computed keys and values.

While Steps 1 and 2 are computationally expensive, they consist of highly parallelizable matrix 

multiplication that can achieve high hardware utilization on accelerators like GPUs and TPUs.

The real challenge is that the token generation in Step 3 is inherently sequential – to generate 

the next token, you need to have generated all previous tokens. This leads to an iterative process 

where the output sequence is grown one token at a time, failing to leverage the parallel computing 

capabilities of the hardware. Addressing this bottleneck is one of the core focuses of inference 

optimization.

In this section, we will detail several optimization strategies that are commonly used to speed 

up inference and reduce Video Random-Access Memory (VRAM) usage, such as implementing 

a (static) KV cache, continuous batching, speculative decoding, and optimized attention mech-

anisms.

KV cache
We saw that LLMs generate text token by token, which is slow because each new prediction 

depends on the entire previous context. For example, to predict the 100th token in a sequence, 

the model needs the context of tokens 1 through 99. When predicting the 101st token, it again 

needs the information from tokens 1 through 99, plus token 100. This repeated computation is 

particularly inefficient.

The key-value (KV) cache addresses this issue by storing key-value pairs produced by self-at-

tention layers. Instead of recalculating these pairs for each new token, the model retrieves them 

from the cache, significantly speeding up the generation. 
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You can see an illustration of this technique in Figure 8.2:

Figure 8.2 – Illustration of the KV cache

When a new token is generated, only the key and value for that single token need to be computed 

and added to the cache. The KV cache is an immediate optimization that is implemented in every 

popular tool and library. Some implementations maintain a separate KV cache for each layer of 

the model.

The size of the KV cache scales with the number of tokens (𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ) and several model dimensions, 

like the number of layers (𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ), the number of attention heads (𝑛𝑛ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ), their dimension (dimℎ𝑒𝑒𝑒𝑒𝑒𝑒 

), and the precision of the parameters in bytes (𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ):𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏   

For a typical 7B parameter model using 16-bit precision, this exceeds 2 GB for high sequence 

lengths (higher than 2,048 tokens). Larger models with more layers and higher embedding di-

mensions will see even greater memory requirements.
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Since the KV cache grows with each generation step and is dynamic, it prevents you from taking 

advantage of torch.compile, a powerful optimization tool that fuses PyTorch code into fast and 

optimized kernels. The static KV cache solves this issue by pre-allocating the KV cache size to a 

maximum value, which allows you to combine it with torch.compile for up to a 4x speedup in 

the forward pass.

To configure a model to use a static KV cache with the transformers library, follow these steps:

1. We import the tokenizer and the model we want to optimize:

import torch

from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = "google/gemma-2b-it"

tokenizer = AutoTokenizer.from_pretrained(model_id) 

model = AutoModelForCausalLM.from_pretrained(model_id, device_
map="auto")

2. To implement the static cache, we change the cache implementation in the model’s gen-

eration config to static:

model.generation_config.cache_implementation = "static"

3. Now that our KV cache is static, we can compile the model using torch.compile:

compiled_model = torch.compile(model, mode="reduce-overhead", 
fullgraph=True)

4. We tokenize an input question, “What is 2+2?", and store it on a GPU if available (if not, 

we store it on the CPU):

device = "cuda" if torch.cuda.is_available() else "cpu"

inputs = tokenizer("What is 2+2?", return_tensors="pt").to(device)

5. Let’s use the generate() method to get the model’s output and decode it with batch_

decode() to print its answer:

outputs = model.generate(**inputs, do_sample=True, temperature=0.7, 
max_new_tokens=64)

print(tokenizer.batch_decode(outputs, skip_special_tokens=True))

['What is 2+2?\n\nThe answer is 4. 2+2 = 4.']
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This returns a list containing both the input and output, correctly answering our question.

Efficiently managing the KV cache is essential, as it can quickly exhaust available GPU memory 

and limit the batch sizes that can be processed. This has motivated the development of memo-

ry-efficient attention mechanisms and other techniques, which we will cover in the last section.

Continuous batching
Batching, or processing multiple inference requests simultaneously, is a standard approach to 

achieve high throughput. Larger batch sizes spread out the memory cost of model weights and 

transfer more data to the GPU at once, better saturating its parallel compute capacity.

However, decoder-only models pose a particular challenge due to the high variability in input 

prompt lengths and desired output lengths. Some requests may have short prompts and only 

need a one-word answer, while others may input a lengthy context and expect a multi-paragraph 

response.

With traditional batching, we would have to wait for the longest request in a batch to complete be-

fore starting a new batch. This leads to under-utilization as the accelerator sits partly idle waiting 

for a straggling request to finish. Continuous batching, also known as in-flight batching, aims to 

prevent idle time by immediately feeding a new request into the batch as soon as one completes.

The batching process begins the same – by filling the batch with initial requests. But as soon as 

a request completes its generation, it is evicted from the batch and a new request takes its place. 

This way, the accelerator is always processing a full batch, leading to maximally efficient hardware 

utilization. An additional consideration is the need to periodically pause the generation process 

to run prefill, or the embedding and encoding of waiting requests. Finding the optimal balance 

between generation and prefill requires some tuning of the waiting-served ratio hyperparameter.

Continuous batching is natively implemented in most inference frameworks, like Hugging Face’s 

Text Generation Inference (TGI), vLLM, and NVIDIA TensorRT-LLM.

Note that the static cache doesn’t work with all architectures. For details on which 

architectures are supported, check out the transformers documentation.
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Speculative decoding
Another powerful optimization technique is speculative decoding, also called assisted generation. 

The key insight is that even with continuous batching, the token-by-token generation process 

fails to fully saturate the parallel processing capabilities of the accelerator. Speculative decoding 

aims to use this spare compute capacity to predict multiple tokens simultaneously, using a smaller 

proxy model (see Figure 8.3).

Figure 8.3 – Illustration of traditional decoding (left) and speculative decoding (right)

The general approach is:

• Apply a smaller model, like a distilled or pruned version of the main model, to predict 

multiple token completions in parallel. This could be 5–10 tokens predicted in a single step.

• Feed these speculative completions into the full model to validate which predictions 

match what the large model would have generated.

• Retain the longest matching prefix from the speculative completions and discard any 

incorrect tokens.

The result is that, if the small model approximates the large model well, multiple tokens can be 

generated in a single step. This avoids running the expensive large model for several iterations. 

The degree of speedup depends on the quality of the small model’s predictions – a 90% match 

could result in a 3–4X speedup.

It is crucial that both models use the same tokenizer. If this is not the case, the tokens generated 

by the draft model will not align with those produced by the large model, making them incom-

patible. Let’s implement this using the transformers library. In this example, we will use two 

Qwen1.5 models from Alibaba Cloud: a 1.8B version as the main model, and a 0.5B version as the 

draft model. Note that, if you have enough VRAM, you can use much larger models like 14B, 32B, 

72B, or 110B as the main model. 
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Here, we’re limited by the VRAM of the T4 GPU in Google Colab, but to get the maximum speedup, 

the assistant model should be much smaller than the large model.

Here’s a step-by-step guide to implement speculative decoding:

1. We load the tokenizer and both models:

import torch

from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = "Qwen/Qwen1.5-1.8B-Chat"

tokenizer = AutoTokenizer.from_pretrained(model_id) 

model = AutoModelForCausalLM.from_pretrained(model_id, device_
map="auto")

draft_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-
0.5B-Chat", device_map="auto")

2. We then tokenize the same input and store it in the accelerator, if available:

device = "cuda" if torch.cuda.is_available() else "cpu"

inputs = tokenizer("What is 2+2?", return_tensors="pt").to(device)

3. We can now use model.generate() with the argument assistant_model to enable specu-

lative decoding:

outputs = model.generate(**inputs, do_sample=True, assistant_
model=draft_model, temperature=0.7, max_new_tokens=64)

print(tokenizer.batch_decode(outputs, skip_special_tokens=True))

['What is 2+2? 2 + 2 equals 4!']

The speedup in this small example is not significant, but it is clearly noticeable with bigger models.

Prompt lookup decoding is a variant of speculative decoding, tailored to input-grounded tasks like 

summarization where there is often overlap between the prompt and output. Shared n-grams 

are used as the LLM candidate tokens. We can enable prompt lookup decoding by using the 

prompt_lookup_num_tokens parameter in model.generate():

outputs = model.generate(**inputs, prompt_lookup_num_tokens=4)

By combining the static KV cache with torch.compile, implementing continuous batching, and 

leveraging speculative decoding techniques, LLMs can see inference speedups of 2–4x or more 

with no loss in quality.
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Another approach to creating a small proxy model consists of jointly fine-tuning a small model 

alongside a large model for maximum fidelity. A representative technique here is Medusa, which 

inserts dedicated speculation heads into the main model. The Medusa-1 approach fine-tunes 

these speculation heads while freezing the large model, while the Medusa-2 approach jointly fine-

tunes both the speculation heads and the large model. The Medusa method has demonstrated 

impressive results, enabling a 70M parameter model to closely approximate the performance 

of a 7B parameter model on a range of tasks. Speculative decoding is natively supported by TGI.

Optimized attention mechanisms
The Transformer architecture is based on the attention mechanism, which scales quadratically 

with the number of input tokens (or sequence length). This is particularly inefficient for longer 

sequences, where the size of the KV cache can blow up.

Introduced by Kwon, Li, et al. (2023), PagedAttention addresses these memory challenges by 

drawing inspiration from virtual memory and paging in operating systems. It partitions the KV 

cache into blocks, eliminating the need for contiguous memory allocation. Each block contains the 

keys and values for a fixed number of tokens. During attention computation, the PagedAttention 

kernel efficiently fetches these blocks, regardless of their physical memory location.

This partitioning allows for near-optimal memory utilization. This is useful for batching more 

sequences together, which increases throughput and GPU utilization. Moreover, PagedAttention's 

block-based approach naturally supports memory sharing across multiple output sequences 

generated from the same prompt. This is particularly advantageous in parallel sampling and 

beam search, where the same prompt is used to generate multiple outputs. The shared memory 

blocks reduce redundant computations and memory usage, cutting the memory overhead by 

up to 55% and improving throughput by up to 2.2x, according to the authors. The vLLM library 

received the first implementation of PagedAttention. Since then, PagedAttention has also been 

implemented in TGI and TensorRT-LLM.

Another popular option is FlashAttention-2. Developed by Tri Dao (2023), it introduced several 

key innovations that are designed to address the quadratic runtime and memory constraints in 

traditional attention. By dividing input and output matrices into smaller blocks, FlashAtten-

tion-2 ensures that these blocks can fit into the GPU’s on-chip SRAM, which is much faster than 

high-bandwidth memory. This approach significantly reduces the frequency of data transfers 

between the GPU’s main memory and its processing units. 
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This is combined with online softmax, which computes the softmax function independently for 

each block of the attention scores matrix, rather than for the entire matrix at once. By maintaining 

a running maximum and a running sum of exponentials, FlashAttention-2 can calculate attention 

probabilities without needing to store large intermediate matrices.

Additionally, FlashAttention-2’s online softmax computation enables block-wise processing, 

maintaining accuracy while significantly reducing memory requirements. This is particularly im-

portant for training, where the recomputation of intermediate values (instead of storing them) in 

the backward pass reduces memory usage from quadratic to linear, in relation to sequence length.

Unlike PagedAttention, FlashAttention-2 can easily be used with the transformers library through 

the attn_implementation parameter:

1. Install the flash-attn library with --no-build-isolation so that we don’t install the 

dependencies:

pip install flash-attn --no-build-isolation

2. To use FlashAttention-2 for inference, specify flash_attention_2 in the attn_

implementation parameter when loading a model. For example, this is how to load Mis-

tral-7B-Instruct-v0.3 with FlashAttention-2:

from transformers import AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained(

    "mistralai/Mistral-7B-Instruct-v0.3",

    attn_implementation="flash_attention_2",

)

The techniques presented in this section focused on improving the model’s efficiency in processing 

tokens. In the next section, we will discuss how to distribute our model and calculations across 

multiple GPUs.

Model parallelism
Model parallelism allows you to distribute the memory and compute requirements of LLMs across 

multiple GPUs. This enables the training and inference of models too large to fit on a single device, 

while also improving performance in terms of throughput (tokens per second).

There are three main approaches to model parallelism, each involving splitting the model weights 

and computation in different ways: data parallelism, pipeline parallelism, and tensor parallelism. 
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Although these approaches were originally developed for training, we can reuse them for inference 

by focusing on the forward pass only.

Data parallelism
Data parallelism (DP) is the simplest type of model parallelism. It involves making copies of the 

model and distributing these replicas across different GPUs (see Figure 8.4). Each GPU processes 

a subset of the data simultaneously. During training, the gradients calculated on each GPU are 

averaged and used to update the model parameters, ensuring that each replica remains synchro-

nized. This approach is particularly beneficial when the batch size is too large to fit into a single 

machine or when aiming to speed up the training process.

Figure 8.4 – Illustration of data parallelism with four GPUs

During inference, DP can be useful for processing concurrent requests. By distributing the work-

load across multiple GPUs, this approach helps reduce latency, as multiple requests can be handled 

simultaneously. This concurrent processing also increases throughput, since a higher number of 

requests can be processed at the same time.

However, the effectiveness of DP is limited by the model size and the communication overhead 

between GPUs. Indeed, replicating the model’s parameters on each GPU is inefficient. This means 

that this technique only works when the model is small enough to fit into a single GPU, leaving 

less room for input data and thus limiting the batch size. For larger models or when memory is 

a constraint, this can be a significant drawback.

Typically, DP is mainly used for training, while pipeline and tensor parallelism are preferred for 

inference.
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Pipeline parallelism
Introduced by Huang et al. in the GPipe paper (2019), pipeline parallelism (PP) is a strategy 

for distributing the computational load of training and running large neural networks across 

multiple GPUs.

Unlike traditional DP, which replicates the entire model on each GPU, pipeline parallelism parti-

tions the model’s layers across different GPUs. This approach allows each GPU to handle a specific 

portion of the model, thereby reducing the memory burden on individual GPUs.

Figure 8.5 – Illustration of pipeline parallelism with four GPUs

As shown in Figure 8.5, in a typical four-way pipeline parallel split, the model is divided into four 

segments, with each segment assigned to a different GPU. The first 25% of the model’s layers might 

be processed by GPU 1, the next 25% by GPU 2, and so on. During the forward pass, activations 

are computed and then passed along to the next GPU. For training, the backward pass follows a 

similar sequence in reverse, with gradients being propagated back through the GPUs. The number 

of GPUs is often referred to as the degree of parallelism.

The primary advantage of pipeline parallelism is its ability to significantly reduce the memory 

requirements per GPU. However, this approach introduces new challenges, particularly related 

to the sequential nature of the pipeline. One of the main issues is the occurrence of “pipeline 

bubbles.” These bubbles arise when some GPUs are idle, waiting for activations from preceding 

layers. This idle time can reduce the overall efficiency of the process.
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Micro-batching was developed to mitigate the impact of pipeline bubbles. By splitting the input 

batch into smaller sub-batches, micro-batching ensures that GPUs remain busier, as the next 

sub-batch can begin processing before the previous one is fully completed.

Figure 8.6 – Illustration of pipeline parallelism with micro-batching.

Figure 8.6 shows an example of pipeline parallelism with micro-batching. In this example, the 

pipeline has four stages (F0, F1, F2, F3), and the input batch is divided into four micro-batches. 

GPU 0 will process forward paths F0,0, F0,1, F0,2, and F0,3, sequentially. Once F0,0 is complete, 

GPU 1 can immediately start processing F1,0 and so on. After completing these forward passes, 

GPU 0 waits for the other GPUs to finish their respective forward computations before starting 

the backward paths (B0,3, B0,2, B0,1, and B0,0).

Pipeline parallelism is implemented in distributed training frameworks like Megatron-LM, Deep-

Speed (ZeRO), and PyTorch through the dedicated Pipeline Parallelism for PyTorch (PiPPy) 

library. At the time of writing, only certain inference frameworks like TensorRT-LLM support 

pipeline parallelism.

Tensor parallelism
Introduced by Shoeby, Patwary, Puri et al. in the Megatron-LM paper (2019), tensor parallelism

(TP) is another popular technique to distribute the computation of LLM layers across multiple 

devices. In contrast to pipeline parallelism, TP splits the weight matrices found in individual 

layers. This enables simultaneous computations, significantly reducing memory bottlenecks and 

increasing processing speed.
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In TP, large matrices, such as the weight matrices in MLPs or the attention heads in self-atten-

tion layers, are partitioned across several GPUs. Each GPU holds a portion of these matrices and 

performs computations on its respective slice.

Figure 8.7 – Illustration of column-wise tensor parallelism in an MLP layer (W)

For instance, in an MLP layer, the weight matrix is divided so that each GPU processes only a subset 

of the weights (see Figure 8.7). The inputs are broadcast to all GPUs, which then independently 

compute their respective outputs. The partial results are then aggregated through an all-reduce 

operation, combining them to form the final output.

In the context of self-attention layers, TP is particularly efficient due to the inherent parallelism 

of attention heads. Each GPU can compute a subset of these heads independently, allowing the 

model to process large sequences more effectively. This makes TP more efficient than pipeline 

parallelism, which requires waiting for the completion of previous layers.

Despite its advantages, TP is not universally applicable to all layers of a neural network. Layers 

like LayerNorm and Dropout, which have dependencies spanning the entire input, cannot be effi-

ciently partitioned and are typically replicated across devices instead. However, these operations 

can be split on the sequence dimension of the input instead (sequence parallelism). Different 

GPUs can compute these layers on different slices of the input sequence, avoiding replication of 

weights. This technique is limited to a few specific layers, but it can provide additional memory 

savings, especially for very large input sequence lengths.
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Moreover, TP necessitates high-speed interconnects between devices to minimize communica-

tion overhead, making it impractical to implement across nodes with insufficient interconnect 

bandwidth.

TP is also implemented in distributed training frameworks like Megatron-LM, DeepSpeed (ZeRO), 

and PyTorch (FSDP). It is available in most inference frameworks, like TGI, vLLM, and Tensor-

RT-LLM.

Combining approaches
Data, tensor, and pipeline parallelisms are orthogonal techniques that can be combined. Figure 

8.8 illustrates how a given model can be split according to each approach:

Figure 8.8 – Illustration of the different model parallelism techniques

Combining these techniques can mitigate their respective issues. Pipeline parallelism provides 

the greatest memory reduction but sacrifices efficiency, due to pipeline bubbles. This may be 

ideal if the primary constraint fits the model in the GPU memory. In contrast, if low latency is 

paramount, then prioritizing tensor parallelism and accepting a larger memory footprint may 

be the better trade-off. In practice, a model may be split depth-wise into a few pipeline stages, 

with tensor parallelism used within each stage.

Balancing these tradeoffs and mapping a given model architecture onto available hardware ac-

celerators is a key challenge in deploying LLMs.

Model quantization
Quantization refers to the process of representing the weights and activations of a neural net-

work using lower-precision data types. In the context of LLMs, quantization primarily focuses 

on reducing the precision of the model’s weights and activations. 
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By default, weights are typically stored in a 16-bit or 32-bit floating-point format (FP16 or FP32), 

which provides high precision but comes at the cost of increased memory usage and computa-

tional complexity. Quantization is a solution to reduce the memory footprint and accelerate the 

inference of LLMs.

In addition to these benefits, larger models with over 30 billion parameters can outperform 

smaller models (7B–13B LLMs) in terms of quality when quantized to 2- or 3-bit precision. This 

means they can achieve superior performance while maintaining a comparable memory footprint.

In this section, we will introduce the concepts of quantization, GGUF with llama.cpp, GPTQ, 

and EXL2, along with an overview of additional techniques. In addition to the code provided in 

this section, you can refer to AutoQuant (bit.ly/autoquant) to quantize their models using a 

Google Colab notebook.

Introduction to quantization
There are two main approaches to weight quantization: Post-Training Quantization (PTQ) and 

Quantization-Aware Training (QAT). PTQ is a straightforward technique where the weights of 

a pre-trained model are directly converted to a lower precision format without any retraining. 

While PTQ is easy to implement, it may result in some performance degradation. Conversely, QAT 

performs quantization during the training or fine-tuning stage, allowing the model to adapt to 

the lower precision weights. QAT often yields better performance compared to PTQ but requires 

additional computational resources and representative training data.

The choice of data type plays a crucial role in quantization. Floating-point numbers, such as 

FP32, FP16 (half-precision), and BF16 (brain floating-point), are commonly used in deep learning. 

These formats allocate a fixed number of bits to represent the sign, exponent, and significand

(mantissa) of a number.

bit.ly/autoquant
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Figure 8.9 – Comparison the between FP32, FP16, and BF16 formats

A sign of 0 represents a positive number, while 1 indicates a negative number. Conversely, the 

exponent controls the range that is represented (big or small). Finally, the significand controls 

the precision of the number (the number of digits). The formula used to convert these represen-

tations into real numbers is: (−1)sign × baseexponent × significand 

The data types shown in Figure 7.7 display different tradeoffs, as illustrated with different repre-

sentations of 𝜋𝜋  (≈ 3.1415926535 ). FP32 uses 32 bits, providing high precision but also requiring more 

memory. Conversely, FP16 and BF16 use 16 bits, lowering the memory footprint at the cost of a 

lower precision. In general, neural networks prefer a bigger range than better precision, which is 

why BF16 is the most popular data type when the hardware supports it. For example, NVIDIA’s 

Ampere architecture (A100, A30, etc.) supports BF16, but previous generations like Turing (T4, 

T40, etc.) do not.
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However, we are not restricted to these three data types. Lower-precision data types, such as INT8 

(8-bit integers), can be employed for quantization, further reducing the memory footprint. Naïve 

quantization techniques, such as absolute maximum (absmax) quantization and zero-point quanti-

zation, can be applied to convert FP32, FP16, or BF16 weights to INT8, as illustrated in Figure 8.10:

Figure 8.10 – Quantization of 0.1 in a [-3.0, 3.2] range with absmax quantization and zero-point 
quantization

Absmax quantization maps the original weights 𝐗𝐗  to the range [-127, 127] by dividing them by the 

absolute maximum value of 𝐗𝐗  and scaling them:

𝐗𝐗quant = round (127 ⋅ 𝐗𝐗max|𝐗𝐗|) 

For example, if our absolute maximum value is 3.2 (see Figure 8.8), a weight of 0.1 would be 

quantized to round (127⋅0.13.2 ) = 4 . To dequantize it, we do the inverse operation:

𝐗𝐗dequant = max|𝐗𝐗| ⋅ 𝐗𝐗quant127  

This means that if we dequantize our weight, we obtain 3.2⋅4 127 ≈ 0.1008 . We can see a rounding er-

ror of 0.0008  in this example. In Python, we can implement it as follows with the PyTorch library:

import torch

def absmax_quantize(X):

    # Calculate scale

    scale = 127 / torch.max(torch.abs(X))

    # Quantize

    X_quant = (scale * X).round()

    return X_quant.to(torch.int8)
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Zero-point quantization, on the other hand, considers asymmetric input distributions and maps 

the weights 
0.0008 

to the range [-128, 127] by introducing a zero-point offset:𝐗𝐗quant = round(scale ⋅ 𝐗𝐗 𝐗 𝐗ero𝐗o𝐗n𝐗) 
Where scale = 255max(𝐗𝐗)−min(𝐗𝐗)  and zeropoint = −round(scale ⋅ min(𝐗𝐗)) − 128 .

If we take the same example with a weight of 0.1, we get a scale of 2553.2+3.0 ≈ 41.13  and a zero-point 

value of −round ( 2553.2+3.0 ⋅ −3.0) − 128 = −5 . The weight of 0.1 would be quantized to round(41.13 ⋅ 0.1 − 5) = −1 , 

unlike the value of 4  provided by absmax.

We can easily get the dequantization by applying the inverse operation:𝐗𝐗dequant = 𝐗𝐗quant − zeropointscale  

In Python, zero-point quantization can be implemented as follows:

def zeropoint_quantize(X):

    # Calculate value range (denominator)

    x_range = torch.max(X) - torch.min(X)

    x_range = 1 if x_range == 0 else x_range

    # Calculate scale

    scale = 255 / x_range

    # Shift by zero-point

    zeropoint = (-scale * torch.min(X) - 128).round()

    # Scale and round the inputs

    X_quant = torch.clip((X * scale + zeropoint).round(), -128, 127)

   

    return X_quant.to(torch.int8)

However, naïve quantization methods have limitations, particularly when dealing with outlier 

features in LLMs. Outlier features are extreme weight values (about 0.1% of total values) that 

can significantly impact the quantization process, leading to reduced precision for other values.
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Discarding these outliers is not feasible, as it would degrade a model’s performance. You can see 

an example of outliers in Figure 8.11:

Figure 8.11 – Example of outliers in a weight matrix

To address the outlier problem, more advanced quantization techniques have been proposed. 

One notable example is LLM.int8(), introduced by Dettmers et al. (2022). LLM.int8() employs a 

mixed-precision quantization scheme, where outlier features are processed using FP16, while the 

remaining values are quantized to INT8. This approach effectively reduces the memory footprint 

of LLMs by nearly 2x while minimizing performance degradation.

LLM.int8() works by performing matrix multiplication in three steps. First, it extracts columns 

containing outlier features from the input hidden states using a custom threshold. Second, it 

performs separate matrix multiplications for the outliers (in FP16) and non-outliers (in INT8) 

using vector-wise quantization. Finally, it dequantizes the non-outlier results and combines 

them with the outlier results to obtain the final output in FP16.

The effectiveness of LLM.int8() has been demonstrated empirically, showing negligible perfor-

mance degradation (<1%) compared to the original FP32 models. However, it does introduce an 

additional computational overhead, resulting in around 20% slower inference for large models. 

Models can be directly loaded in 8-bit precision with the transformer library, using LLM.int8(), 

as follows:

from transformers import AutoModelForCausalLM

model_name = "meta-llama/Meta-Llama-3-8B-Instruct"

model = AutoModelForCausalLM.from_pretrained(model_name, device_
map="auto", load_in_8bit=True)



Chapter 8 309

Introduced by Dettmers et al. (2023), NF4 is a 4-bit precision format designed for QLoRA (discussed 

in Chapter 5). It is also integrated into the transformers library but requires the bitsandbytes 

library as a dependency. To load a model in NF4 (4-bit precision), you can use the load_in_4bit

parameter, as follows:

from transformers import AutoModelForCausalLM

model_name = "meta-llama/Meta-Llama-3-8B-Instruct"

model = AutoModelForCausalLM.from_pretrained(model_name, device_
map="auto", load_in_4bit=True)

Quantization with GGUF and llama.cpp
The llama.cpp project is an open-source C++ software library created by Georgi Gerganov, de-

signed to perform inference with various LLMs. It is the most popular quantization technique, 

with many quantized models available on the Hugging Face Hub.

Compared to other libraries that rely on hardware-specific closed-source libraries like CUDA, 

llama.cpp can run on a broader range of hardware. It has gained significant popularity, par-

ticularly among users without specialized hardware, as it can operate on CPUs and Android 

devices. Moreover, llama.cpp can also offload layers to the GPU, accelerating inference speed. It 

is compatible with different inference optimization techniques, such as FlashAttention-2 and 

speculative decoding.

This project features its own quantization format, GGUF, designed to simplify and speed up 

model loading. GGUF files store tensors and metadata, supporting various formats, from 1-bit 

to 8-bit precision. It follows a naming convention based on the number of bits used and specific 

variants, such as:

• IQ1_S and IQ1_M: 1-bit precision – very low quality

• IQ2_XXS/XS/S/M and Q2_K: 2-bit precision – generally low quality but IQ2 can be usable 

for large models

• IQ3_XXS/XS/S/M and Q3_K_S/M/L: 3-bit precision – low quality but usable for large models

• IQ4_XS/NL and Q4_K_S/M, Q4_0/1: 4-bit precision – good quality and usable for most 

models

• Q5_K_S/M and Q5_0/1: 5-bit precision – high quality

• Q6_K: 6-bit precision –very high quality

• Q8_0: 8-bit precision – highest quality
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To provide a brief overview of GGUF quantization, llama.cpp groups values into blocks and rounds 

them to a lower precision. For instance, the legacy Q4_0 format handles 32 values per block, scaling 

and quantizing them based on the largest weight value in the block (w = q × block_scale ). In Q4_1, 

the smallest Lvalue in the block is also added (w = q × block_scale + block_minimum  ). In Q4_K, weights 

are divided into super-blocks, containing 8 blocks with 32 values. Block scales and minimum 

values are also quantized in higher precision with 6 bits (w = q × block_scale(6bit)  +  block_min(6bit) ). 

Finally, i-quants like IQ4_XS are inspired by another quantization technique called QuIP#. This 

ensures an even number of positive (or negative) quant signs in groups of eight and implements 

the E8  lattice to store their magnitude.

Here is a practical example of how to quantize a model in the GGUF format. The following steps 

can be executed on a free T4 GPU in Google Colab:

1. Install llama.cpp and the required libraries:

!git clone https://github.com/ggerganov/llama.cpp

!cd llama.cpp && git pull && make clean && LLAMA_CUBLAS=1 make

!pip install -r llama.cpp/requirements.txt

2. Download the model to convert. We will provide the model ID from the Hugging Face 

Hub – for example, mistralai/Mistral-7B-Instruct-v0.2:

MODEL_ID = "mlabonne/EvolCodeLlama-7b"

MODEL_NAME = MODEL_ID.split('/')[-1]

!git lfs install

!git clone https://huggingface.co/{MODEL_ID}

3. First, we convert the model into FP16. This is an intermediary artifact that will be used 

for every GGUF quantization type. Note that different conversion scripts exist in llama.

cpp and are compatible with different models:

fp16 = f"{MODEL_NAME}/{MODEL_NAME.lower()}.fp16.bin"

!python llama.cpp/convert.py {MODEL_NAME} --outtype f16 --outfile 
{fp16}

4. We select a format (here, Q4_K_M) and start the quantization. This process can take an 

hour on a T4 GPU:

METHOD = "q4_k_m"

qtype = f"{MODEL_NAME}/{MODEL_NAME.lower()}.{method.upper()}.gguf"

!./llama.cpp/quantize {fp16} {qtype} {METHOD}
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5. Once it’s done, your quantized model is ready. You can download it locally, or upload it 

to the Hugging Face Hub using the following code:

from huggingface_hub import create_repo, HfApi

hf_token = "" # Specify your token

username = "" # Specify your username

api = HfApi()

# Create empty repo

create_repo(

    repo_id = f"{username}/{MODEL_NAME}-GGUF",

    repo_type="model",

    exist_ok=True,

    token=hf_token

)

# Upload gguf files

api.upload_folder(

    folder_path=MODEL_NAME,

    repo_id=f"{username}/{MODEL_NAME}-GGUF",

    allow_patterns=f"*.gguf",

    token=hf_token

)

GGUF models can be used with backends such as llama-cpp-python and frameworks like Lang-

Chain. This is useful if you want to integrate a quantized model into a broader system. You can 

also directly chat with the model using frontends, like llama.cpp’s lightweight server, LM Studio, 

and the Text Generation Web UI. These tools enable easy interaction with the GGUF models, 

providing an experience similar to ChatGPT.

Quantization with GPTQ and EXL2
While GGUF and llama.cpp offer CPU inference with GPU offloading, GPTQ and EXL2 are two 

quantization formats dedicated to GPUs. This makes them both faster than llama.cpp during 

inference. In particular, EXL2 offers the highest throughput with its dedicated library, ExLlamaV2.
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GPTQ and EXL2 quants are based on the GPTQ algorithm, introduced by Frantar et al. (2023). 

It optimizes weight quantization for LLMs by refining the Optimal Brain Quantization (OBQ) 

approach to handle extensive matrices efficiently. It begins with a Cholesky decomposition of 

the Hessian inverse, ensuring numerical stability. Instead of quantizing weights in a strict order, 

GPTQ processes them in batches, updating columns and associated blocks iteratively. This meth-

od leverages lazy batch updates, reducing computational redundancy and memory bottlenecks.

While GPTQ is limited to 4-bit precision, EXL2 offers more flexibility with a highly customizable 

precision that can mix different quantization levels. This allows for precise bitrates between 2 

and 8 bits per weight, such as 2.3, 3.5, or 6.0. It can also apply multiple quantization levels to 

each linear layer, prioritizing more important weights with higher bit quantization. Parameters 

are selected automatically, by quantizing each matrix multiple times and choosing a combination 

that minimizes the quantization error while meeting a target bitrate. In practice, this allows 70B 

models to run on a single 24 GB GPU with 2.55-bit precision.

The inference itself is handled by the ExLlamaV2 library, which supports both the GPTQ and 

EXL2 models.

In the following example, let’s quantize a model in the EXL2 format using ExLlamaV2. These 

steps can be executed on a free T4 GPU in Google Colab:

1. Install the ExLlamaV2 library from source:

!git clone https://github.com/turboderp/exllamav2

!pip install -e exllamav2

2. We download the model to quantize by cloning its repo from the Hugging Face Hub:

MODEL_ID = "meta-llama/Llama-2-7b-chat-hf"

MODEL_NAME = MODEL_ID.split('/')[-1]

!git lfs install

!git clone https://huggingface.co/{MODEL_ID}

3. Download the calibration dataset used to measure the quantization error. In this case, 

we will use WikiText-103, a standard calibration dataset with high-quality articles from 

Wikipedia:

!wget https://huggingface.co/datasets/wikitext/
resolve/9a9e482b5987f9d25b3a9b2883fc6cc9fd8071b3/wikitext-103-v1/
wikitext-test.parquet
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4. Quantize the model at a given precision (for example, 4.5):

!mkdir quant

!python exllamav2/convert.py \

    -i {MODEL_NAME} \

    -o quant \

    -c wikitext-test.parquet \

    -b 4.5

The quantized model can then be uploaded to the Hugging Face Hub, as seen previously.

GPTQ and EXL2 quants are not as widely supported as GGUF. For example, frontends like LM 

Studio do not currently integrate them. You can use other tools instead, like oobabooga’s Text 

Generation Web UI. It is also directly integrated into the transformers library and supported by 

TGI. GPTQ models are also supported in TensorRT-LLM.

While less popular than GGUF, you can find a lot of GPTQ and EXL2 models on the Hugging Face 

Hub.

Other quantization techniques
There is a variety of quantization techniques beyond GGUF, GPTQ, and EXL2. This subsection will 

briefly introduce Activate-aware Weight Quantization (AWQ) as well as extreme quantization 

techniques, like QuIP# (Quantization with Incoherence Processing) and HQQ (Half-Quadratic 

Quantization).

Introduced by Lin et al. (2023), AWQ is another popular quantization algorithm. It identifies 

and protects the most important weights, which are determined based on activation magnitude 

instead of weight magnitude. This approach involves applying optimal per-channel scaling to 

these salient weights, without relying on backpropagation or reconstruction, ensuring that the 

LLM does not overfit the calibration set. While it relies on a different paradigm, AWQ is quite close 

to the GPTQ and EXL2 versions, although slightly slower. They are well-supported by inference 

engines and integrated into TGI, vLLM, and TensorRT-LLM.

An interesting trend is the quantization of models into 1- or 2-bit precision. While some formats, 

like EXL2, allow extreme quantization, the quality of the models often suffers significantly. How-

ever, recent algorithms like QuIP#  and HQQ have targeted this regime and offer quantization 

methods that better preserve the performance of the original models. This is particularly true for 

large models (over 30B parameters), which can end up taking less space than 7B or 13B parameter 

models while providing higher-quality outputs. 
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This trend is expected to continue, further optimizing these quantization methods.

To conclude this chapter, here is a table summarizing the features of the three main inference 

engines we covered in the previous sections:

Technique TGI vLLM TensorRT-LLM

Continuous batching ✓ ✓ ✓

Speculative decoding ✓

FlashAttention2 ✓ ✓ ✓

PagedAttention ✓ ✓ ✓

Pipeline parallelism ✓

Tensor parallelism ✓ ✓ ✓

GPTQ ✓ ✓

EXL2 ✓

AWQ ✓ ✓ ✓

Table 8.1 – Summary of features for TGI, vLLM, and TensorRT-LLM

Summary
In summary, inference optimization is a critical aspect of deploying LLMs effectively. This chap-

ter explored various optimization techniques, including optimized generation methods, model 

parallelism, and weight quantization. Significant speedups can be achieved by leveraging tech-

niques like predicting multiple tokens in parallel with speculative decoding, or using an optimized 

attention mechanism with FlashAttention-2. Additionally, we discussed how model parallelism 

methods, including data, pipeline, and tensor parallelism, distribute the computational load across 

multiple GPUs to increase throughput and reduce latency. Weight quantization, with formats 

like GGUF and EXL2, further reduces the memory footprint and accelerates inference, with some 

calculated tradeoff in output quality.

Understanding and applying these optimization strategies are essential for achieving high per-

formance in practical applications of LLMs, such as chatbots and code completion. The choice 

of techniques and tools depends on specific requirements, including available hardware, desired 

latency, and throughput. By combining various approaches, such as continuous batching and 

speculative decoding, along with advanced attention mechanisms and model parallelism, users 

can tailor their deployment strategies to maximize efficiency.
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Way back in Chapter 4, we focused only on implementing the ingestion pipeline, which is just 

one component of a standard RAG application. In the next chapter, we will conclude the RAG 

system by implementing the retrieval and generation components and integrating them into 

the inference pipeline. 
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9
RAG Inference Pipeline

Back in Chapter 4, we implemented the retrieval-augmented generation (RAG) feature pipeline 

to populate the vector database (DB). Within the feature pipeline, we gathered data from the data 

warehouse, cleaned, chunked, and embedded the documents, and, ultimately, loaded them to the 

vector DB. Thus, at this point, the vector DB is filled with documents and ready to be used for RAG.

Based on the RAG methodology, you can split your software architecture into three modules: one 

for retrieval, one to augment the prompt, and one to generate the answer. We will follow a sim-

ilar pattern by implementing a retrieval module to query the vector DB. Within this module, we 

will implement advanced RAG techniques to optimize the search. Afterward, we won’t dedicate 

a whole module to augmenting the prompt, as that would be overengineering, which we try to 

avoid. However, we will write an inference service that inputs the user query and context, builds 

the prompt, and calls the LLM to generate the answer. To summarize, we will implement two core 

Python modules, one for retrieval and one for calling the LLM using the user’s input and context 

as input. When we glue these together, we will have an end-to-end RAG flow.

In Chapters 5 and 6, we fine-tuned our LLM Twin model, and in Chapter 8, we learned how to 

optimize it for inference. Thus, at this point, the LLM is ready for production. What is left is to 

build and deploy the two modules described above. 
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We will dedicate the next chapter entirely to deploying our fine-tuned LLM Twin model to AWS 

SageMaker, as an AWS SageMaker inference endpoint. Thus, the focus of this chapter is to dig 

into the advanced RAG retrieval module implementation. We have dedicated a whole chapter to 

the retrieval step because this is where the magic happens in an RAG system. At the retrieval step 

(and not when calling the LLM), you write most of the RAG inference code. This step is where 

you have to wrangle your data to ensure that you retrieve the most relevant data points from the 

vector DB. Hence, most of the advanced RAG logic goes within the retrieval step.

To sum up, in this chapter, we will cover the following topics:

• Understanding the LLM Twin’s RAG inference pipeline

• Exploring the LLM Twin’s advanced RAG techniques

• Implementing the LLM Twin’s RAG inference pipeline

By the end of this chapter, you will know how to implement an advanced RAG retrieval module, 

augment a prompt using the retrieved context, and call an LLM to generate the final answer. 

Ultimately, you will know how to build a production-ready RAG inference pipeline end to end.

Understanding the LLM Twin’s RAG inference 
pipeline
Before implementing the RAG inference pipeline, we want to discuss its software architecture 

and advanced RAG techniques. Figure 9.1 illustrates an overview of the RAG inference flow. The 

inference pipeline starts with the input query, retrieves the context using the retrieval module 

(based on the query), and calls the LLM SageMaker service to generate the final answer.
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Figure 9.1: RAG inference pipeline architecture

The feature pipeline and the retrieval module, defined in Figure 9.1, are independent processes. The 

feature pipeline runs on a different machine on a schedule to populate the vector DB. At the same 

time, the retrieval module is called on demand, within the inference pipeline, on every user request. 
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By separating concerns between the two components, the vector DB is always populated with the 

latest data, ensuring feature freshness, while the retrieval module can access the latest features 

on every request. The input of the RAG retrieval module is the user’s query, based on which we 

have to return the most relevant and similar data points from the vector DB, which will be used 

to guide the LLM in generating the final answer.

To fully understand the dynamics of the RAG inference pipeline, let’s go through the architecture 

flow from Figure 9.1 step by step:

1. User query: We begin with the user who makes a query, such as “Write an article about...”

2. Query expansion: We expand the initial query to generate multiple queries that reflect 

different aspects or interpretations of the original user query. Thus, instead of one query, 

we will use xN queries. By diversifying the search terms, the retrieval module increases 

the likelihood of capturing a comprehensive set of relevant data points. This step is crucial 

when the original query is too narrow or vague.

3. Self-querying: We extract useful metadata from the original query, such as the author’s 

name. The extracted metadata will be used as filters for the vector search operation, elim-

inating redundant data points from the query vector space (making the search more 

accurate and faster).

4. Filtered vector search: We embed each query and perform a similarity search to find 

each search’s top K data points. We execute xN searches corresponding to the number of 

expanded queries. We call this step a filtered vector search as we leverage the metadata 

extracted from the self-query step as query filters.

5. Collecting results: We get up to xK results closest to its specific expanded query interpre-

tation for each search operation. Further, we aggregate the results of all the xN searches, 

ending up with a list of N x K results containing a mix of articles, posts, and repositories 

chunks. The results include a broader set of potentially relevant chunks, offering multiple 

relevant angles based on the original query’s different facets.

6. Reranking: To keep only the top K most relevant results from the list of N x K potential 

items, we must filter the list further. We will use a reranking algorithm that scores each 

chunk based on the relevance and importance relative to the initial user query. We will 

leverage a neural cross-encoder model to compute the score, a value between 0 and 1, 

where 1 means the result is entirely relevant to the query. Ultimately, we sort the N x K

results based on the score and pick the top K items. Thus, the output is a ranked list of K

chunks, with the most relevant data points situated at the top.
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7. Build the prompt and call the LLM: We map the final list of the most relevant K chunks 

to a string used to build the final prompt. We create the prompt using a prompt template, 

the retrieved context, and the user’s query. Ultimately, the augmented prompt is sent to 

the LLM (hosted on AWS SageMaker exposed as an API endpoint).

8. Answer: We are waiting for the answer to be generated. After the LLM processes the 

prompt, the RAG logic finishes by sending the generated response to the user.

That wraps up the overview of the RAG inference pipeline. Now, let’s dig deeper into the details.

Exploring the LLM Twin’s advanced RAG techniques
Now that we understand the overall flow of our RAG inference pipeline, let’s explore the advanced 

RAG techniques we used in our retrieval module:

• Pre-retrieval step: Query expansion and self-querying

• Retrieval step: Filtered vector search

• Post-retrieval step: Reranking

Before digging into each method individually, let’s lay down the Python interfaces we will use 

in this section, which are available at https://github.com/PacktPublishing/LLM-Engineers-

Handbook/blob/main/llm_engineering/application/rag/base.py.

The first is a prompt template factory that standardizes how we instantiate prompt templates. 

As an interface, it inherits from ABC and exposes the create_template() method, which returns 

a LangChain PromptTemplate instance. Even if we avoid being heavily reliant on LangChain, as 

we want to implement everything ourselves to understand the engineering behind the scenes, 

some objects, such as the PromptTemplate class, are helpful to speed up the development without 

hiding too much functionality:

from abc import ABC, abstractmethod

from langchain.prompts import PromptTemplate

from pydantic import BaseModel

class PromptTemplateFactory(ABC, BaseModel):

https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/rag/base.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/rag/base.py


RAG Inference Pipeline322

    @abstractmethod

    def create_template(self) -> PromptTemplate:

        pass

We also want to define a RAGStep interface used to standardize the interface of advanced RAG 

steps such as query expansion and self-querying. As these steps are often dependent on other 

LLMs, it has a mock attribute to reduce costs and debugging time during development:

from typing import Any

from llm_engineering.domain.queries import Query

class RAGStep(ABC):

    def __init__(self, mock: bool = False) -> None:

        self._mock = mock

    @abstractmethod

    def generate(self, query: Query, *args, **kwargs) -> Any:

        pass

Ultimately, we must understand how we modeled the Query domain entity to wrap the user’s 

input with other metadata required for advanced RAG. Thus, let’s look at its implementation. 

First, we import the necessary classes:

from pydantic import UUID4, Field

from llm_engineering.domain.base import VectorBaseDocument

from llm_engineering.domain.types import DataCategory

Next, we define the Query entity class, which inherits from the VectorBaseDocument object-vector 

mapping (OVM) class, discussed in Chapter 4. Thus, each query can easily be saved or retrieved 

from the vector DB:

class Query(VectorBaseDocument):

    content: str

    author_id: UUID4 | None = None

    author_full_name: str | None = None

    metadata: dict = Field(default_factory=dict)
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class Config:

        category = DataCategory.QUERIES

What is essential to notice are the class’s attributes used to combine the user’s query with a 

bunch of metadata fields:

• content: A string containing input query.

• author_id: An optional UUID4 identifier extracted from the query used as a filter within 

the vector search operation to retrieve chunks written only by a specific author

• author_full_name: An optional string used to query the author_id

• metadata: A dictionary for any additional metadata, initialized as an empty dict by default

Besides the standard definition of a domain class, we also define a from_str() class method to 

create a Query instance directly from a string. This allows us to standardize how we clean the query 

string before constructing the query object, such as stripping any leading or trailing whitespace 

and newline characters:

    @classmethod

    def from_str(cls, query: str) -> "Query":

        return Query(content=query.strip("\n "))

Additionally, there’s an instance method called replace_content() used to create a new Query

instance with updated content while retaining the original query’s id, author_id, author_full_

name, and metadata:

    def replace_content(self, new_content: str) -> "Query":

        return Query(

            id=self.id,

            content=new_content,

            author_id=self.author_id,

            author_full_name=self.author_full_name,

            metadata=self.metadata,

        )

This can be particularly useful when modifying the query text, for example, during preprocessing 

or normalization, without losing the associated metadata or identifiers. Following the Query class, 

we define the EmbeddedQuery class:

class EmbeddedQuery(Query):
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    embedding: list[float]

    class Config:

        category = DataCategory.QUERIES

The EmbeddedQuery class extends Query by adding the embedding field. The EmbeddedQuery entity 

encapsulates all the data and metadata necessary to perform vector search operations on top of 

Qdrant (or another vector DB).

Now that we understand all the interfaces and new domain entities used within the RAG inference 

pipeline, let’s move on to our advanced RAG pre-retrieval optimization techniques.

Advanced RAG pre-retrieval optimizations: query expansion 
and self-querying
We implemented two methods to optimize the pre-retrieval optimization step: query expansion 

and self-querying. The two methods work closely with the filtered vector search step, which we 

will touch on in the next section. For now, however, we will start with understanding the code 

for query expansion and move to implementing self-querying.

Within these two methods, we will leverage OpenAI’s API to generate variations of the original 

query within the query expansion step and to extract the necessary metadata within the self-que-

rying algorithm. When we wrote this book, we used GPT-4o-mini in all our examples, but as 

OpenAI’s models quickly evolve, the model might get deprecated. But that’s not an issue, as you 

can quickly change it in your .env file by configuring the OPENAI_MODEL_ID environment variable.

Query expansion
The problem in a typical retrieval step is that you query your vector DB using a single vector rep-

resentation of your original question. This approach covers only a small area of the embedding 

space, which can be limiting. If the embedding doesn’t contain all the required information or 

nuances of your query, the retrieved context may not be relevant. This means essential documents 

that are semantically related but not near the query vector might be overlooked.

The solution is based on query expansion, which offers a way to overcome this limitation. Using an 

LLM to generate multiple queries based on your initial question, you create various perspectives 

that capture different facets of your query. These expanded queries, when embedded, target other 

areas of the embedding space that are still relevant to your original question. This increases the 

likelihood of retrieving more relevant documents from the vector DB. 
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Implementing query expansion can be as straightforward as crafting a detailed zero-shot prompt 

to guide the LLM in generating these alternative queries. Thus, after implementing query ex-

pansion, instead of having only one query to search relevant context, you will have xN queries, 

hence xN searches.

Increasing the number of searches can impact your latency. Thus, you must experiment with the 

number of queries you generate to ensure the retrieval step meets your application requirements. 

You can also optimize the searches by parallelizing them, drastically reducing the latency, which 

we will do in the ContextRetriever class implemented at the end of this chapter. 

Now, let’s dig into the code. We begin by importing the necessary modules and classes required 

for query expansion:

from langchain_openai import ChatOpenAI

from llm_engineering.domain.queries import Query

from llm_engineering.settings import settings

from .base import RAGStep

from .prompt_templates import QueryExpansionTemplate

Next, we define the QueryExpansion class, which generates expanded query versions. The class 

implementation can be found at https://github.com/PacktPublishing/LLM-Engineers-

Handbook/blob/main/llm_engineering/application/rag/query_expanison.py:

class QueryExpansion(RAGStep):

    def generate(self, query: Query, expand_to_n: int) -> list[Query]:

        assert expand_to_n > 0, f"'expand_to_n' should be greater than 0. 
Got {expand_to_n}."

        if self._mock:

            return [query for _ in range(expand_to_n)]

Query expansion is also known as multi-query, but the principles are the 

same. For example, this is an example of LangChain’s implementation called 

MultiQueryRetriver: https://python.langchain.com/docs/how_to/
MultiQueryRetriever/

https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/rag/query_expanison.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/rag/query_expanison.py
https://python.langchain.com/docs/how_to/MultiQueryRetriever/
https://python.langchain.com/docs/how_to/MultiQueryRetriever/
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In the generate method, we first ensure that the number of expansions requested (expand_to_n) 

is greater than zero. If the instance is in mock mode (self._mock is True), it simply returns a 

list containing copies of the original query to simulate expansion without actually calling the 

API. If not in mock mode, we proceed to create the prompt and initialize the language model:

        query_expansion_template = QueryExpansionTemplate()

        prompt = query_expansion_template.create_template(expand_to_n - 1)

        model = ChatOpenAI(model=settings.OPENAI_MODEL_ID, api_
key=settings.OPENAI_API_KEY, temperature=0)

Here, we instantiate QueryExpansionTemplate and create a prompt tailored to generate expand_

to_n - 1 new queries (excluding the original). We initialize the ChatOpenAI model with the 

specified settings and set the temperature to 0 for deterministic output. We then create a Lang-

Chain chain by combining the prompt with the model and invoke it with the user’s question:

        chain = prompt | model

        response = chain.invoke({"question": query})

        result = response.content

By piping the prompt into the model (prompt | model), we set up a chain that generates expanded 

queries when invoked with the original query. The response from the model is captured in the 

result object. After receiving the response, we parse and clean the expanded queries:

		
















We split the result using the separator defined in the template to get individual queries. Starting 

with a list containing the original query, we append each expanded query after stripping any 

extra whitespace.
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Finally, we define the QueryExpansionTemplate class, which constructs the prompt used for 

query expansion. The class and other prompt templates can be accessed at https://github.com/
PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/rag/

prompt_templates.py:

from langchain.prompts import PromptTemplate

from .base import PromptTemplateFactory

class QueryExpansionTemplate(PromptTemplateFactory):

    prompt: str = """You are an AI language model assistant. Your task is 
to generate {expand_to_n}

    different versions of the given user question to retrieve relevant 
documents from a vector

    database. By generating multiple perspectives on the user question, 
your goal is to help

    the user overcome some of the limitations of the distance-based 
similarity search.

    Provide these alternative questions separated by '{separator}'.

    Original question: {question}"""

    @property

    def separator(self) -> str:

        return "#next-question#"

    def create_template(self, expand_to_n: int) -> PromptTemplate:

        return PromptTemplate(

            template=self.prompt,

            input_variables=["question"],

            partial_variables={

                "separator": self.separator,

                "expand_to_n": expand_to_n,

            },

        )

This class defines a prompt instructing the language model to generate multiple versions of 

the user’s question. It uses placeholders like {expand_to_n}, {separator}, and {question} to 

customize the prompt. 

https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/rag/prompt_templates.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/rag/prompt_templates.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/rag/prompt_templates.py
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It takes expand_to_n as an input parameter to define how many queries we wish to generate while 

we build the PromptTemplate instance. The separator property provides a unique string to split the 

generated queries. The expand_to_n and separator variables are passed as partial_variables, 

making them immutable at runtime. Meanwhile, the {question} placeholder will be changed 

every time the LLM chain is called.

Now that we have finished studying the query expansion implementation, let’s look at an exam-

ple of how to use the QueryExpansion class. Let’s run the following code using this python -m 

llm_engineering.application.rag.query_expansion command:

query = Query.from_str("Write an article about the best types of advanced 
RAG methods.")

    query_expander = QueryExpansion()

    expanded_queries = query_expander.generate(query, expand_to_n=3)

    for expanded_query in expanded_queries:

        logger.info(expanded_query.content)

We get the following variations of the original query. As you can observe, the query expansion 

method was successful in providing more details and different perspectives of the initial query, 

such as highlighting the effectiveness of advanced RAG methods or the overview of these methods 

(remember that the first query is the original one):

2024-09-18 17:51:33.529 | INFO  - Write an article about the best types of 
advanced RAG methods.

2024-09-18 17:51:33.529 | INFO  - What are the most effective advanced RAG 
methods, and how can they be applied?

2024-09-18 17:51:33.529 | INFO  - Can you provide an overview of the top 
advanced retrieval-augmented generation techniques?

Now, let’s move to the next pre-retrieval optimization method: self-querying.

Self-querying
The problem when embedding your query into a vector space is that you cannot guarantee that 

all the aspects required by your use case are present with enough signal in the embedding vec-

tor. For example, you want to be 100% sure that your retrieval depends on the tags provided 

in the user’s input. Unfortunately, you can’t control the signal left within the embedding that 

emphasizes the tag. By embedding the query prompt alone, you can never be sure that the tags 

are sufficiently represented in the embedding vector or have enough signal when computing the 

distance against other vectors. 
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This problem stands for any other metadata you want to present during the search, such as IDs, 

names, or categories.

The solution is to use self-querying to extract the tags or other critical metadata within the query 

and use them alongside the vector search as filters. Self-querying uses an LLM to extract various 

metadata fields crucial for your business use case, such as tags, IDs, number of comments, likes, 

shares, etc. Afterward, you have complete control over how the extracted metadata is considered 

during retrieval. In our LLM Twin use case, we extract the author’s name and use it as a filter. 

Self-queries work hand-in-hand with filtered vector searches, which we will explain in the next 

section.

Now, let’s move on to the code. We begin by importing the necessary modules and classes on 

which our code relies:

from langchain_openai import ChatOpenAI

from llm_engineering.application import utils

from llm_engineering.domain.documents import UserDocument

from llm_engineering.domain.queries import Query

from llm_engineering.settings import settings

from .base import RAGStep

from .prompt_templates import SelfQueryTemplate

Next, we define the SelfQuery class, which inherits from RAGStep and implements the generate()

method. The class can be found at https://github.com/PacktPublishing/LLM-Engineers-

Handbook/blob/main/llm_engineering/application/rag/self_query.py:

class SelfQuery(RAGStep):

    def generate(self, query: Query) -> Query:

        if self._mock:

            return query

In the generate() method, we check if the _mock attribute is set to True. If it is, we will return the 

original query object unmodified. This allows us to bypass calling the model while testing and 

debugging. If not in mock mode, we create the prompt template and initialize the language model.

        prompt = SelfQueryTemplate().create_template()

        model = ChatOpenAI(model=settings.OPENAI_MODEL_ID, api_
key=settings.OPENAI_API_KEY, temperature=0)

https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/rag/self_query.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/rag/self_query.py
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Here, we instantiate the prompt using the SelfQueryTemplate factory class and create a ChatOpenAI

model instance (similar to the query expansion implementation). We then combine the prompt 

and the model into a chain and invoke it with the user’s query.

        chain = prompt | model

        response = chain.invoke({"question": query})

        user_full_name = response.content.strip("\n ")

We extract the content from the LLM response and strip any leading or trailing whitespace to 

obtain the user_full_name value. Next, we check if the model was able to extract any user in-

formation.

        if user_full_name == "none":

            return query

If the response is "none", it means no user name was found in the query, so we return the origi-

nal query object. If a user name is found, we will split the user_full_name into the first_name

and last_name variables using a utility function. Then, based on the user’s details, we retrieve 

or create a UserDocument user instance:

        first_name, last_name = utils.split_user_full_name(user_full_name)

        user = UserDocument.get_or_create(first_name=first_name, last_
name=last_name)

Finally, we update the query object with the extracted author information and return it:

        query.author_id = user.id

        query.author_full_name = user.full_name

        return query

The updated query now contains the author_id and author_full_name values, which can be 

used in subsequent steps of the RAG pipeline.

Let’s look at the SelfQueryTemplate class, which defines the prompt to extract user information:

from langchain.prompts import PromptTemplate

from .base import PromptTemplateFactory
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class SelfQueryTemplate(PromptTemplateFactory):

    prompt: str = """You are an AI language model assistant. Your task is 
to extract information from a user question.

    The required information that needs to be extracted is the user name 
or user id.

    Your response should consist of only the extracted user name (e.g., 
John Doe) or id (e.g. 1345256), nothing else.

    If the user question does not contain any user name or id, you should 
return the following token: none.

   

    For example:

    QUESTION 1:

    My name is Paul Iusztin and I want a post about...

    RESPONSE 1:

    Paul Iusztin

   

    QUESTION 2:

    I want to write a post about...

    RESPONSE 2:

    none

   

    QUESTION 3:

    My user id is 1345256 and I want to write a post about...

    RESPONSE 3:

    1345256

   

    User question: {question}"""

    def create_template(self) -> PromptTemplate:

        return PromptTemplate(template=self.prompt, input_
variables=["question"])

In the SelfQueryTemplate class, we define a prompt instructing the AI model to extract the user 

name or ID from the input question. The prompt uses few-shot learning to guide the model on 

how to respond in different scenarios. When the template is invoked, the {question} placeholder 

will be replaced with the actual user question.
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By implementing self-querying, we ensure that critical metadata required for our use case is ex-

plicitly extracted and used during retrieval. This approach overcomes the limitations of relying 

solely on the semantics of the embeddings to capture all necessary aspects of a query.

Now that we’ve implemented the SelfQuery class, let’s provide an example. Run the following 

code using the python -m llm_engineering.application.rag.self_query CLI command:

    query = Query.from_str("I am Paul Iusztin. Write an article about the 
best types of advanced RAG methods.")

    self_query = SelfQuery()

    query = self_query.generate(query)

    logger.info(f"Extracted author_id: {query.author_id}")

    logger.info(f"Extracted author_full_name: {query.author_full_name}")

We get the following results where the author’s full name and ID were extracted correctly:

2024-09-18 18:02:10.362 | INFO - Extracted author_id: 900fec95-d621-4315-
84c6-52e5229e0b96

2024-09-18 18:02:10.362 | INFO - Extracted author_full_name: Paul Iusztin

Now that we understand how self-querying works, let’s explore how it can be used together with 

filtered vector search within the retrieval optimization step.

Advanced RAG retrieval optimization: filtered vector search
Vector search is pivotal in retrieving relevant information based on semantic similarity. A plain 

vector search, however, can introduce significant challenges that affect both the accuracy and 

latency of information retrieval. This is primarily because it operates solely on the numerical 

proximity of vector embeddings without considering the contextual or categorical nuances that 

might be crucial for relevance.

One of the primary issues with plain vector search is retrieving semantically similar but contex-

tually irrelevant documents. Since vector embeddings capture general semantic meanings, they 

might assign high similarity scores to content that shares language patterns or topics but doesn’t 

align with the specific intent or constraints of the query. For instance, searching for “Java” could 

retrieve documents about the programming language or the Indonesian island, depending solely 

on semantic similarity, leading to ambiguous or misleading results.

Moreover, as the size of the dataset increases, plain vector search can suffer from scalability issues. 

The lack of filtering means the search algorithm has to compute similarities across the entire 

vector space, which can significantly increase latency. 
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This exhaustive search slows response times and consumes more computational resources, making 

it inefficient for real-time or large-scale applications.

Filtered vector search emerges as a solution by filtering after additional criteria, such as metadata 

tags or categories, reducing the search space before computing vector similarities. By applying 

these filters, the search algorithm narrows the pool of potential results to those contextually 

aligned with the query’s intent. This targeted approach enhances accuracy by eliminating irrel-

evant documents that might have otherwise been considered due to their semantic similarities 

alone.

Additionally, filtered vector search improves latency by reducing the number of comparisons the 

algorithm needs to perform. Working with a smaller, more relevant subset of data decreases the 

computational overhead, leading to faster response times. This efficiency is crucial for applica-

tions requiring real-time interactions or handling large queries.

As the metadata used within the filtered vector search is often part of the user’s input, we have 

to extract it before querying the vector DB. That’s precisely what we did during the self-query 

step, where we extracted the author’s name to reduce the vector space only to the author’s con-

tent. Thus, as we processed the query within the self-query step, it went into the pre-retrieval 

optimization category, whereas when the filtered vector search optimized the query, it went into 

the retrieval optimization bin.

For example, when using Qdrant, to add a filter that looks for a matching author_id within the 

metadata of each document, you must implement the following code:

from qdrant_client.models import FieldCondition, Filter, MatchValue

records = qdrant_connection.search(

            collection_name="articles",

            query_vector=query_embedding,

            limit=3,

            with_payload=True,

            query_filter= Filter(

                    must=[

                        FieldCondition(

                            key="author_id",

                            match=MatchValue(

                                value=str("1234"),

                            ),
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                        )

                    ]

                ),

        )

In essence, while plain vector search provides a foundation for semantic retrieval, its limitations 

can slow performance in practical applications. Filtered vector search addresses these challenges 

by combining the strengths of vector embeddings with contextual filtering, resulting in more 

accurate and efficient information retrieval in RAG systems. The last step for optimizing our RAG 

pipeline is to look into reranking.

Advanced RAG post-retrieval optimization: reranking
The problem in RAG systems is that the retrieved context may contain irrelevant chunks that only:

• Add noise: The retrieved context might be irrelevant, cluttering the information and 

potentially confusing the language model.

• Make the prompt bigger: Including unnecessary chunks increases the prompt size, lead-

ing to higher costs. Moreover, language models are usually biased toward the context’s 

first and last pieces. So, if you add a large amount of context, there’s a big chance it will 

miss the essence.

• Be come unaligned with your question: Chunks are retrieved based on the similarity 

between the query and chunk embeddings. The issue is that the embedding model might 

not be tuned to your question, resulting in high similarity scores for chunks that aren’t 

entirely relevant.

The solution is to use reranking to order all the N × K retrieved chunks based on their relevance 

relative to the initial question, where the first chunk will be the most relevant and the last the 

least. N represents the number of searches after query expansion, while K is the number of chunks 

retrieved per search. Hence, we retrieve a total of N x K chunks. In RAG systems, reranking serves 

as a critical post-retrieval step that refines the initial results obtained from the retrieval model.

We assess each chunk’s relevance to the original query by applying the reranking algorithm, which 

often uses advanced models like neural cross-encoders. These models evaluate the semantic sim-

ilarity between the query and each chunk more accurately than initial retrieval methods based 

on embeddings and the cosine similarity distance, as explained in more detail in Chapter 4 in the 

An overview of advanced RAG section.
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Ultimately, we pick the top K most relevant chunks from the sorted list of N x K items based on 

the reranking score. Reranking works well when combined with query expansion. First, let’s 

understand how reranking works without query expansion:

1. Search for > K chunks: Retrieve more than K chunks to have a broader pool of potentially 

relevant information.

2. Reorder using rerank: Apply reranking to this larger set to evaluate the actual relevance 

of each chunk relative to the query.

3. Take top K: Select the top K chunks to use them as context in the final prompt.

Thus, when combined with query expansion, we gather potential valuable context from multiple 

points in space rather than just looking for more than K samples in a single location. Now the 

flow looks like this:

1. Search for N × K chunks: Retrieve multiple sets of chunks using the expanded queries.

2. Reorder using rerank: Rerank all the retrieved chunks based on their relevance.

3. Take top K: Select the most relevant chunks for the final prompt.

Integrating reranking into the RAG pipeline enhances the quality and relevance of the re-

trieved context and efficiently uses computational resources. Let’s look at implementing the 

LLM Twin’s reranking step to understand what we described above, which can be accessed on 

GitHub at https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_

engineering/application/rag/reranking.py.

We begin by importing the necessary modules and classes for our reranking process:

from llm_engineering.application.networks import 
CrossEncoderModelSingleton

from llm_engineering.domain.embedded_chunks import EmbeddedChunk

from llm_engineering.domain.queries import Query

from .base import RAGStep

Next, we define the Reranker class, which is responsible for reranking the retrieved documents 

based on their relevance to the query:

class Reranker(RAGStep):

    def __init__(self, mock: bool = False) -> None:

        super().__init__(mock=mock)

        self._model = CrossEncoderModelSingleton()

https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/rag/reranking.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/rag/reranking.py
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In the initializer of the Reranker class, we instantiate our cross-encoder model by creating an 

instance of CrossEncoderModelSingleton. This is the cross-encoder model used to score the 

relevance of each document chunk with respect to the query.

The core functionality of the Reranker class is implemented in the generate() method:

    def generate(self, query: Query, chunks: list[EmbeddedChunk], keep_
top_k: int) -> list[EmbeddedChunk]:

        if self._mock:

            return chunks

        query_doc_tuples = [(query.content, chunk.content) for chunk in 
chunks]

        scores = self._model(query_doc_tuples)

        scored_query_doc_tuples = list(zip(scores, chunks, strict=False))

        scored_query_doc_tuples.sort(key=lambda x: x[0], reverse=True)

        reranked_documents = scored_query_doc_tuples[:keep_top_k]

        reranked_documents = [doc for _, doc in reranked_documents]

        return reranked_documents

The generate() method takes a query, a list of chunks (document segments), and the number 

of top documents to keep (keep_top_k). If we’re in mock mode, it simply returns the original 

chunks. Otherwise, it performs the following steps:

1. Creates pairs of the query content and each chunk’s content

2. Uses the cross-encoder model to score each pair, assessing how well the chunk matches 

the query

3. Zips the scores with the corresponding chunks to create a scored list of tuples

4. Sorts this list in descending order based on the scores

5. Selects the top keep_top_k chunks

6. Extracts the chunks from the tuples and returns them as the reranked documents

Before defining the CrossEncoder class, we import the necessary components:

from sentence_transformers.cross_encoder import CrossEncoder

from .base import SingletonMeta
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We import the CrossEncoder class from the sentence_transformers library, which provides the 

functionality for scoring text pairs. We also import SingletonMeta from our base module to en-

sure our model class follows the singleton pattern, meaning only one instance of the model exists 

throughout the application. Now, we define the CrossEncoderModelSingleton class:

class CrossEncoderModelSingleton(metaclass=SingletonMeta):

    def __init__(

        self,

        model_id: str = settings.RERANKING_CROSS_ENCODER_MODEL_ID,

        device: str = settings.RAG_MODEL_DEVICE,

    ) -> None:

        """

        A singleton class that provides a pre-trained cross-encoder model 
for scoring pairs of input text.

        """

        self._model_id = model_id

        self._device = device

        self._model = CrossEncoder(

            model_name=self._model_id,

            device=self._device,

        )

        self._model.model.eval()

This class initializes the cross-encoder model using the specified model_id and device from the 

global settings loaded from the .env file. We set the model to evaluation mode using self._

model.model.eval() to ensure the model is ready for inference.

The CrossEncoderModelSingleton class includes a callable method to score text pairs:

    def __call__(self, pairs: list[tuple[str, str]], to_list: bool = True) 
-> NDArray[np.float32] | list[float]:

        scores = self._model.predict(pairs)

        if to_list:

            scores = scores.tolist()

        return scores
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The __call__ method allows us to pass in a list of text pairs (each consisting of the query and 

a document chunk) and receive their relevance scores. The method uses the model’s predict()

function to call the model and compute the scores.

The CrossEncoderModelSingleton class is a wrapper over the CrossEncoder class, which we wrote 

for two purposes. The first one is for the singleton pattern, which allows us to easily access the 

same instance of the cross-encoder model from anywhere within the application without loading 

the model in memory every time we need it. The second reason is that by writing our wrapper, 

we defined our interface for a cross-encoder model (or any other model used for reranking). 

This makes the code future-proof as in case we need a different implementation or strategy for 

reranking, for example, using an API, we only have to write a different wrapper that follows the 

same interface and swap the old class with the new one. Thus, we can introduce new reranking 

methods without touching the rest of the code.

We now understand all the advanced RAG techniques used within our architecture. In the next 

section, we will examine the ContextRetriever class that connects all these methods and explain 

how to use the retrieval module with an LLM for an end-to-end RAG inference pipeline.

Implementing the LLM Twin’s RAG inference pipeline
As explained at the beginning of this chapter, the RAG inference pipeline can mainly be divided 

into three parts: the retrieval module, the prompt creation, and the answer generation, which 

boils down to calling an LLM with the augmented prompt. In this section, our primary focus will 

be implementing the retrieval module, where most of the code and logic go. Afterward, we will 

look at how to build the final prompt using the retrieved context and user query.

Ultimately, we will examine how to combine the retrieval module, prompt creation logic, and 

the LLM to capture an end-to-end RAG workflow. Unfortunately, we won’t be able to test out 

the LLM until we finish Chapter 10, as we haven’t deployed our fine-tuned LLM Twin module to 

AWS SageMaker.

Thus, by the end of this section, you will learn how to implement the RAG inference pipeline, 

which you can test out end to end only after finishing Chapter 10. Now, let’s start by looking at 

the implementation of the retrieval module.
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Implementing the retrieval module
Let’s dive into the ContextRetriever class implementation, which orchestrates the retrieval 

step in our RAG system by integrating all the advanced techniques we previously used: que-

ry expansion, self-querying, reranking, and filtered vector search. The class can be found on 

GitHub at https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_

engineering/application/rag/retriever.py.

Figure 9.2: Search logic of the RAG retrieval module

https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/rag/retriever.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/rag/retriever.py
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The entry point function of the ContextRetriever class is the search() method, which calls all the 

advanced steps discussed in this chapter. Figure 9.2 shows in more detail how the search method 

glues together all the steps required to search results similar to the user’s query. It highlights how 

the extracted author details from the self-query step are used within the filtered vector search. 

Also, it zooms in on the search operation itself, where, for each query, we do three searches to 

the vector DB, looking for articles, posts, or repositories similar to the query. For each search (out 

of N searches), we want to retrieve a maximum of K results. Thus, we retrieve a maximum of K 

/ 3 items for each data category (as we have three categories). Therefore, when summed up, we 

will have a list of ≤ K chunks. The retrieved list is ≤ K (and not equal to K) when a particular data 

category or more returns < K / 3 items after applying the author filters due to missing chunks 

for that specific author or data category.

Figure 9.3: Processing the results flow of the RAG retrieval module
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Figure 9.3 illustrates how we process the results returned by the xN searches. As each search 

returns ≤ K items, we will end up with ≤ N x K chunks that we aggregate into a single list. As 

some results might overlap between searchers, we must deduplicate the aggregated list to ensure 

each chunk is unique. Ultimately, we send the results to the rerank model, order them based on 

their reranking score, and pick the most relevant top K chunks we will use as context for RAG.

Let’s understand how everything from Figures 9.2 and 9.3 is implemented in the ContextRetriever 

class. First, we initialize the class by setting up instances of the QueryExpansion, SelfQuery, and 

Reranker classes:

class ContextRetriever:

    def __init__(self, mock: bool = False) -> None:

        self._query_expander = QueryExpansion(mock=mock)

        self._metadata_extractor = SelfQuery(mock=mock)

        self._reranker = Reranker(mock=mock)

In the search() method, we convert the user’s input string into a query object. We then use the 

SelfQuery instance to extract the author_id and author_full_name from the query:

    def search(

        self,

        query: str,

        k: int = 3,

        expand_to_n_queries: int = 3,

    ) -> list:

        query_model = Query.from_str(query)

        query_model = self._metadata_extractor.generate(query_model)

        logger.info(

            "Successfully extracted the author_id from the query.",

            author_id=query_model.author_id,

        )

Next, we expand the query to generate multiple semantically similar queries using the 

QueryExpansion instance:

        n_generated_queries = self._query_expander.generate(query_model, 
expand_to_n=expand_to_n_queries)

        logger.info(

            "Successfully generated queries for search.",
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            num_queries=len(n_generated_queries),

        )

We then perform the search concurrently for all expanded queries using a thread pool. Each que-

ry is processed by the _search() method, which we’ll explore shortly. The results are flattened, 

deduplicated, and collected into a single list:

        with concurrent.futures.ThreadPoolExecutor() as executor:

            search_tasks = [executor.submit(self._search, _query_model, k) 
for _query_model in n_generated_queries]

            n_k_documents = [task.result() for task in concurrent.futures.
as_completed(search_tasks)]

            n_k_documents = utils.misc.flatten(n_k_documents)

            n_k_documents = list(set(n_k_documents))

        logger.info("All documents retrieved successfully.", num_
documents=len(n_k_documents))

After retrieving the documents, we rerank them based on their relevance to the original query 

and keep only the top k documents:

        if len(n_k_documents) > 0:

            k_documents = self.rerank(query, chunks=n_k_documents, keep_
top_k=k)

        else:

            k_documents = []

        return k_documents

The _search() method performs the filtered vector search across different data categories like 

posts, articles, and repositories. It uses the EmbeddingDispatcher to convert the query into an 

EmbeddedQuery, which includes the query’s embedding vector and any extracted metadata:

    def _search(self, query: Query, k: int = 3) -> list[EmbeddedChunk]:

        assert k >= 3, "k should be >= 3"

        def _search_data_category(

            data_category_odm: type[EmbeddedChunk], embedded_query: 
EmbeddedQuery

        ) -> list[EmbeddedChunk]:
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            if embedded_query.author_id:

                query_filter = Filter(

                    must=[

                        FieldCondition(

                            key="author_id",

                            match=MatchValue(

                                value=str(embedded_query.author_id),

                            ),

                        )

                    ]

                )

            else:

                query_filter = None

            return data_category_odm.search(

                query_vector=embedded_query.embedding,

                limit=k // 3,

                query_filter=query_filter,

            )

        embedded_query: EmbeddedQuery = EmbeddingDispatcher.
dispatch(query)

We used the same EmbeddingDispatcher to embed the query as in the RAG feature pipeline to 

embed the document chunks stored in the vector DB. Using the same class ensures we use the 

same embedding model at ingestion and query time, which is critical for the retrieval step.

We search each data category separately by leveraging the local _search_data_category() func-

tion. Within the _search_data_category() function, we apply the filters extracted from the 

embedded_query object. For instance, if an author_id is present, we use it to filter the search results 

only to include documents from that author. The results from all categories are then combined:

        post_chunks = _search_data_category(EmbeddedPostChunk, embedded_
query)

        articles_chunks = _search_data_category(EmbeddedArticleChunk, 
embedded_query)

        repositories_chunks = _search_data_
category(EmbeddedRepositoryChunk, embedded_query)
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        retrieved_chunks = post_chunks + articles_chunks + repositories_
chunks

        return retrieved_chunks

Finally, the rerank() method takes the original query and the list of retrieved documents to 

reorder them based on relevance:

    def rerank(self, query: str | Query, chunks: list[EmbeddedChunk], 
keep_top_k: int) -> list[EmbeddedChunk]:

        if isinstance(query, str):

            query = Query.from_str(query)

        reranked_documents = self._reranker.generate(query=query, 
chunks=chunks, keep_top_k=keep_top_k)

        logger.info("Documents reranked successfully.", num_
documents=len(reranked_documents))

        return reranked_documents

Leveraging the ContextRetriever class, we can retrieve context from any query with only a few 

lines of code. For example, let’s take a look at the following code snippet, where we call the entire 

advanced RAG architecture with a simple call to the search() method:

from loguru import logger

from llm_engineering.application.rag.retriever import ContextRetriever

query = """

        My name is Paul Iusztin.

       

        Could you draft a LinkedIn post discussing RAG systems?

        I'm particularly interested in:

            - how RAG works

            - how it is integrated with vector DBs and large language 
models (LLMs).

        """
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retriever = ContextRetriever(mock=False)

documents = retriever.search(query, k=3)

logger.info("Retrieved documents:")

for rank, document in enumerate(documents):

    logger.info(f"{rank + 1}: {document}")

Calling the code from above using the following CLI command: poetry poe call-rag-retrieval-

module. This outputs the following:

2024-09-18 19:01:50.588 | INFO - Retrieved documents:

2024-09-18 19:01:50.588 | INFO - 1: id=UUID('541d6c22-d15a-4e6a-924a-
68b7b1e0a330') content='4 Advanced RAG Algorithms You Must Know by 
Paul Iusztin Implement 4 advanced RAG retrieval techniques to optimize 
your vector DB searches. Integrate the RAG retrieval module into a 
production LLM system…" platform='decodingml.substack.com' document_
id=UUID('32648f33-87e6-435c-b2d7-861a03e72392') author_id=UUID('900fec95-
d621-4315-84c6-52e5229e0b96') author_full_name='Paul Iusztin' 
metadata={'embedding_model_id': 'sentence-transformers/all-MiniLM-L6-v2', 
'embedding_size': 384, 'max_input_length': 256} link='https://decodingml.
substack.com/p/the-4-advanced-rag-algorithms-you?r=1ttoeh'

2024-09-18 19:01:50.588 | INFO - 2: id=UUID('5ce78438-1314-4874-8a5a-
04f5fcf0cb21') content='Overview of advanced RAG optimization techniquesA 
production RAG system is split into 3 main components ingestion clean, 
chunk, embed, and load your data to a vector DBretrieval query your vector 
DB for …" platform='medium' document_id=UUID('bd9021c9-a693-46da-97e7-
0d06760ee6bf') author_id=UUID('900fec95-d621-4315-84c6-52e5229e0b96') 
author_full_name='Paul Iusztin' metadata={'embedding_model_id': 'sentence-
transformers/all-MiniLM-L6-v2', 'embedding_size': 384, 'max_input_length': 
256} link='https://medium.com/decodingml/the-4-advanced-rag-algorithms-
you-must-know-to-implement-5d0c7f1199d2'

2024-09-18 19:02:45.729 | INFO  - 3: id=UUID('0405a5da-4686-428a-91ca-
446b8e0446ff') content='Every Medium article will be its own lesson 
An End to End Framework for Production Ready LLM Systems by Building 
Your LLM TwinThe Importance of Data Pipelines in the Era of Generative 
AIChange Data Capture Enabling Event Driven …" platform='medium' document_
id=UUID('bd9021c9-a693-46da-97e7-0d06760ee6bf') author_id=UUID('900fec95-
d621-4315-84c6-52e5229e0b96') author_full_name='Paul Iusztin' 
metadata={'embedding_model_id': 'sentence-transformers/all-MiniLM-L6-v2', 
'embedding_size': 384, 'max_input_length': 256} link='https://medium.
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com/decodingml/the-4-advanced-rag-algorithms-you-must-know-to-implement-
5d0c7f1199d2'

As you can observe in the output above, along with the retrieved content, we have access to all 

kinds of metadata, such as the embedding model used for retrieval or the link from which the 

chunk was taken. These can quickly be added to a list of references when generating the result 

for the user, increasing trust in the final results.

Now that we understand how the retrieval module works, let’s take a final step and examine the 

end-to-end RAG inference pipeline.

Bringing everything together into the RAG inference 
pipeline
To fully implement the RAG flow, we still have to build the prompt using the context from the 

retrieval model and call the LLM to generate the answer. This section will discuss these two steps 

and wrap everything together into a single rag() function. The functions from this section can 

be accessed on GitHub at https://github.com/PacktPublishing/LLM-Engineers-Handbook/

blob/main/llm_engineering/infrastructure/inference_pipeline_api.py.

Let’s start by looking at the call_llm_service()function, responsible for interfacing with the 

LLM service. It takes in a user’s query and an optional context, sets up the language model end-

point, executes the inference, and returns the generated answer. The context is optional; you can 

call the LLM without it, as you would when interacting with any other LLM:

def call_llm_service(query: str, context: str | None) -> str:

    llm = LLMInferenceSagemakerEndpoint(

        endpoint_name=settings.SAGEMAKER_ENDPOINT_INFERENCE, inference_
component_name=None

    )

    answer = InferenceExecutor(llm, query, context).execute()

    return answer

This function makes an HTTP request to our fine-tuned LLM Twin model, which is hosted as 

an AWS SageMaker inference endpoint. We will explore all the SageMaker details in the next 

chapter, where we will dig into the LLMInferenceSagemakerEndpoint and InferenceExecutor

classes. For now, what is essential to know is that we use this function to call our fine-tuned LLM. 

Still, we must highlight how the query and context, passed to the InferenceExecutor class, are 

transformed into the final prompt. We do that using a simple prompt template that is customized 

using the user query and retrieved context:

https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/infrastructure/inference_pipeline_api.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/infrastructure/inference_pipeline_api.py
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prompt = f"""

You are a content creator. Write what the user asked you to while using 
the provided context as the primary source of information for the content.

User query: {query}

Context: {context}

          """

Moving on to the rag() function, this is where the RAG logic comes together. It handles retriev-

ing relevant documents based on the query, mapping the documents to the context that will be 

injected into the prompt, and obtaining the final answer from the LLM:

def rag(query: str) -> str:

    retriever = ContextRetriever(mock=False)

    documents = retriever.search(query, k=3)

    context = EmbeddedChunk.to_context(documents)

    answer = call_llm_service(query, context)

    return answer

As we modularized all the RAG steps into independent classes, we reduced the high-level rag()

function to five lines of code (encapsulating all the complexities of the system) similar to what we 

see in tools such as LangChain, LlamaIndex, or Haystack. Instead of their high-level implementa-

tion, we learned how to build an advanced RAG service from scratch. Also, by clearly separating 

the responsibility of each class, we can use them like LEGOs. Thus, you can quickly call the LLM 

independently without context or use the retrieval module as a query engine on top of your vector 

DB. In the next chapter, we will see the rag() function in action after we deploy our fine-tuned 

LLM to an AWS SageMaker inference endpoint.

Before ending this chapter, we want to discuss potential improvements you could add to the RAG 

inference pipeline. As we are building a chatbot, the first one is to add a conversation memory that 

stores all the user prompts and generated answers in memory. Thus, when interacting with the 

chatbot, it will be aware of the whole conversation, not only the latest prompt. When prompting 

the LLM, along with the new user input and context, we also pass the conversation history from 

the memory. As the conversation history can get long, to avoid exceeding the context window or 

higher costs, you have to implement a way to reduce the size of your memory. As illustrated in 

Figure 9.4, the simplest one is to keep only the latest K items from your chat history. Unfortunately, 

using this strategy, the LLM will never be aware of the whole conversation. 
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Therefore, another way to add the chat history to your prompt is to keep a summary of the conver-

sation along with the latest K replies. There are multiple ways to compute this summary, which 

might defeat the purpose of this book if we get into them all, but the simplest way is to always 

update the summary on every user prompt and generate an answer.

Figure 9.4: Routing and memory examples

As for each search, we send three queries to the vector DB, one for each data category. Thus, the 

second improvement is to add a router between the query and the search. The router will be a 

multi-category classifier that predicts the data categories we must retrieve for that specific query. 

Hence, instead of making three requests for every search, we can often reduce it to one or two. For 

example, if the user wants to write a theoretical paragraph about RAG for an article, then most 

probably, it’s valuable to query only the article’s collection. In this case, the router will predict 

the article class, which we can use to decide what collection we must query. 
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Another example would be if we want to illustrate a piece of code that shows how to build a RAG 

pipeline. In this case, the router would have to predict the article and repository data category, 

as we need to look up examples in both collections for an exhaustive context.

Usually, the router strategy decides what model to call based on a user’s input, such as whether 

to use GPT-4 or a self-hosted Llama 3.1 model for that specific query. However,  in our particular 

use case, we can adapt the router algorithm to optimize the retrieval step.

We can further optimize the retrieval using a hybrid search algorithm that combines the vector 

search (based on embeddings) with a keyword search algorithm, such as BM25. Search algorithms 

used BM25 (or similar methods) to find similar items in a DB before vector search algorithms 

became popular. By merging the methods, hybrid search retrieves results that match the exact 

terms, such as RAG, LLM, or SageMaker, and the query semantics, increasing the accuracy and 

relevance of your retrieved results. Fundamentally, the hybrid search algorithms follow the next 

mechanics:

1. Parallel processing: The search query is processed simultaneously through both the 

vector search and BM25 algorithms. Each algorithm retrieves a set of relevant documents 

based on its criteria.

2. Score normalization: The results from both searches are assigned relevance scores, which 

are then normalized to ensure comparability. This step is crucial because vector search 

and BM25 scoring mechanisms work at different scales. Thus, they can’t be compared or 

merged without normalization.

3. Result merging: The normalized scores are combined, often through a weighted sum, to 

produce a final ranking of documents. Adjusting the weights allows for fine-tuning the 

emphasis on the semantic or keyword search algorithm.

To conclude, by combining the semantic and exact keyword search algorithms, you can improve 

the accuracy of your retrieval step. Vector search helps recognize synonyms or related concepts, 

ensuring that relevant information isn’t overlooked due to vocabulary differences. Keyword search 

ensures that documents containing critical keywords are emphasized appropriately, particularly 

in technical fields with specific terminology.

One last improvement we can make to our RAG system is to use multi-index vector structures 

instead of indexing based only on the content’s embedding. Let’s detail how multi-indexing 

works. Instead of using the embeddings of a single field to do the vector search for a particular 

collection, it combines multiple fields. 
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For example, in our LLM Twin use case, we used only the content field of our articles, posts, or 

repositories to query the vector DB. When using a multi-index strategy, along with the content 

field, we could index the embeddings of the platform where the content was posted or when the 

content was published. This could impact the final accuracy of your retrieval as different platforms 

have different types of content, or more recent content is usually more relevant. Frameworks 

such as Superlinked make multi-indexing easy. For example, in the code snippet below, using 

Superlinked, we defined a multi-index on the content and platform for our article collection in 

just a few lines of code:

from superlinked.framework.common.schema.id_schema_object import IdField

from superlinked.framework.common.schema.schema import schema

from superlinked.framework.common.schema.schema_object import String

… # Other Superlinked imports. 

@schema

class ArticleSchema:

    id: IdField

    platform: String

    content: String

article = ArticleSchema()

articles_space_content = TextSimilaritySpace(

    text=chunk(article.content, chunk_size=500, chunk_overlap=50),

    model=settings.EMBEDDING_MODEL_ID,

)

articles_space_plaform = CategoricalSimilaritySpace(

    category_input=article.platform,

    categories=["medium", "substack", "wordpress"],

    negative_filter=-5.0,

)

article_index = Index(

    [articles_space_content, articles_space_plaform],

    fields=[article.author_id],

)
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Superlinked is a powerful Python tool for any use case that includes vector computing, such as RAG, 

recommender systems, and semantic search. It offers an ecosystem where you can quickly ingest 

data into a vector DB, write complex queries on top of it, and deploy the service as a RESTful API.

The world of LLMs and RAG is experimental, similar to any other AI domain. Thus, when build-

ing real-world products, it’s important to quickly build an end-to-end solution that works but is 

not necessarily the best. Then, you can reiterate with various experiments until you completely 

optimize it for your use case. This is standard practice in the industry and lets you iterate fast 

while providing value to the business and gathering user feedback as quickly as possible in the 

product’s lifecycle.

Summary
This chapter taught us how to build an advanced RAG inference pipeline. We started by looking 

into the software architecture of the RAG system. Then, we zoomed in on the advanced RAG meth-

ods we used within the retrieval module, such as query expansion, self-querying, filtered vector 

search, and reranking. Afterward, we saw how to write a modular ContextRetriever class that 

glues all the advanced RAG components under a single interface, making searching for relevant 

documents a breeze. Ultimately, we looked into how to connect all the missing dots, such as the 

retrieval, the prompt augmentation, and the LLM call, under a single RAG function that will serve 

as our RAG inference pipeline.

As highlighted a few times in this chapter, we couldn’t test our fine-tuned LLM because we haven’t 

deployed it yet to AWS SageMaker as an inference endpoint. Thus, in the next chapter, we will 

learn how to deploy the LLM to AWS SageMaker, write an inference interface to call the endpoint, 

and implement a FastAPI web server to serve as our business layer.
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Inference Pipeline Deployment

Deploying the inference pipeline for the large language model (LLM) Twin application is a critical 

stage in the machine learning (ML) application life cycle. It’s where the most value is added to 

your business, making your models accessible to your end users. However, successfully deploying 

AI models can be challenging, as the models require expensive computing power and access to 

up-to-date features to run the inference. To overcome these constraints, it’s crucial to careful-

ly design your deployment strategy. This ensures that it meets the application’s requirements, 

such as latency, throughput, and costs. As we work with LLMs, we must consider the inference 

optimization techniques presented in Chapter 8, such as model quantization. Also, to automate 

the deployment processes, we must leverage MLOps best practices, such as model registries that 

version and share our models across our infrastructure.

To understand how to design the deployment architecture of the LLM Twin, we will first look at 

three deployment types we can choose from: online real-time inference, asynchronous inference, 

and offline batch transform. Also, to better understand which option to choose for our LLM Twin 

use case, we will quickly walk you through a set of critical criteria we must consider before making 

an architectural decision, such as latency, throughput, data, and infrastructure. Also, we’ll weigh 

the pros and cons of monolithic and microservices architecture in model serving, a decision that 

can significantly influence the scalability and maintainability of your service.Once we’ve grasped 

the various design choices available, we’ll focus on understanding the deployment strategy for 

the LLM Twin’s inference pipeline. Subsequently, we will walk you through an end-to-end tu-

torial on deploying the LLM Twin service, including deploying our custom fine-tuned LLM to 

AWS SageMaker endpoints and implementing a FastAPI server as the central entry point for our 

users. We will then wrap up this chapter with a short discussion on autoscaling strategies and 

how to use them on SageMaker.
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Hence, in this chapter, we will cover the following topics:

• Criteria for choosing deployment types

• Understanding inference deployment types

• Monolithic versus microservices architecture in model serving

• Exploring the LLM Twin’s inference pipeline deployment strategy

• Deploying the LLM Twin service

• Autoscaling capabilities to handle spikes in usage

Criteria for choosing deployment types
When it comes to deploying ML models, the first step is to understand the four requirements 

present in every ML application: throughput, latency, data, and infrastructure.

Understanding them and their interaction is essential. When designing the deployment archi-

tecture for your models, there is always a trade-off between the four that will directly impact the 

user’s experience. For example, should your model deployment be optimized for low latency or 

high throughput?

Throughput and latency
Throughput refers to the number of inference requests a system can process in a given period. 

It is typically measured in requests per second (RPS). Throughput is crucial when deploying 

ML models when you expect to process many requests. It ensures the system can handle many 

requests efficiently without becoming a bottleneck.

High throughput often requires scalable and robust infrastructure, such as machines or clusters 

with multiple high-end GPUs.Latency is the time it takes for a system to process a single inference 

request from when it is received until the result is returned. Latency is critical in real-time appli-

cations where quick response times are essential, such as in live user interactions, fraud detection, 

or any system requiring immediate feedback. For example, the average latency of OpenAI’s API 

is the average response time from when a user sends a request, and the service provides a result 

that is accessible within your application.

The latency is the sum of the network I/O, serialization and deserialization, and the LLM’s infer-

ence time. Meanwhile, the throughput is the average number of requests the API processes and 

serves a second.
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Low-latency systems require optimized and often more costly infrastructure, such as faster pro-

cessors, lower network latency, and possibly edge computing to reduce the distance data needs 

to travel.

A lower latency translates to higher throughput when the service processes multiple queries in 

parallel successfully. For example, if the service takes 100 ms to process requests, this translates to 

a throughput of 10 requests per second. If the latency reaches 10 ms per request, the throughput 

rises to 100 requests per second.

However, to complicate things, most ML applications adopt a batching strategy to simultaneously 

pass multiple data samples to the model. In this case, a lower latency can translate into lower 

throughput; in other words, a higher latency maps to a higher throughput. For example, if you 

process 20 batched requests in 100 ms, the latency is 100 ms, while the throughput is 200 requests 

per second. If you process 60 requests in 200 ms, the latency is 200 ms, while the throughput 

rises to 300 requests per second. Thus, even when batching requests at serving time, it’s essential 

to consider the minimum latency accepted for a good user experience.

Data
As we know, data is everywhere in an ML system. But when talking about model serving, we 

mostly care about the model’s input and output. This includes the format, volume, and complexity 

of the processed data. Data is the foundation of the inference process. The characteristics of the 

data, such as its size and type, determine how the system needs to be configured and optimized 

for efficient processing.

The type and size of the data directly impact latency and throughput, as more complex or exten-

sive data can take longer to process. For example, designing a model that takes input structured 

data and outputs a probability differs entirely from an LLM that takes input text (or even images) 

and outputs an array of characters.

Infrastructure
Infrastructure refers to the underlying hardware, software, networking, and system architecture 

that supports the deployment and operation of the ML models. The infrastructure provides the 

necessary resources for deploying, scaling, and maintaining ML models. It includes computing 

resources, memory, storage, networking components, and the software stack:

• For high throughput, the systems require scalable infrastructure to manage large data 

volumes and high request rates, possibly through parallel processing, distributed systems, 

and high-end GPUs.
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• Infrastructure must be optimized to reduce processing time to achieve low latency, such 

as using faster CPUs, GPUs, or specialized hardware. While optimizing your system for 

low latency while batching your requests, you often have to sacrifice high throughput 

in favor of lower latency, which can result in your hardware not being utilized at total 

capacity. As you process fewer requests per second, it results in idle computing, which 

increases the overall cost of processing a request. Thus, picking the suitable machine for 

your requirements is critical in optimizing costs.

It is crucial to design infrastructure to meet specific data requirements. This includes selecting 

storage solutions to handle large datasets and implementing fast retrieval mechanisms to ensure 

efficient data access. For example, we mostly care about optimizing throughput for offline training, 

while for online inference, we generally care about latency.

With this in mind, before picking a specific deployment type, you should ask yourself questions 

such as:

• What are the throughput requirements? You should make this decision based on the 

throughput’s required minimum, average, and maximum statistics.

• How many requests the system must handle simultaneously? (1, 10, 1,000, 1 million, etc.)

• What are the latency requirements? (1 millisecond, 10 milliseconds, 1 second, etc.)

• How should the system scale? For example, we should look at the CPU workload, number 

of requests, queue size, data size, or a combination of them.

• What are the cost requirements?With what data do we work with? For example, do we 

work with images, text, or tabular data?

• What is the size of the data we work with? (100 MB, 1 GB, 10 GB)
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Deeply thinking about these questions directly impacts the user experience of your application, 

which ultimately makes the difference between a successful product and not. Even if you ship a 

mind-blowing model, if the user needs to wait too long for a response or it often crashes, the user 

will switch your production to something less accurate that works reliably. For example, Google 

found in a 2016 study that 53% of visits are abandoned if a mobile site takes longer than three 

seconds to load: https://www.thinkwithgoogle.com/consumer-insights/consumer-trends/

mobile-site-load-time-statistics/.

Let’s move on to the three deployment architectures we can leverage to serve our models.

Understanding inference deployment types
As illustrated in Figure 10.1, you can choose from three fundamental deployment types when 

serving models:

• Online real-time inference

• Asynchronous inference

• Offline batch transform

When selecting one design over the other, there is a trade-off between latency, throughput, and 

costs. You must consider how the data is accessed and the infrastructure you are working with. 

Another criterion you have to consider is how the user will interact with the model. For example, 

will the user use it directly, like a chatbot, or will it be hidden within your system, like a classifier 

that checks if an input (or output) is safe?

You have to consider the freshness of the predictions as well. For example, serving your model in 

offline batch mode might be easier to implement if, in your use case, it is OK to consume delayed 

predictions. Otherwise, you have to serve your model in real-time, which is more infrastruc-

ture-demanding. Also, you have to consider your application’s traffic. Ask yourself questions such 

as, “Will the application be constantly used, or will there be spikes in traffic and then flatten out?”

https://www.thinkwithgoogle.com/consumer-insights/consumer-trends/mobile-site-load-time-statistics/
https://www.thinkwithgoogle.com/consumer-insights/consumer-trends/mobile-site-load-time-statistics/
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With that in mind, let’s explore the three major ML deployment types.

Figure 10.1: The three fundamental architectures of inference deployment types

Online real-time inference
In real-time inference, we have a simple architecture based on a server that can be accessed 

through HTTP requests. The most popular options are to implement a REST API or gRPC server. 

The REST API is more accessible but slower, using JSON to pass data between the client and server. 
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This approach is usually taken when serving models outside your internal network to the broader 

public. For example, OpenAI’s API implements a REST API protocol.

On the other hand, implementing a gRPC makes your ML server faster, though it may reduce 

its flexibility and general applicability. You have to implement protobuf schemas in your client 

application, which are more tedious to work with than JSON structures. The benefit, however, 

is that protobuf objects can be compiled into bites, making the network transfers much faster. 

Thus, this protocol is often adopted for internal services within the same ML system.

Using the real-time inference approach, the client sends an HTTP request to the ML service, which 

immediately processes the request and returns the result in the same response. This synchronous 

interaction means the client waits for the result before moving on.

To make this work efficiently, the infrastructure must support low-latency, highly responsive ML 

services, often deployed on fast, scalable servers. Load balancing is crucial to evenly distribute 

incoming traffic evenly, while autoscaling ensures the system can handle varying loads. High 

availability is also essential to keeping the service operational at all times.

For example, this architecture is often present when interacting with LLMs, as when sending a 

request to a chatbot or API (powered by LLMs), you expend the predictions right ahead. LLM 

services, such as ChatGPT or Claude, often use WebSockets to stream each token individually to 

the end user, making the interaction more responsive. Other famous examples are AI services such 

as embedding or reranking models used for retrieval-augmented generation (RAG) or online 

recommendation engines in platforms like TikTok.

The simplicity of real-time inference, with its direct client-server interaction, makes it an attrac-

tive option for applications that require immediate responses, like chatbots or real-time recom-

mendations. However, this approach can be challenging to scale and may lead to underutilized 

resources during low-traffic periods.

Asynchronous inference
In asynchronous inference, the client sends a request to the ML service, which acknowledges the 

request and places it in a queue for processing. Unlike real-time inference, the client doesn’t wait 

for an immediate response. Instead, the ML service processes the request asynchronously. This re-

quires a robust infrastructure that queues the messages to be processed by the ML service later on.

When the results are ready, you can leverage multiple techniques to send them to the client. For 

example, depending on the size of the result, you can put it either in a different queue or an object 

storage dedicated to storing the results. 



Inference Pipeline Deployment362

The client can either adopt a polling mechanism that checks on a schedule if there are new re-

sults or adopt a push strategy and implement a notification system to inform the client when 

the results are ready.

Asynchronous inference uses resources more efficiently. It doesn’t have to process all the requests 

simultaneously but can define a maximum number of machines that run in parallel to process 

the messages. This is possible because the requests are stored in the queue until a machine can 

process them. Another huge benefit is that it can handle spikes in requests without any timeouts. 

For example, let’s assume that on an e-shop site, we usually have 10 requests per second handled 

by two machines. Because of a promotion, many people started to visit the site, and the number 

of requests spiked to 100 requests per second. Instead of scaling the number of virtual machines 

(VMs) by 10, which can add drastic costs, the requests are queued, and the same two VMs can 

process them in their rhythm without any failures.

Another popular advantage for asynchronous architectures is when the requested job takes sig-

nificant time to complete. For example, if the job takes over five minutes, you don’t want to block 

the client waiting for a response.

While asynchronous inference offers significant benefits, it does come with trade-offs. It intro-

duces higher latency, making it less suitable for time-sensitive applications. Additionally, it adds 

complexity to the implementation and infrastructure. Depending on your design choices, this 

architecture type falls somewhere between online and offline, offering a balance of benefits and 

trade-offs.

For example, this is a robust design where you don’t care too much about the latency of the infer-

ence but want to optimize costs heavily. Thus, it is a popular choice for problems such as extracting 

keywords from documents, summarizing them using LLMs, or running deep-fake models on top 

of videos. But suppose you carefully design the autoscaling system to process the requests from 

the queue at decent speeds. In that case, you can leverage this design for other use cases, such as 

online recommendations for e-commerce. In the end, it sums up how much computing power 

you are willing to pay to meet the expectations of your application.

Offline batch transform
Batch transform is about processing large volumes of data simultaneously, either on a schedule 

or triggered manually. In a batch transform architecture, the ML service pulls data from a storage 

system, processes it in a single operation, and then stores the results in storage. The storage sys-

tem can be implemented as an object storage like AWS S3 or a data warehouse like GCP BigQuery. 
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Unlike the asynchronous inference architecture, a batch transform design is optimized for high 

throughput with permissive latency requirements. When real-time predictions are unnecessary, 

this approach can significantly reduce costs, as processing data in big batches is the most eco-

nomical method. Moreover, the batch transform architecture is the simplest way to serve a model, 

accelerating development time.

The client pulls the results directly from data storage, decoupling its interaction with the ML 

service. Taking this approach, the client never has to wait for the ML service to process its input, 

but at the same time, it doesn’t have the flexibility to ask for new results at any time. You can 

see the data storage, where the results are stored as a large cache, from where the client can take 

what is required. If you want to make your application more responsive, the client can be notified 

when the processing is complete and can retrieve the results.

Unfortunately, this approach will always introduce a delay between the time the predictions 

were computed and consumed. That’s why not all applications can leverage this design choice. 

For example, if we implement a recommender system for a video streaming application, having a 

delay of one day for the predicted movies and TV shows might work because you don’t consume 

these products at a high frequency. But suppose you make a recommender system for a social 

media platform. In that case, delaying one day or even one hour is unacceptable, as you constantly 

want to provide fresh content to the user.

Batch transform shines in scenarios where high throughput is needed, like data analytics or pe-

riodic reporting. However, it’s unsuitable for real-time applications due to its high latency and 

requires careful planning and scheduling to manage large datasets effectively. That’s why it is 

an offline serving method.

To conclude, we examined the three most common architectures for serving ML models. We 

started with online real-time inference, which serves clients when they request a prediction. 

Then, we looked at the asynchronous inference method, which sits between online and offline. 

Ultimately, we presented the offline batch transform, which is used to process large amounts of 

data and store them in data storage, from where the client later consumes them.

Monolithic versus microservices architecture in 
model serving
In the previous section, we saw three different methods of deploying the ML service. The differ-

ences in architecture were mainly based on the interaction between the client and the ML service, 

such as the communication protocol, the ML service responsiveness, and prediction freshness. 
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But another aspect to consider is the architecture of the ML service itself, which can be imple-

mented as a monolithic server or as multiple microservices. This will impact how the ML service 

is implemented, maintained, and scaled. Let’s explore the two options.

Figure 10.2: Monolithic versus microservices architecture in model serving
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Monolithic architecture
The LLM (or any other ML model) and the associated business logic (preprocessing and post-pro-

cessing steps) are bundled into a single service in a monolithic architecture. This approach is 

straightforward to implement at the beginning of a project, as everything is placed within one 

code base. Simplicity makes maintenance easy when working on small to medium projects, as 

updates and changes can be made within a unified system.

One key challenge of a monolithic architecture is the difficulty of scaling components independent-

ly. The LLM typically requires GPU power, while the rest of the business logic is CPU and I/O-bound. 

As a result, the infrastructure must be optimized for both GPU and CPU. This can lead to inefficient 

resource use, with the GPU being idle when the business logic is executed and vice versa. Such 

inefficiency can result in additional costs that could be avoided.

Moreover, this architecture can limit flexibility, as all components must share the same tech 

stack and runtime environment. For example, you might want to run the LLM using Rust or C++ 

or compile it with ONNX or TensorRT while keeping the business logic in Python. Having all the 

code in one system makes this differentiation difficult. Finally, splitting the work across different 

teams is complex, often leading to bottlenecks and reduced agility.

Microservices architecture
A microservices architecture breaks down the inference pipeline into separate, independent ser-

vices—typically splitting the LLM service and the business logic into distinct components. These 

services communicate over a network using protocols such as REST or gRPC.

As illustrated in Figure 10.3, the main advantage of this approach is the ability to scale each com-

ponent independently. For instance, since the LLM service might require more GPU resources 

than the business logic, it can be scaled horizontally without impacting the other components. 

This optimizes resource usage and reduces costs, as different types of machines (e.g., GPU versus 

CPU) can be used according to each service’s needs.

For example, let’s assume that the LLM inference takes longer, so you will need more ML service 

replicas to meet the demand. But remember that GPU VMs are expensive. By decoupling the two 

components, you will run only what is required on the GPU machine and not block the GPU VM 

with other computing that can be done on a much cheaper machine. 
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Thus, by decoupling the components, you can scale horizontally as required, with minimal costs, 

providing a cost-effective solution to your system’s needs.

Figure 10.3: Scaling microservices independently based on compute requirements

Additionally, each microservice can adopt the most suitable technology stack, allowing teams to 

innovate and optimize independently.

However, microservices introduce complexity in deployment and maintenance. Each service 

must be deployed, monitored, and maintained separately, which can be more challenging than 

managing a monolithic system. 
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The increased network communication between services can also introduce latency and potential 

points of failure, necessitating robust monitoring and resilience mechanisms.

Note that the proposed design for decoupling the ML model and business logic into two services 

can be extended if necessary. For example, you can have one service for preprocessing the data, 

one for the model, and another for post-processing the data. Depending on the four pillars (la-

tency, throughput, data, and infrastructure), you can get creative and design the most optimal 

architecture for your application needs.

Choosing between monolithic and microservices 
architectures
The choice between monolithic and microservices architectures for serving ML models largely 

depends on the application’s specific needs. A monolithic approach might be ideal for smaller 

teams or more straightforward applications where ease of development and maintenance is a 

priority. It’s also a good starting point for projects without frequent scaling requirements. Also, 

if the ML models are smaller, don’t require a GPU, or don’t require smaller and cheaper GPUs, 

the trade-off between reducing costs and complicating your infrastructure is worth considering.

On the other hand, microservices, with their adaptability and scalability, are well suited for larger, 

more complex systems where different components have varying scaling needs or require distinct 

tech stacks. This architecture is particularly advantageous when scaling specific system parts, such 

as GPU-intensive LLM services. As LLMs require powerful machines with GPUs, such as Nvidia 

A100, V100, or A10g, which are incredibly costly, microservices offer the flexibility to optimize 

the system for keeping these machines busy all the time or quickly scaling down when the GPU 

is idle. However, this flexibility comes at the cost of increased complexity in both development 

and operations.

A common strategy is to start with a monolithic design and further decouple it into multiple 

services as the project grows. However, to successfully do so without making the transition too 

complex and costly, you must design the monolith application with this in mind. For instance, 

even if all the code runs on a single machine, you can completely decouple the modules of the 

application at the software level. This makes it easier to move these modules to different micro-

services when the time comes. When working with Python, for example, you can implement the 

ML and business logic into two different Python modules that don’t interact with each other. Then, 

you can glue these two modules at a higher level, such as through a service class, or directly into 

the framework you use to expose your application over the internet, such as FastAPI. 
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Another option is to write the ML and business logic as two different Python packages that you 

glue together in the same ways as before. This is better because it completely enforces a separation 

between the two but adds extra complexity at development time. The main idea, therefore, is that 

if you start with a monolith and down the line you want to move to a microservices architecture, 

it’s essential to design your software with modularity in mind. Otherwise, if the logic is mixed, 

you will probably have to rewrite everything from scratch, adding tons of development time, 

which translates into wasted resources.

In summary, monolithic architectures offer simplicity and ease of maintenance but at the cost of 

flexibility and scalability. At the same time, microservices provide the agility to scale and innovate 

but require more sophisticated management and operational practices.

Exploring the LLM Twin’s inference pipeline 
deployment strategy
Now that we’ve understood all the design choices available for implementing the deployment 

strategy of the LLM Twin’s inference pipeline, let’s explore the concrete decisions we made to 

actualize it.

Our primary objective is to develop a chatbot that facilitates content creation. To achieve this, 

we will process requests sequentially, with a strong emphasis on low latency. This necessitates 

the selection of an online real-time inference deployment architecture.

On the monolith versus microservice aspect, we will split the ML service between a REST API 

server containing the business logic and an LLM microservice optimized for running the given 

LLM. As the LLM requires a powerful machine to run the inference, and we can further optimize 

it with various engines to speed up the latency and memory usage, it makes the most sense to go 

with the microservice architecture. By doing so, we can quickly adapt the infrastructure based on 

various LLM sizes. For example, if we run an 8B parameter model, the model can run on a single 

machine with a Nivida A10G GPU after quantization. But if we want to run a 30B model, we can 

upgrade to an Nvidia A100 GPU. Doing so allows us to upgrade only the LLM microservice while 

keeping the REST API untouched.

As illustrated in Figure 10.4, most business logic is centered around RAG in our particular use case. 

Thus, we will perform RAG’s retrieval and augmentation parts within the business microservice. 

It will also include all the advanced RAG techniques presented in the previous chapter to optimize 

the pre-retrieval, retrieval, and post-retrieval steps. 
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The LLM microservice is strictly optimized for the RAG generation component. Ultimately, the 

business layer will send the prompt trace consisting of the user query, prompt, answer, and other 

intermediary steps to the prompt monitoring pipeline, which we will detail in Chapter 11.

In summary, our approach involves implementing an online real-time ML service using a micro-

service architecture, which effectively splits the LLM and business logic into two distinct services.

Figure 10.4: Microservice deployment architecture of the LLM Twin’s inference pipeline
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Let’s review the interface of the inference pipeline, which is defined by the feature/training/

inference (FTI) architecture. For the pipeline to run, it needs two things:

• Real-time features used for RAG, generated by the feature pipeline, which is queried from 

our online feature store, more concretely from the Qdrant vector database (DB)

• A fine-tuned LLM generated by the training pipeline, which is pulled from our model 

registry

With that in mind, the flow of the ML service looks as follows, as illustrated in Figure 10.4:

1. A user sends a query through an HTTP request.

2. The user’s input retrieves the proper context by leveraging the advanced RAG retrieval 

module implemented in Chapter 4.

3. The user’s input and retrieved context are packed into the final prompt using a dedicated 

prompt template.

4. The prompt is sent to the LLM microservice through an HTTP request.

5. The business microservices wait for the generated answer.

6. After the answer is generated, it is sent to the prompt monitoring pipeline along with the 

user’s input and other vital information to monitor.

7. Ultimately, the generated answer is sent back to the user.

Now, let’s explore what tech stack we used to implement the architecture presented in Figure 

10.4. As we know, we use Qdrant for the vector DB. We will leverage Hugging Face for the model 

registry. By doing so, we can publicly share our model with everyone who is testing the code from 

this book. Thus, you can easily use the model we provided if you don’t want to run the training 

pipeline, which can cost up to 100 dollars. As you can see, shareability and accessibility are some 

of the most beautiful aspects of storing your model in a model registry.

We will implement the business microservice in FastAPI because it’s popular, easy to use, and fast. 

The LLM microservice will be deployed on AWS SageMaker, where we will leverage SageMaker’s 

integration with Hugging Face’s Deep Learning Containers (DLCs) to deploy the model. We will 

discuss Hugging Face’s DLCs in the next section, but intuitively, it is an inference engine used to 

optimize LLMs at serving time. The prompt monitoring pipeline is implemented using Comet, 

but we will look over that module only in Chapter 11.
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The SageMaker Inference deployment is composed of the following components that we will 

show you how to implement:

• SageMaker endpoint: An endpoint is a scalable and secure API that SageMaker hosts to 

enable real-time predictions from deployed models. It’s essentially the interface through 

which applications interact with your model. Once deployed, an application can make 

HTTP requests to the endpoint to receive real-time predictions.

• SageMaker model: In SageMaker, a model is an artifact that results from training an al-

gorithm. It contains the information required to make predictions, including the weights 

and computation logic. You can create multiple models and use them in different config-

urations or for various predictions.

• SageMaker configuration: This configuration specifies the hardware and software set 

up to host the model. It defines the resources required for the endpoint, such as the type 

and number of ML compute instances. Endpoint configurations are used when creating 

or updating an endpoint. They allow for flexibility in the deployment and scalability of 

the hosted models.

• SageMaker Inference component: This is the last piece of the puzzle that connects the 

model and configuration to an endpoint. You can deploy multiple models to an endpoint, 

each with its resource configuration. Once deployed, models are easily accessible via the 

InvokeEndpoint API in Python.

Together, these components create a robust infrastructure for deploying and managing ML models 

in SageMaker, enabling scalable, secure, and efficient real-time predictions.

Other popular cloud platforms offer the exact solutions. For example, you have Azure OpenAI 

instead of Bedrock and Azure ML instead of SageMaker on Azure. The list of ML deployment 

tools, such as Hopsworks, Modal, Vertex AI, Seldon, BentoML, and many more, is endless and 

will probably change. What is essential though is to understand your use case requirements and 

find a tool that fits your needs.

The training versus the inference pipeline
Understanding the nuances between the training and inference pipelines is crucial before we 

deploy the inference pipeline. While it might seem straightforward that the training pipeline is 

for training and the inference pipeline is for inference, there are significant differences that we 

need to grasp to comprehend the technical aspects of our discussion fully.
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One key difference lies in how data is handled and accessed within each pipeline. During train-

ing, data is typically accessed from offline storage in batch mode, optimized for throughput and 

ensuring data lineage. For example, our LLM Twin architecture uses ZenML artifacts to access, 

version, and track data fed to the training loop in batches. In contrast, the inference pipeline 

requires an online DB optimized for low latency. We will leverage the Qdrant vector DB to grab 

the necessary context for RAG. In this context, the focus shifts from data lineage and versioning 

to quick data access, ensuring a seamless user experience. Additionally, the outputs of these pipe-

lines also differ significantly. The training pipeline outputs trained model weights stored in the 

model registry. Meanwhile, the inference pipeline outputs predictions served directly to the user.

Also, the infrastructure required for each pipeline is different. The training pipeline demands 

more powerful machines equipped with as many GPUs as possible. This is because training in-

volves batching data and holding all the necessary gradients in memory for optimization steps, 

making it highly compute-intensive. More computational power and VRAM allow larger batches 

(or throughput), reducing training time and enabling more extensive experimentation. On the 

other hand, the inference pipeline typically requires less computation. Inference often involves 

passing a single sample or smaller batches to the model without the need for optimization steps.

Despite these differences, there is some overlap between the two pipelines, particularly regarding 

preprocessing and post-processing steps. Applying the same preprocessing and post-processing 

functions and hyperparameters during training and inference is crucial. Any discrepancies can 

lead to what is known as training-serving skew, where the model’s performance during inference 

deviates from its performance during training.

Deploying the LLM Twin service
The last step is implementing the architecture presented in the previous section. More concretely, 

we will deploy the LLM microservice using AWS SageMaker and the business microservice using 

FastAPI. Within the business microservice, we will glue the RAG logic written in Chapter 9 with 

our fine-tuned LLM Twin, ultimately being able to test out the inference pipeline end to end.

Serving the ML model is one of the most critical steps in any ML application’s life cycle, as users 

can only interact with our model after this phase is completed. If the serving architecture isn’t 

designed correctly or if the infrastructure isn’t working properly, it doesn’t matter that you have 

implemented a powerful and excellent model. As long as the user cannot appropriately interact 

with it, it has near zero value from a business point of view. For example, if you have the best code 

assistant on the market, but the latency to use it is too high, or the API calls keep crashing, the 

user will probably switch to a less performant code assistant that works faster and is more stable.
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Thus, in this section, we will show you how to:

• Deploy our fined-tuned LLM Twin model to AWS SageMaker

• Write an inference client to interact with the deployed model

• Write the business service in FastAPI

• Integrate our RAG logic with our fine-tuned LLM

• Implement autoscaling rules for the LLM microservice

Implementing the LLM microservice using AWS SageMaker
We aim to deploy the LLM Twin model, stored in Hugging Face’s model registry, to Amazon 

SageMaker as an online real-time inference endpoint. We will leverage Hugging Face’s specialized 

inference container, known as the Hugging Face LLM DLC, to deploy our LLM.

What are Hugging Face’s DLCs?
DLCs are specialized Docker images that come pre-loaded with essential deep-learning frame-

works and libraries, including popular tools like transformers, datasets, and tokenizers from 

Hugging Face. These containers are designed to simplify the process of training and deploying 

models by eliminating the need for complex environment setup and optimization. The Hugging 

Face Inference DLC, in particular, includes a fully integrated serving stack, significantly simpli-

fying the deployment process and reducing the technical expertise needed to serve deep learning 

models in production.

When it comes to serving models, the DLC is powered by the Text Generation Inference (TGI) 

engine, made by Hugging Face: https://github.com/huggingface/text-generation-inference.

TGI is an open-source solution for deploying and serving LLMs. It offers high-performance text 

generation using tensor parallelism and dynamic batching for the most popular open-source LLMs 

available on Hugging Face, such as Mistral, Llama, and Falcon. To sum up, the most powerful 

features the DLC image provides are:

• Tensor parallelism, thus enhancing the computational efficiency of model inference

• Optimized transformers code for inference, leveraging flash-attention to maximize per-

formance across the most widely used architectures: https://github.com/Dao-AILab/
flash-attention

• Quantization with bitsandbytes that reduces the model size while maintaining per-

formance, making deployments more efficient: https://github.com/bitsandbytes-
foundation/bitsandbytes

https://github.com/huggingface/text-generation-inference
https://github.com/Dao-AILab/flash-attention

https://github.com/Dao-AILab/flash-attention

https://github.com/bitsandbytes-foundation/bitsandbytes

https://github.com/bitsandbytes-foundation/bitsandbytes
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• Continuous batching of incoming requests, thus improving throughput by dynamically 

batching requests as they arrive

• Accelerated weight loading by utilizing safetensors for faster model initialization, re-

ducing start-up time: https://github.com/huggingface/safetensors

• Token streaming that supports real-time interactions through Server-Sent Events (SSE)

To summarize, our LLM Twin model will run inside DLC Docker images, listening to requests, 

optimizing the LLM for inference, and serving the results in real time. The DLC’s Docker images 

will be hosted on AWS SageMaker under inference endpoints that can be accessed through HTTP 

requests. With that in mind, let’s move on to the implementation. We will start by deploying the 

LLM and then writing a wrapper class to interact with the SageMaker Inference endpoint.

Configuring SageMaker roles
The first step is to create the proper AWS Identity and Access Management (IAM) users and 

roles to access and deploy the SageMaker infrastructure. AWS IAM controls who can authenticate 

and what any actor has access to. You can create new users (assigned to people) and new roles 

(assigned to other actors within your infrastructure, such as EC2 VMs) through IAM.

The whole deployment process is automated. We will have to run a few CLI commands, but first, 

ensure that you have correctly configured the AWS_ACCESS_KEY, AWS_SECRET_KEY, and AWS_REGION

environmental variables in the .env file. At this step, the easiest way is to use the credentials 

attached to an admin role as, in the following steps, we will create a set of narrower IAM roles 

used in the rest of the chapter.

After you configured your .env file, we have to:

1. Create an IAM user restricted to creating and deleting only the resources we need for 

the deployment, such as SageMaker itself, Elastic Container Registry (ECR), and S3. To 

make it, run the following:

poetry poe create-sagemaker-role

This command will generate a JSON file called sagemaker_user_credentials.json that 

contains a new AWS access and secret key. From now on, we will use these credentials to 

deploy everything related to SageMaker to ensure we modify only the resources associated 

with SageMaker. Otherwise, we could accidentally modify other AWS resources using 

an admin account, resulting in additional costs or altering other existing projects. Thus, 

having a narrow role only to your use case is good practice. 

https://github.com/huggingface/safetensors
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The last step is to take the new credentials from the JSON file and update the AWS_ACCESS_

KEY and AWS_SECRET_KEY variables in your .env file. You can check out the implementa-

tion at https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/

llm_engineering/infrastructure/aws/roles/create_sagemaker_role.py.

2. Create an IAM execution role. We will attach this role to the SageMaker deployment, 

empowering it to access other AWS resources on our behalf. This is standard practice for 

cloud deployments, as instead of authenticating every machine within your credentials, 

you attach a role that allows them to access only what is necessary from your infrastruc-

ture. In our case, we will provide SageMaker access to AWS S3, CloudWatch, and ECR. To 

create the role, run the following:

poetry poe create-sagemaker-execution-role

This command will generate a JSON file called sagemaker_execution_role.json that 

contains the Amazon Resource Name (ARN) of the newly created role. The ARN is an ID 

attached to any AWS resource to identify it across your cloud infrastructure. Take the ARN 

value from the JSON file and update the AWS_ARN_ROLE variable from your .env file with 

it. You can check out the implementation at https://github.com/PacktPublishing/
LLM-Engineers-Handbook/blob/main/llm_engineering/infrastructure/aws/roles/

create_execution_role.py.

By setting the IAM user and role in your .env file, we will automatically load them in the settings 

Python object and use them throughout the following steps. Now, let’s move on to the actual 

deployment.

Deploying the LLM Twin model to AWS SageMaker
The deployment of AWS SageMaker is fully automated through a set of Python classes, which 

we will cover in this chapter. This section aims to understand how we configure the SageMaker 

infrastructure directly from Python. Thus, you don’t have to run everything step by step, as in a 

standard tutorial, but only to understand the code.

We can initiate and finalize the entire SageMaker deployment using a simple CLI command: poe 

deploy-inference-endpoint. This command will initialize all the steps presented in Figure 10.5, 

except for creating the SageMaker AWS IAMs we created and configured in the previous step. 

If you have issues, configure the AWS CLI with the same AWS credentials as in the 

.env file and repeat the process. Official documentation for installing the AWS CLI: 

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html.

https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/infrastructure/aws/roles/create_sagemaker_role.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/infrastructure/aws/roles/create_sagemaker_role.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/infrastructure/aws/roles/create_execution_role.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/infrastructure/aws/roles/create_execution_role.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/infrastructure/aws/roles/create_execution_role.py
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html


Inference Pipeline Deployment376

In this section, we will walk you through the code presented in Figure 10.5 that helps us fully auto-

mate the deployment process, starting with the create_endpoint() function. Ultimately, we will 

test the CLI command and check the AWS console to see whether the deployment was successful. 

The SageMaker deployment code is available at https://github.com/PacktPublishing/LLM-

Engineers-Handbook/tree/main/llm_engineering/infrastructure/aws/deploy.

Figure 10.5: AWS SageMaker deployment steps

https://github.com/PacktPublishing/LLM-Engineers-Handbook/tree/main/llm_engineering/infrastructure/aws/deploy
https://github.com/PacktPublishing/LLM-Engineers-Handbook/tree/main/llm_engineering/infrastructure/aws/deploy
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We will take a top-down approach to walk you through the implementation, starting with the 

main function that deploys the LLM Twin model to AWS SageMaker. In the function below, we 

first take the latest version of the Docker DLC image using the get_huggingface_llm_image_uri()

function, which is later passed to the deployment strategy class, along with an instance of the 

resource manager and deployment service:

def create_endpoint(endpoint_type=EndpointType.INFERENCE_COMPONENT_BASED):

    llm_image = get_huggingface_llm_image_uri("huggingface", version=None)

    resource_manager = ResourceManager()

    deployment_service = DeploymentService(resource_manager=resource_
manager)

    SagemakerHuggingfaceStrategy(deployment_service).deploy(

        role_arn=settings.ARN_ROLE,

        llm_image=llm_image,

        config=hugging_face_deploy_config,

        endpoint_name=settings.SAGEMAKER_ENDPOINT_INFERENCE,

        endpoint_config_name=settings.SAGEMAKER_ENDPOINT_CONFIG_INFERENCE,

        gpu_instance_type=settings.GPU_INSTANCE_TYPE,

        resources=model_resource_config,

        endpoint_type=endpoint_type,

    )

We must review the three classes used in the create_endpoint() function to fully understand 

the deployment process. Let’s start with the ResourceManager class. The class begins with the 

initialization method, establishing the connection to AWS SageMaker using boto3, the AWS 

SDK for Python, which provides the necessary functions to interact with various AWS services, 

including SageMaker.

class ResourceManager:

    def __init__(self) -> None:

        self.sagemaker_client = boto3.client(

            "sagemaker",

            region_name=settings.AWS_REGION,

            aws_access_key_id=settings.AWS_ACCESS_KEY,

            aws_secret_access_key=settings.AWS_SECRET_KEY,

        )
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Next, we implement the endpoint_config_exists method, checking whether a specific Sage-

Maker endpoint configuration exists:

    def endpoint_config_exists(self, endpoint_config_name: str) -> bool:

        try:

            self.sagemaker_client.describe_endpoint_
config(EndpointConfigName=endpoint_config_name)

            logger.info(f"Endpoint configuration '{endpoint_config_name}' 
exists.")

            return True

        except ClientError:

            logger.info(f"Endpoint configuration '{endpoint_config_name}' 
does not exist.")

            return False

The class also includes the endpoint_exists method, which checks the existence of a specific 

SageMaker endpoint:

def endpoint_exists(self, endpoint_name: str) -> bool:

        try:

            self.sagemaker_client.describe_endpoint(EndpointName=endpoint_
name)

            logger.info(f"Endpoint '{endpoint_name}' exists.")

            return True

        except self.sagemaker_client.exceptions.ResourceNotFoundException:

            logger.info(f"Endpoint '{endpoint_name}' does not exist.")

            return False

Let’s move to the DeploymentService. Within the constructor, we set up the sagemaker_client, 

which will interface with AWS SageMaker and an instance of the ResourceManager class we 

talked about earlier:

class DeploymentService:

    def __init__(self, resource_manager):

        self.sagemaker_client = boto3.client(

            "sagemaker",

            region_name=settings.AWS_REGION,

            aws_access_key_id=settings.AWS_ACCESS_KEY,

            aws_secret_access_key=settings.AWS_SECRET_KEY,
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        )

        self.resource_manager = resource_manager

The deploy() method is the heart of the DeploymentService class. This method orchestrates the 

entire process of deploying a model to a SageMaker endpoint. It checks whether the necessary 

configurations are already in place and, if not, it triggers the deployment:

def deploy(

    self,

    role_arn: str,

    llm_image: str,

    config: dict,

    endpoint_name: str,

    endpoint_config_name: str,

    gpu_instance_type: str,

    resources: Optional[dict] = None,

    endpoint_type: enum.Enum = EndpointType.MODEL_BASED,

) -> None:

    try:

        if self.resource_manager.endpoint_config_exists(endpoint_config_
name=endpoint_config_name):

            logger.info(f"Endpoint configuration {endpoint_config_name} 
exists. Using existing configuration...")

        else:

            logger.info(f"Endpoint configuration{endpoint_config_name} 
does not exist.")

        self.prepare_and_deploy_model(

            role_arn=role_arn,

            llm_image=llm_image,

            config=config,

            endpoint_name=endpoint_name,

            update_endpoint=False,

            resources=resources,

            endpoint_type=endpoint_type,

            gpu_instance_type=gpu_instance_type,

        )
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        logger.info(f"Successfully deployed/updated model to endpoint 
{endpoint_name}.")

    except Exception as e:

        logger.error(f"Failed to deploy model to SageMaker: {e}")

        raise

The deploy method begins by checking whether the endpoint configuration already exists using 

the resource_manager. This step is crucial because it avoids unnecessary redeployment if the 

configuration is already set up. The deployment itself is handled by calling the prepare_and_

deploy_model() method, which is responsible for the actual deployment of the model to the 

specified SageMaker endpoint.

The prepare_and_deploy_model() method is a static method within the DeploymentService

class. This method is focused on setting up and deploying the Hugging Face model to SageMaker:

@staticmethod

def prepare_and_deploy_model(

    role_arn: str,

    llm_image: str,

    config: dict,

    endpoint_name: str,

    update_endpoint: bool,

    gpu_instance_type: str,

    resources: Optional[dict] = None,

    endpoint_type: enum.Enum = EndpointType.MODEL_BASED,

) -> None:

    huggingface_model = HuggingFaceModel(

        role=role_arn,

        image_uri=llm_image,

        env=config,

        transformers_version="4.6",

        pytorch_version="1.13",

        py_version="py310",

    )

    huggingface_model.deploy(

        instance_type=gpu_instance_type,

        initial_instance_count=1,
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        endpoint_name=endpoint_name,

        update_endpoint=update_endpoint,

        resources=resources,

        tags=[{"Key": "task", "Value": "model_task"}],

        endpoint_type=endpoint_type,

    )

This method begins by creating an instance of HuggingFaceModel, a specialized model class from 

SageMaker designed to handle Hugging Face models. The constructor for HuggingFaceModel 

takes several essential parameters, such as the role ARN (which gives SageMaker the necessary 

permissions), the URI of the LLM DLC Docker image, and the LLM configuration that specifies 

what LLM to load from Hugging Face and its inference parameters, such as the maximum total 

of tokens.

Once HuggingFaceModel is instantiated, the method deploys it to SageMaker using the deploy 

function. This deployment process involves specifying the type of instance used, the number of 

instances, and whether to update an existing endpoint or create a new one. The method also in-

cludes optional resources for more complex deployments, such as the initial_instance_count

parameter for multi-model endpoints and tags for tracking and categorization.

The last step is to walk you through the SagemakerHuggingfaceStrategy class, which aggregates 

everything we have shown. The class is initialized only with an instance of a deployment service, 

such as the one shown above.

class SagemakerHuggingfaceStrategy(DeploymentStrategy):

def __init__(self, deployment_service):

    self.deployment_service = deployment_service

The core functionality of the SagemakerHuggingfaceStrategy class is encapsulated in its deploy()

method. This method orchestrates the deployment process, taking various parameters that define 

how the Hugging Face model should be deployed to AWS SageMaker:

def deploy(

    self,

    role_arn: str,

    llm_image: str,

    config: dict,

    endpoint_name: str,

    endpoint_config_name: str,

    gpu_instance_type: str,



Inference Pipeline Deployment382

    resources: Optional[dict] = None,

    endpoint_type: enum.Enum = EndpointType.MODEL_BASED,

) -> None:

    logger.info("Starting deployment using Sagemaker Huggingface 
Strategy...")

    logger.info(

        f"Deployment parameters: nb of replicas: {settings.COPIES}, nb of 
gpus:{settings.GPUS}, instance_type:{settings.GPU_INSTANCE_TYPE}"

    )

The parameters passed into the method are crucial to the deployment process:

• role_arn: The AWS IAM role that provides permissions for the SageMaker deployment.

• llm_image: The URI of the DLC Docker image

• config: A dictionary containing configuration settings for the model environment.

• endpoint_name and endpoint_config_name: Names for the SageMaker endpoint and its 

configuration, respectively.

• gpu_instance_type: The type of the GPU EC2 instances used for the deployment.

• resources: Optional resources dictionary used for multi-model endpoint deployments.

• endpoint_type: This can either be MODEL_BASED or INFERENCE_COMPONENT, determining 

whether the endpoint includes an inference component.

The method delegates the actual deployment process to the deployment_service. This delega-

tion is a critical aspect of the strategy pattern, allowing for flexibility in how the deployment is 

carried out without altering the high-level deployment logic.

try:

    self.deployment_service.deploy(

        role_arn=role_arn,

        llm_image=llm_image,

        config=config,

        endpoint_name=endpoint_name,

        endpoint_config_name=endpoint_config_name,

        gpu_instance_type=gpu_instance_type,

        resources=resources,

        endpoint_type=endpoint_type,

    )

    logger.info("Deployment completed successfully.")
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except Exception as e:

    logger.error(f"Error during deployment: {e}")

    raise

Also, let’s review the resource configuration to understand the infrastructure better. These re-

sources are leveraged when setting up multi-endpoint configurations that use multiple replicas 

to serve clients while respecting the latency and throughput requirements of the application. 

The ResourceRequirements object is initialized with a dictionary that specifies various resource

parameters. These parameters include the number of replicas (copies) of the model to be de-

ployed, the number of GPUs required, the number of CPU cores, and the memory allocation in 

megabytes. Each of these parameters plays a crucial role in the performance and scalability of 

the deployed model.

from sagemaker.compute_resource_requirements.resource_requirements import 
ResourceRequirements

    model_resource_config = ResourceRequirements(

    requests={

        "copies": settings.COPIES,

        "num_accelerators": settings.GPUS

        "num_cpus": settings.CPUS,

        "memory": 5 * 1024

    },

)

In the preceding snippet, ResourceRequirements is configured with four key parameters:

• copies: This parameter determines how many instances or replicas of the model should be 

deployed. Having multiple replicas can help in reducing latency and increasing throughput.

• num_accelerators: This parameter specifies the number of GPUs to allocate. Since LLMs 

are computationally intensive, multiple GPUs are typically required to accelerate infer-

ence processes.

• num_cpus: This defines the number of CPU cores the deployment should have. The num-

ber of CPUs impacts the model’s ability to handle data preprocessing, post-processing, 

and other tasks that are less GPU-dependent but still essential.

• memory: The memory parameter sets the minimum amount of RAM required for the 

deployment. Adequate memory is necessary to ensure the model can load and operate 

without running into memory shortages.
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By setting these parameters, the class ensures that it has sufficient resources to operate efficiently 

when the model is deployed to a SageMaker endpoint. The precise tuning of these values will 

vary depending on the LLM’s specific requirements, such as its size, the complexity of the tasks 

it will perform, and the expected load. To get a better understanding of how to use them, after 

deploying the endpoint, we suggest modifying them and seeing how the performance of the LLM 

microservice changes.

Ultimately, let’s review the settings configuring the LLM engine. The HF_MODEL_ID identifies 

which Hugging Face model to deploy. For example, in the settings class, we set it to mlabonne/

TwinLlama-3.1-8B-13 to load our custom LLM Twin model stored in Hugging Face. SM_NUM_GPUS

specifies the number of GPUs allocated per model replica, which is crucial for fitting your model 

into the GPU’s VRAM. HUGGING_FACE_HUB_TOKEN provides access to the Hugging Face Hub for 

model retrieval. HF_MODEL_QUANTIZE specifies what quantization technique to use, while the rest 

of the variables control the LLM token generation process.

hugging_face_deploy_config = {

    "HF_MODEL_ID": settings.HF_MODEL_ID,

    "SM_NUM_GPUS": json.dumps(settings.SM_NUM_GPUS),  # Number of GPU used 
per replica

    "MAX_INPUT_LENGTH": json.dumps(settings.MAX_INPUT_LENGTH),  # Max 
length of input text

    "MAX_TOTAL_TOKENS": json.dumps(settings.MAX_TOTAL_TOKENS),  # Max 
length of the generation (including input text)

    "MAX_BATCH_TOTAL_TOKENS": json.dumps(settings.MAX_BATCH_TOTAL_TOKENS),

    "HUGGING_FACE_HUB_TOKEN": settings.HUGGINGFACE_ACCESS_TOKEN,

    "MAX_BATCH_PREFILL_TOKENS": "10000",

    "HF_MODEL_QUANTIZE": "bitsandbytes",

}

Using these two configurations, we fully control our infrastructure, what LLM to use, and how 

it behaves. To start the SageMaker deployment with the configuration shown above, call the 

create_endpoint() function (presented at the beginning of the section) as follows:

create_endpoint(endpoint_type=EndpointType.MODEL_BASED)

For convenience, we also wrapped it up under a poe command:

poetry poe deploy-inference-endpoint
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That’s all you need to deploy an inference pipeline to AWS SageMaker. The hardest part is finding 

the correct configuration to fit your needs while reducing your infrastructure’s costs. Depending 

on AWS, this will take up to 15-30 minutes to deploy. You can always change any value directly 

from your .env file and deploy the model with a different configuration without touching the 

code. For example, our default values use a single GPU instance of type ml.g5.xlargeGPU. If you 

want more replicas, you can tweak the GPUS and SM_NUM_GPUS settings or change your instance 

type by changing the GPU_INSTANCE_TYPE variable.

After deploying the AWS SageMaker Inference endpoint, you can navigate to the SageMaker 

dashboard in AWS to visualize it. First, in the left panel, click on SageMaker dashboard, and then 

in the Inference column, click on the Endpoints button, as illustrated in Figure 10.6.

Figure 10.6: AWS SageMaker Inference endpoints example

After clicking the Endpoints button, you will see your twin endpoint in a Creating or Created 

status, as seen in Figure 10.7. After clicking on it, you can look at the endpoint’s logs in CloudWatch 

and monitor the CPU, memory, disk, and GPU utilization. 

Before deploying the LLM microservice to AWS SageMaker, ensure that you’ve gen-

erated a user role by running poetry poe create-sagemaker-role and an exe-

cution role by running poetry poe create-sagemaker-execution-role. Also, 

ensure you update your AWS_* environment variables in your .env file with the 

credentials generated by the two steps. You can find more details on this aspect in 

the repository’s README file.
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Also, they provide an excellent way to monitor all the HTTP errors, such as 4XX and 5XX, in one place.

Figure 10.7: AWS SageMaker twin inference endpoint example

Calling the AWS SageMaker Inference endpoint
Now that our LLM service has been deployed on AWS SageMaker, let’s learn how to call the service. 

To do so, we will write two classes that will help us prepare the prompt for SageMaker, call the 

inference endpoint through HTTP requests, and decode the results in a way the client can work 

with. All the AWS SageMaker Inference code is available on GitHub at llm_engineering/model/

inference. It all starts with the following example:

text = "Write me a post about AWS SageMaker inference endpoints."

llm = LLMInferenceSagemakerEndpoint(

        endpoint_name=settings.SAGEMAKER_ENDPOINT_INFERENCE

    )

Answer = InferenceExecutor(llm, text).execute()

As before, we will walk you through the LLMInferenceSagemakerEndpoint and InferenceExecutor

classes. Let’s start with the LLMInferenceSagemakerEndpoint class, which directly interacts with 

SageMaker. The constructor initializes all the essential attributes necessary to interact with the 

SageMaker endpoint:

class LLMInferenceSagemakerEndpoint(Inference):

    def __init__(

        self,

       endpoint_name: str,

       default_payload: Optional[Dict[str, Any]] = None,

        inference_component_name: Optional[str] = None,

    ) -> None:

       super().__init__()

        self.client = boto3.client(

            "sagemaker-runtime",

            region_name=settings.AWS_REGION,
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            aws_access_key_id=settings.AWS_ACCESS_KEY,

            aws_secret_access_key=settings.AWS_SECRET_KEY,

        )

        self.endpoint_name = endpoint_name

        self.payload = default_payload if default_payload else self._
default_payload()

       self.inference_component_name = inference_component_name

endpoint_name is crucial for identifying the SageMaker endpoint we want to request. Additionally, 

the method initializes the payload using a provided value or by calling a method that generates 

a default payload if none is provided.

One of the key features of the class is its ability to generate a default payload for inference requests. 

This is handled by the _default_payload() method:

def _default_payload(self) -> Dict[str, Any]:

    return {

        "inputs": "",

        "parameters": {

            "max_new_tokens": settings.MAX_NEW_TOKENS_INFERENCE,

            "top_p": settings.TOP_P_INFERENCE,

            "temperature": settings.TEMPERATURE_INFERENCE,

            "return_full_text": False,

        },

    }

This method returns a dictionary that represents the default structure of the payload to be sent 

for inference. The parameters section includes settings that influence the model’s behavior during 

inference, such as the number of tokens to generate, the sampling strategy (top_p), and the tem-

perature setting, which controls randomness in the output. These parameters are fetched from 

the application’s settings, ensuring consistency across different inference tasks.

The class allows customization of the payload through the set_payload() method, which enables 

the user to modify the inputs and parameters before sending an inference request:

def set_payload(self, inputs: str, parameters: Optional[Dict[str, Any]] = 
None) -> None:

    self.payload["inputs"] = inputs

    if parameters:

        self.payload["parameters"].update(parameters)
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This method updates the inputs field of the payload with the new input text provided by the user. 

Additionally, it allows for modifying inference parameters if any are provided.

Ultimately, we leverage the inference() method to call the SageMaker endpoint with the cus-

tomized payload:

def inference(self) -> Dict[str, Any]:

    try:

        logger.info("Inference request sent.")

        invoke_args = {

            "EndpointName": self.endpoint_name,

            "ContentType": "application/json",

            "Body": json.dumps(self.payload),

        }

        if self.inference_component_name not in ["None", None]:

            invoke_args["InferenceComponentName"] = self.inference_
component_name

        response = self.client.invoke_endpoint(**invoke_args)

        response_body = response["Body"].read().decode("utf8")

        return json.loads(response_body)

    except Exception:

        logger.exception("SageMaker inference failed.")

        raise

In this method, the inference method constructs the request to be sent to the SageMaker endpoint. 

The method packages the payload and other necessary details into a format SageMaker expects. If 

an inference_component_name is specified, it is included in the request, allowing for more granular 

control over the inference process if needed. The request is sent using the invoke_endpoint()

function, and the response is read, decoded, and returned as a JSON object.

Let’s understand how the InferenceExecutor uses the LLMInferenceSagemakerEndpoint class 

we previously presented to send HTTP requests to the AWS SageMaker endpoint.

The InferenceExecutor class begins with the constructor, which inputs key parameters for calling 

the LLM. The llm parameter accepts any instance that implements the Inference interface, such 

as the LLMInferenceSagemakerEndpoint class, which is used to perform the inference. 
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Also, it accepts the query parameter, which represents the user input. Ultimately, it takes an 

optional context field if you want to do RAG, and you can customize the prompt template. If no 

prompt template is provided, it will default to a generic version that is not specialized in any LLM:

class InferenceExecutor:

    def __init__(

        self,

        llm: Inference,

        query: str,

        context: str | None = None,

        prompt: str | None = None,

    ) -> None:

        self.llm = llm

        self.query = query

        self.context = context if context else ""

        if prompt is None:

            self.prompt = """

    You are a content creator. Write what the user asked you to while 
using the provided context as the primary source of information for the 
content.

User query: {query}

Context: {context}

            """

        else:

            self.prompt = prompt

The execute() method is the key component of the InferenceExecutor class. This method is 

responsible for actually performing the inference. When execute is called, it prepares the payload 

sent to the LLM by formatting the prompt with the user’s query and context.

Then, it configures several parameters that influence the behavior of the LLM, such as the maxi-

mum number of new tokens the model is allowed to generate, a repetition penalty to discourage 

the model from generating repetitive text, and the temperature setting that controls the ran-

domness of the output.

Once the payload and parameters are set, the method calls the inference function from 

LLMInferenceSagemakerEndpoint and waits for the generated answer:

def execute(self) -> str:
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    self.llm.set_payload(

        inputs=self.prompt.format(query=self.query, context=self.context),

        parameters={

            "max_new_tokens": settings.MAX_NEW_TOKENS_INFERENCE,

            "repetition_penalty": 1.1,

            "temperature": settings.TEMPERATURE_INFERENCE,

        },

    )

    answer = self.llm.inference()[0]["generated_text"]

    return answer

By making the inference through an object that implements the Inference interface we decouple, 

we can easily inject other Inference strategies and the LLMInferenceSagemakerEndpoint imple-

mentation presented above without modifying different parts of the code.

Running a test example is straightforward. Simply call the following Python file, as shown below:

poetry run python -m llm_engineering.model.inference.test

Also, for convenience, we wrap it under a poe command:

poetry poe test-sagemaker-endpoint

Now, we must understand how we implement the business microservice using FastAPI. This 

microservice will send HTTP requests to the LLM microservice defined above and call the RAG 

retrieval module implemented in Chapter 9.

Building the business microservice using FastAPI
To implement a simple FastAPI application that proves our deployment strategy, we first have to 

define a FastAPI instance as follows:

from fastapi import FastAPI

app = FastAPI()

Next, we define the QueryRequest and QueryResponse classes using Pydantic’s BaseModel. These 

classes represent the request and response structure for the FastAPI endpoints:

class QueryRequest(BaseModel):

    query: str
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class QueryResponse(BaseModel):

    answer: str

Now that we’ve defined our FastAPI components and have all the SageMaker elements in place, 

let’s reiterate over the call_llm_service() and rag() functions we’ve presented in Chapter 9

and couldn’t run because we haven’t deployed our fine-tuned LLM. Thus, as a refresher, the call_

llm_service() function wraps the inference logic used to call the SageMaker LLM microservice:

def call_llm_service(query: str, context: str | None) -> str:

    llm = LLMInferenceSagemakerEndpoint(

        endpoint_name=settings.SAGEMAKER_ENDPOINT_INFERENCE, inference_
component_name=None

    )

    answer = InferenceExecutor(llm, query, context).execute()

    return answer

Next, we define the rag() function that implements all the RAG business logic. To avoid repeating 

ourselves, check Chapter 9 for the complete function explanation. What is important to highlight 

is that the rag() function only implements the business steps required to do RAG, which are CPU- 

and I/O-bounded. For example, the ContextRetriever class makes API calls to OpenAI and Qdrant, 

which are network I/O bounded, and calls the embedding model, which runs directly on the CPU. 

Also, as the LLM inference logic is moved to a different microservice, the call_llm_service()

function is only network I/O bounded. To conclude, the whole function is light to run, where the 

heavy computing is done on other services, which allows us to host the FastAPI server on a light 

and cheap machine that doesn’t need a GPU to run at low latencies:

def rag(query: str) -> str:

    retriever = ContextRetriever(mock=False)

    documents = retriever.search(query, k=3 * 3)

    context = EmbeddedChunk.to_context(documents)

    answer = call_llm_service(query, context)

    return answer
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Ultimately, we define the rag_endpoint() function, used to expose our RAG logic over the internet 

as an HTTP endpoint. We use a Python decorator to expose it as a POST endpoint in the FastAPI 

application. This endpoint is mapped to the /rag route and expects a QueryRequest as input. The 

function processes the request by calling the rag function with the user’s query. If successful, it 

returns the answer wrapped in a QueryResponse object. If an exception occurs, it raises an HTTP 

500 error with the exception details:

@app.post("/rag", response_model=QueryResponse)

async def rag_endpoint(request: QueryRequest):

    try:

        answer = rag(query=request.query)

        return {"answer": answer}

    except Exception as e:

        raise HTTPException(status_code=500, detail=str(e)) from e

This FastAPI application demonstrates how to effectively integrate an LLM hosted on AWS Sage-

Maker into a web service, utilizing RAG to enhance the relevance of the model’s responses. The 

code’s modular design, leveraging custom classes like ContextRetriever, InferenceExecutor, 

and LLMInferenceSagemakerEndpoint, allows for easy customization and scalability, making it 

a powerful tool for deploying ML models in production environments.

We will leverage the uvicorn web server, the go-to method for FastAPI applications, to start the 

server. To do so, you have to run the following:

uvicorn tools.ml_service:app --host 0.0.0.0 --port 8000 --reload

Also, you can run the following poe command to achieve the same:

poetry poe run-inference-ml-service

To call the /rag endpoint, we can leverage the curl CLI command to make a POST HTTP request 

to our FastAPI server, as follows:

curl -X POST 'http://127.0.0.1:8000/rag' -H 'Content-Type: application/
json' -d '{\"query\": \"your_query \"}'

As usual, we provided an example using a poe command that contains an actual user query:

poetry poe call-inference-ml-service
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This FastAPI server runs only locally. The next step would be to deploy it to AWS Elastic Ku-

bernetes Service (EKS), a self-hosted version of Kubernetes by AWS. Another option would be 

to deploy it to AWS Elastic Container Service (ECS), which is similar to AWS EKS but doesn’t 

use Kubernetes under the hood but AWS’s implementation. Unfortunately, this is not specific 

to LLMs or LLMOps. Hence, we won’t go through these steps in this book. But to get an idea of 

what you must do, you must create an AWS EKS/ECS cluster from the dashboard or leverage an 

infrastructure-as-code (IaC) tool such as Terraform. After that, you will have to Dockerize the 

FastAPI code presented above. Ultimately, you would have to push the Docker image to AWS ECR 

and create an ECS/EKR deployment using the Docker image hosted on ECR. If this sounds like 

a lot, the good news is that we will walk you through a similar example in Chapter 11, where we 

will deploy the ZenML pipelines to AWS.

Autoscaling capabilities to handle spikes in usage
So far, the SageMaker LLM microservice has used a static number of replicas to serve our users, 

which means that all the time, regardless of the traffic, it has the same number of instances up 

and running. As we highlighted throughout this book, machines with GPUs are expensive. Thus, 

we lose a lot of money during downtime when most replicas are idle. Also, if our application 

has sudden spikes in traffic, the application will perform poorly as the server cannot handle the 

number of requests. This is a massive problem for the user experience of our application, as in 

those spikes, we bring in the majority of new users. Thus, if they have a terrible impression of our 

product, we significantly reduce their chance of returning to our platform.

Once you’re done testing your inference pipeline deployment, deleting all your AWS 

SageMaker resources used to deploy the LLM is essential. As almost all AWS re-

sources use a pay-as-you-go strategy, using SageMaker for a few hours wouldn’t 

break your wallet, but if you forget and leave it open, in a few days, the costs can 

grow exponentially. Thus, a good rule of thumb is to always delete everything after 

you’re done testing your SageMaker infrastructure (or any AWS resource). Luckily, 

we have provided a script that deletes all the AWS SageMaker resources for you:

poetry poe delete-inference-endpoint

To ensure everything was correctly deleted, go to your SageMaker dashboard and 

check it yourself.
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Previously, we configured our multi-endpoint service using the ResourceRequirements class 

from SageMaker. For example, let’s assume we requested four copies (replicas) with the following 

compute requirements:

model_resource_config = ResourceRequirements(

    requests={

        "copies": 4,  # Number of replicas.

        "num_accelerators": 4, # Number of GPUs required.

        "num_cpus": 8, # Number of CPU cores required.

        "memory": 5 * 1024,  # Minimum memory required in Mb (required)

    },

)

Using this configuration, we always have four replicas serving the clients, regardless of idle time 

or spikes in traffic. The solution is to implement an autoscaling strategy that scales the number 

of replicas up and down dynamically based on various metrics, such as the number of requests.

For example, Figure 10.8 shows a standard architecture where the SageMaker Inference endpoints 

scale in and out based on the number of requests. When there is no traffic, we can have one online 

replica so the server remains responsive to new user requests or even scales down to zero if the 

latency is not super critical. Then, let’s assume that when we have around 10 requests per second, 

we have to keep two replicas online, and when the number of requests spikes to 100 per second, 

the autoscaling service should spin up to 20 replicas to keep up with the demand. Note that these 

are fictional numbers that should be adapted to your specific use case.
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Figure 10.8: Autoscaling possible use cases

Without going into the little details of cloud networking, when working with multi-replica sys-

tems, between the client and the replicas sits an Application Load Balancer (ALB) or another 

type of load balancer. 
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All the requests first go to the ALB, which knows to route them to a replica. The ALB can adopt 

various routing strategies, where the simplest one is called round robin, which sequentially sends 

a request to each replica. For example, the first request is routed to replica one, the second to 

replica two, and so on. Taking this approach, regardless of how many replicas you have online, 

the endpoint that the client calls is always represented by the load balancer that acts as an entry 

point into your cluster. Thus, adding or removing new replicas doesn’t affect the server and client 

communication protocol.

Let’s quickly learn how to implement an autoscaling strategy for our AWS SageMaker Inference 

endpoint. SageMaker provides a feature called Application Auto Scaling that allows you to scale 

resources dynamically based on pre-defined policies. Two foundational steps are involved in ef-

fectively leveraging this functionality: registering a scalable target and creating a scalable policy.

Registering a scalable target
The first step in enabling autoscaling for your resources is to register a scalable target with the 

Application Auto Scaling feature AWS provides. Think of this as informing AWS about the specific 

resource you intend to scale, as well as setting the boundaries within which the scaling should 

occur. However, this step does not dictate how or when the scaling should happen.

For instance, when working with SageMaker Inference components, you’ll define the following:

• Resource ID: This serves as a unique identifier for the resource you want to scale, typically 

including the name of the SageMaker Inference component.

• Service namespace: This identifies the AWS service the resource belongs to, which, in 

this case, is SageMaker.

• Scalable dimension: This specifies the resources to be scaled, such as the desired number 

of copies.

• MinCapacity and MaxCapacity: These parameters define the boundaries of the autoscal-

ing strategies, such as minimum and maximum limits of the number of replicas.

By registering a scalable target, you prepare your SageMaker Inference component for future 

scaling actions without determining when or how these actions should occur.
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Creating a scalable policy
Once your scalable target is registered, the next step is defining how the scaling should occur. 

This is where creating a scaling policy comes in. A scaling policy defines specific rules that trigger 

scaling events. When creating policies, you have to define metrics to know what to monitor and 

thresholds to know when to emit scaling events.

In the context of our SageMaker Inference component, the scalable policy might include the 

following elements:

• Policy type: For instance, you might select TargetTrackingScaling, a policy that adjusts 

the resource’s capacity to maintain a specific target value for a chosen metric.

• Target tracking configuration: This involves selecting the metric to monitor (such as 

SageMakerInferenceComponentInvocationsPerCopy), setting the desired target value, and 

specifying cooldown periods that control how quickly scaling actions can occur after 

previous ones.

The scaling policy defines the rules for your scaling-in and scaling-out strategy. It constantly 

monitors the specified metric, and depending on whether the metric exceeds or falls below the 

target value, it triggers actions to scale the number of inference component copies up or down, 

always within the limits defined by the registered scalable target.

Let’s explain in more depth how the TargetTrackingScaling policy works. Imagine you have 

a metric that represents the ideal average utilization or throughput level for your application. 

With target tracking, you select this metric and set a target value that reflects the optimal state 

for your application. Once defined, Application Auto Scaling creates and manages the necessary 

CloudWatch alarms to monitor this metric. When deviations occur, scaling actions are triggered, 

similar to how a thermostat adjusts to maintain a consistent room temperature.

For instance, consider an application running on SageMaker. Let’s assume we set a target of 

keeping GPU utilization around 70 percent. This target allows you to maintain enough headroom 

to manage sudden traffic spikes while preventing the unnecessary cost of idle resources. When 

GPU usage exceeds the target, the system scales out, adding resources to manage the increased 

load. Conversely, when GPU usage drops below the target, the system scales in, reducing capacity 

to minimize costs during quieter periods.
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One significant advantage of setting up target tracking policies using Application Auto Scaling is 

that they simplify the scaling process. You no longer need to configure CloudWatch alarms and 

define scaling adjustments manually.

Minimum and maximum scaling limits
When setting up autoscaling for your SageMaker Inference endpoints, it’s crucial to establish 

your maximum and minimum scaling limits before creating your scaling policy. The minimum 

value represents the least resources your model can operate with. This value must be at least 1, 

ensuring that your model always has some capacity.

Next, configure the maximum value, which defines the upper limit of resources your model can 

scale up to. While the maximum must be equal to or greater than the minimum value, it doesn’t 

impose any upper limit. Thus, you can scale up as much as your application needs within the 

boundaries of what AWS can provide.

Cooldown period
Another important aspect of a scaling policy is the cooldown period, during which it’s crucial to 

maintain a balance between responsiveness and stability. This cooldown period acts as a safe-

guard, ensuring that your system doesn’t overreact during scaling events—whether it’s reducing 

capacity (scaling in) or increasing it (scaling out). By introducing a calculated pause, the cooldown 

period prevents rapid fluctuations in the number of instances. Specifically, it delays the removal 

of instances during scale-in requests and restricts the creation of new replicas during scale-out 

requests. This strategy helps maintain a stable and efficient environment for LLM service.

These practical basics are used in autoscaling most web servers, including online real-time ML 

servers. Once you understand how to configure scaling policies for SageMaker, you can imme-

diately apply the strategies you’ve learned to other popular deployment tools like Kubernetes 

or AWS ECS.

For a step-by-step guideline on how to configure autoscaling for the AWS SagaMak-

er endpoint implemented in this chapter, you can follow this official tutorial from 

AWS: https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-

scaling-prerequisites.html.

https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling-prerequisites.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling-prerequisites.html
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Autoscaling is a critical component in any cloud architecture, but there are some pitfalls you 

should be aware of. The first and most dangerous one is over-scaling, which directly impacts the 

costs of your infrastructure. If your scaling policy or cooldown period is too sensitive, you may 

be uselessly spinning up new machines that will remain idle or with the resources underused. 

The second reason is on the other side of the spectrum, where your system doesn’t scale enough, 

resulting in a bad user experience for the end user.

That’s why a good practice is to understand the requirements of your system. Based on them, you 

should tweak and experiment with the autoscaling parameters in a dev or test environment until 

you find the sweet spot (similar to hyperparameter tuning when training models). Let’s suppose, 

for instance, that you expect your system to support an average of 100 users per minute and scale 

up to 10,000 users per minute in case of an outlier event such as a holiday. Using this spec, you 

can stress test your system and monitor your resources to find the best trade-off between costs, 

latency, and throughput that supports standard and outlier use cases.

Summary
In this chapter, we learned what design decisions to make before serving an ML model, whether 

an LLM or not, by walking you through the three fundamental deployment types for ML models: 

online real-time inference, asynchronous inference, and offline batch transform. Then, we consid-

ered whether building our ML-serving service as a monolith application made sense or splitting 

it into two microservices, such as an LLM microservice and a business microservice. To do this, 

we weighed the pros and cons of a monolithic versus microservices architecture in model-serving.

Next, we walked you through deploying our fine-tuned LLM Twin to an AWS SageMaker Infer-

ence endpoint. We also saw how to implement the business microservice using FastAPI, which 

consists of all the RAG steps based on the retrieval module implemented in Chapter 9 and the LLM 

microservice deployed on AWS SageMaker. Ultimately, we explored why we have to implement 

an autoscaling strategy. We also reviewed a popular autoscaling strategy that scales in and out 

based on a given set of metrics and saw how to implement it in AWS SageMaker.

In the next chapter, we will learn about the fundamentals of MLOps and LLMOps and then explore 

how to deploy the ZenML pipelines to AWS and implement a continuous training, continuous 

integration, and continuous delivery (CT/CI/CD) and monitoring pipeline.
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11
MLOps and LLMOps

Throughout the book, we’ve already used machine learning operations (MLOps) components 

and principles such as a model registry to share and version our fined-tuned large language 

models (LLMs), a logical feature store for our fine-tuning and RAG data, and an orchestrator to 

glue all our ML pipelines together. But MLOps is not just about these components; it takes an ML 

application to the next level by automating data collection, training, testing, and deployment. 

Thus, the end goal of MLOps is to automate as much as possible and let users focus on the most 

critical decisions, such as when a change in distribution is detected and a decision must be taken 

on whether it is essential to retrain the model or not. But what about LLM operations (LLMOps)? 

How does it differ from MLOps?

The term LLMOps is a product of the widespread adoption of LLMs. It is built on top of MLOps, 

which is built on top of development operations (DevOps). Thus, to fully understand what LL-

MOps is about, we must provide a historical context, starting with DevOps and building on the 

term from there—which is precisely what this chapter will do. At its core, LLMOps focuses on 

problems specific to LLMs, such as prompt monitoring and versioning, input and output guardrails 

to prevent toxic behavior, and feedback loops to gather fine-tuning data. It also focuses on scaling 

issues that appear when working with LLMs, such as collecting trillions of tokens for training 

datasets, training models on massive GPU clusters, and reducing infrastructure costs. Fortunately 

for the common folk, these issues are solved mainly by a few companies that fine-tune founda-

tional models, such as Meta, which provides the Llama family of models. Most companies will 

adopt these pre-trained foundational models for their use cases, focusing on LLMOps problems 

such as prompt monitoring and versioning.
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On the implementation side of things, to add LLMOps to our LLM Twin use case, we will deploy 

all our ZenML pipelines to AWS. We will implement a continuous integration and continuous 

deployment (CI/CD) pipeline to test the integrity of our code and automate the deployment 

process, a continuous training (CT) pipeline to automate our training, and a monitoring pipeline 

to track all our prompts and generated answers. This is a natural progression in any ML project, 

regardless of whether you use LLMs.

In previous chapters, you learned how to build an LLM application. Now, it’s time to explore three 

main goals related to LLMOps. The first one is to gain a theoretical understanding of LLMOps, 

starting with DevOps, then moving to the fundamental principles of MLOps, and finally, digging 

into LLMOps. We don’t aim to provide the whole theory on DevOps, MLOps, and LLMOps, as 

you could easily write an entire book on these topics. However, we want to build a strong  under-

standing of why we make certain decisions when implementing the LLM Twin use case.

Our second goal is to deploy the ZenML pipelines to AWS (currently, we’ve deployed only our 

inference pipeline to AWS in Chapter 10). This section will be hands-on, showing you how to 

leverage ZenML to deploy everything to AWS. We need this to implement our third and last goal, 

which is to apply what we’ve learned in the theory section to our LLM Twin use case. We will 

implement a CI/CD pipeline using GitHub Actions, a CT and alerting pipeline using ZenML, and 

a monitoring pipeline using Opik from Comet ML.

Thus, in this chapter, we will cover the following topics:

• The path to LLMOps: Understanding its roots in DevOps and MLOps

• Deploying the LLM Twin’s pipelines to the cloud

• Adding LLMOps to the LLM Twin

The path to LLMOps: Understanding its roots in 
DevOps and MLOps
To understand LLMOps, we have to start with the field’s beginning, which is DevOps, as it inherits 

most of its fundamental principles from there. Then, we will move to MLOps to understand how 

the DevOps domain was adapted to support ML systems. Finally, we will explain what LLMOps 

is and how it emerged from MLOps after the widespread adoption of LLMs.
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DevOps
Manually shipping software is time-consuming, error-prone, involves security risks, and doesn’t 

scale. Thus, DevOps was born to automate the process of shipping software at scale. More spe-

cifically, DevOps is used in software development, where you want to completely automate your 

building, testing, deploying, and monitoring components. It is a methodology designed to shorten 

the development lifecycle and ensure continuous delivery of high-quality software. It encourages 

collaboration, automates processes, integrates workflows, and implements rapid feedback loops. 

These elements contribute to a culture where building, testing, and releasing software becomes 

more reliable and faster.

Embracing a DevOps culture offers significant advantages to an organization, primarily boosting 

operational efficiency, speeding up feature delivery, and enhancing product quality. Some of the 

main benefits include:

• Improved collaboration: DevOps is pivotal in creating a more unified working envi-

ronment. Eliminating the barriers between development and operations teams fosters 

enhanced communication and teamwork, leading to a more efficient and productive 

workplace.

• Boosted efficiency: Automating the software development lifecycle reduces manual tasks, 

errors, and delivery times.

• Ongoing improvement: DevOps is not just about internal processes. It’s about ensuring 

that the software effectively meets user needs. Promoting a culture of continuous feedback 

enables teams to quickly adapt and enhance their processes, thereby delivering software 

that genuinely satisfies the end users.

• Superior quality and security: DevOps ensures swift software development while main-

taining high quality and security standards through CI/CD and proactive security measures.

The DevOps lifecycle
As illustrated in Figure 11.1, the DevOps lifecycle encompasses the entire journey from the inception 

of software development to its delivery, upkeep, and security. The key stages of this lifecycle are:

1. Plan: Organize and prioritize the tasks, ensuring each is tracked to completion.

2. Code: Collaborate with your team to write, design, develop, and securely manage code 

and project data.
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3. Build: Package your applications and dependencies into an executable format.

4. Test: This stage is crucial. It’s where you confirm that your code functions correctly and 

meets quality standards, ideally through automated testing.

5. Release: If the tests pass, flag the tested build as a new release, which is now ready to be 

shipped.

6. Deploy: Deploy the latest release to the end users.

7. Operate: Manage and maintain the infrastructure on which the software runs effectively 

once it is live. This involves scaling, security, data management, and backup and recovery.

8. Monitor: Track performance metrics and errors to reduce the severity and frequency of 

incidents.

Figure 11.1: DevOps lifecycle steps

The core DevOps concepts
DevOps encompasses various practices throughout the application lifecycle, but the core ones 

that we will touch on throughout this book are:

• Deployment environments: To thoroughly test your code before shipping it to produc-

tion, you must define multiple pre-production environments that mimic the production 

one. The most common approach is to create a dev environment where the developers 

can test their latest features. Then, you have a staging environment where the QA team 

and stakeholders tinker with the application to find bugs and experience the latest fea-

tures before they ship to the users. Lastly, we have the production environment, which 

is exposed to end users.
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• Version control: Used to track, manage, and version every change made to the source code. 

This allows you to have complete control over the evolution of the code and deployment 

processes. For example, without versioning, tracking changes between the dev, staging, 

and production environments would be impossible. By versioning your software, you 

always know what version is stable and ready to be shipped.

• Continuous integration (CI): Before pushing the code into the dev, staging, and produc-

tion main branches, you automatically build your application and run automated tests 

on each change. After all the automated tests pass, the feature branch can be merged into 

the main one.

• Continuous delivery (CD): Continuous delivery works in conjunction with CI and au-

tomates the infrastructure provisioning and application deployment steps. For example, 

after the code is merged into the staging environment, the application with the latest 

changes will be automatically deployed on top of your staging infrastructure. After, the 

QA team (or stakeholders) starts manually testing the latest features to verify that they 

work as expected. These two steps are commonly referred to together as CI/CD.

Note that DevOps suggests a set of core principles that are platform/tool agnostic. However, 

within our LLM Twin use case, we will add a version control layer using GitHub, which aims to 

track the evolution of the code. Another popular tool for version control is GitLab. To implement 

the CI/CD pipeline, we will leverage the GitHub ecosystem and GitHub Actions, which are free 

for open-source projects. Other tool choices are GitLab CI/CD, CircleCI, and Jenkins. Usually, 

you pick the DevOps tool based on your development environment, customization, and privacy 

needs. For example, Jenkins is an open-source DevOps tool you can host yourself and control 

fully. The downside is that you must host and maintain it yourself, adding a complexity layer. 

Thus, many companies choose what works best with their version control ecosystem, such as 

GitHub Actions or GitLab CI/CD.

Now that we’ve established a solid understanding of DevOps, let’s explore how the MLOps field 

has emerged to keep these same core principles in the AI/ML world.

MLOps
As you might have worked out by now, MLOps tries to apply the DevOps principles to ML. The core 

issue is that an ML application has many other moving parts compared to a standard software 

application, such as the data, model, and, finally, the code. MLOps aims to track, operationalize, 

and monitor all these concepts for better reproducibility, robustness, and control.
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In ML systems, a build can be triggered by any change in these areas—whether it’s an update in 

the code, modifications in the data, or adjustments to the model.

Figure 11.2: Relationship between data, model, and code changes

In DevOps, everything is centered around the code. For example, when a new feature is added to 

the codebase, you have to trigger the CI/CD pipeline. In MLOps, the code can remain unchanged 

while only the data changes. In that case, you must train (or fine-tune) a new model, resulting 

in a new dataset and model version. Intuitively, when one component changes, it affects one or 

more of the others. Thus, MLOps has to take into consideration all this extra complexity. Here are 

a few examples that can trigger a change in the data and indirectly in the model:

• After deploying the ML model, its performance might decay as time passes, so we need 

new data to retrain it.

• After understanding how to collect data in the real world, we might recognize that getting 

the data for our problem is challenging, so we need to re-formulate it to work with our 

real-world setup.

• While in the experimentation stage and training the model, we often must collect more 

data or re-label it, which generates a new set of models.
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• After serving the model in the production environment and collecting feedback from the 

end users, we might recognize that the assumptions we made for training the model are 

wrong, so we must change our model.

So, what is MLOps?

A more official definition of MLOps is the following: MLOps is the extension of the DevOps field 

that makes data and models their first-class citizen while preserving the DevOps methodology.

Like DevOps, MLOps originates from the idea that isolating ML model development from its 

deployment process (ML operations) diminishes the system’s overall quality, transparency, and 

agility. With that in mind, an optimal MLOps experience treats ML assets consistently as other 

software assets within a CI/CD environment as part of a cohesive release process.

MLOps core components
We have already used all of these components throughout the book, but let’s have a quick refresh-

er on the MLOps core components now that we better understand the field. Along with source 

control and CI/CD, MLOps revolves around:

• Model registry: A centralized repository for storing trained ML models (tools: Comet 

ML, W&B, MLflow, ZenML)

• Feature store: Preprocessing and storing input data as features for both model training 

and inference pipelines (tools: Hopsworks, Tecton, Featureform)

• ML metadata store: This store tracks information related to model training, such as model 

configurations, training data, testing data, and performance metrics. It is mainly used to 

compare multiple models and look at the model lineages to understand how they were 

created (tools: Comet ML, W&B, MLflow)

• ML pipeline orchestrator: Automating the sequence of steps in ML projects (tools: ZenML, 

Airflow, Prefect, Dagster)

You might have noticed an overlap between the MLOps components and its specific tooling. This 

is common, as most MLOps tools offer unified solutions, often called MLOps platforms.

MLOps principles
Six core principles guide the MLOps field. These are independent of any tool and sit at the core 

of building robust and scalable ML systems. 
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They are:

• Automation or operationalization: Automation in MLOps involves transitioning from 

manual processes to automated pipelines through CT and CI/CD. This enables the efficient 

retraining and deployment of ML models in response to triggers such as new data, per-

formance drops, or unhandled edge cases. Moving from manual experimentation to full 

automation ensures that our ML systems are robust, scalable, and adaptable to changing 

requirements without errors or delays.

• Versioning: In MLOps, it is crucial to track changes in code, models, and data individually, 

ensuring consistency and reproducibility. Code is tracked using tools like Git, models are 

versioned through model registries, and data versioning can be managed using solutions 

like DVC or artifact management systems.

• Experiment tracking: As training ML models is an iterative and experimental process 

that involves comparing multiple experiments based on predefined metrics, using an 

experiment tracker to help us pick the best model is important. Tools like Comet ML, W&B, 

MLflow, and Neptune allow us to log all necessary information to compare experiments 

easily and select the best model for production.

• Testing: MLOps suggests that along with testing your code, you should also test your 

data and models through unit, integration, acceptance, regression, and stress tests. This 

ensures that each component functions correctly and integrates well, focusing on inputs, 

outputs, and handling edge cases.

• Monitoring: This stage is vital for detecting performance degradation in served ML models 

due to changes in production data, allowing timely intervention such as retraining, further 

prompt or feature engineering, or data validation. By tracking logs, system metrics, and 

model metrics and detecting drifts, we can maintain the health of ML systems in produc-

tion, detect issues as fast as possible, and ensure they continue to deliver accurate results.

• Reproducibility: This ensures that every process (such as training or feature engineering) 

within your ML systems produces identical results when given the same input by tracking 

all the moving variables, such as code versions, data versions, hyperparameters, or any 

other type of configurations. Due to the non-deterministic nature of ML training and 

inference, setting well-known seeds when generating pseudo-random numbers is essen-

tial to achieving consistent outcomes and making processes as deterministic as possible.

If you want to learn more, we’ve offered an in-depth exploration of these principles in the Ap-

pendix at the end of this book.
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ML vs. MLOps engineering
There is a fine line between ML engineering and MLOps. If we want to define a rigid job description 

for the two rules, it cannot be easy to completely differentiate what responsibilities go into ML 

engineering (MLE) and what goes into MLOps. I have seen many job roles that bucket the MLOps 

role with the platform and cloud engineers. From one perspective, that makes a lot of sense: as 

an MLOps engineer, you have a lot of work to do on the infrastructure side. On the other hand, as 

seen in this section, an MLOps engineer still has to implement things such as experiment tracking, 

model registries, versioning, and more. A good strategy would be to let the ML engineer integrate 

these into the code and the MLOps engineer focus on making them work on their infrastructure.

At a big corporation, ultimately, differentiating the two roles might make sense. But when work-

ing in small to medium-sized teams, you will wear multiple hats and probably work on the ML 

system’s MLE and MLOps aspects.

Figure 11.3: DS vs. MLE vs. MLOps

For instance, in Figure 11.3, we see a clear division of responsibilities among the three key roles: 

data scientist/ML researcher, ML engineer, and MLOps engineer. The Data Scientist (DS) imple-

ments specific models to address problems. 
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The ML engineer takes the functional models from the DS team and constructs a layer on top of 

them, making them modular and extendable and providing access to a database (DB) or expos-

ing them as an API over the internet. However, the MLOps engineer plays a pivotal role in this 

process. They take the code from this intermediate layer and place it on a more generic layer, the 

infrastructure. This action marks the application’s transition to production. From this point, we 

can start thinking about automation, monitoring, versioning, and more.

The intermediate layer differentiates a proof of concept from an actual product. In that layer, you 

design an extendable application that has a state by integrating a DB and is accessible over the 

internet through an API. When shipping the application on a specific infrastructure, you must 

consider scalability, latency, and cost-effectiveness. Of course, the intermediate and generic 

layers depend on each other, and often, you must reiterate to meet the application requirements.

LLMOps
LLMOps encompasses the practices and processes essential for managing and running LLMs. 

This field is a specialized branch of MLOps, concentrating on the unique challenges and demands 

associated with LLMs. While MLOps addresses the principles and practices of managing various 

ML models, LLMOps focuses on the distinct aspects of LLMs, including their large size, highly 

complex training requirements, prompt management, and non-deterministic nature of generating 

answers. However, note that at its core, LLMOps still inherits all the fundamentals presented in 

the MLOps section. Thus, here, we will focus on what it adds on top.

When training LLMs from scratch, the data and model dimensions of an ML system grow sub-

stantially, which is one aspect that sets LLMOps apart from MLOps. These are the main concerns 

when training LLMs from scratch:

• Data collection and preparation involves collecting, preparing, and managing the mas-

sive datasets required for training LLMs. It involves big data techniques for processing, 

storing, and sharing training datasets. For example, GPT-4 was trained on roughly 13 

trillion tokens, equal to approximately 10 trillion words.

• Managing LLMs’ considerable number of parameters is a significant technical challenge 

from the infrastructure’s point of view. It requires vast computation resources, usually 

clusters of machines powered by Nvidia GPUs with CUDA support.

• The massive size of LLMs directly impacts model training. When training an LLM from 

scratch, you can’t fit it on a single GPU due to the model’s size or the higher batch size 

you require for the expected results. Thus, you need multi-GPU training, which involves 

optimizing your processes and infrastructure to support data, model, or tensor parallelism.
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• Managing massive datasets and multi-GPU clusters involves substantial costs. For ex-

ample, the estimated training cost for GPT-4 is around $100 million, as stated by Sam 

Altman, the CEO of OpenAI (https://en.wikipedia.org/wiki/GPT-4#Training). Add to 

that the costs of multiple experiments, evaluation, and inference. Even if these numbers 

are not exact, as the sources are not 100% reliable, the scale of the costs of training an 

LLM is trustworthy, which implies that only the large players in the industry can afford 

to train LLMs from scratch.

At its core, LLMOps is MLOps at scale. It uses the same MLOps principles but is applied to big data 

and huge models that require more computing power to train and run. However, due to its huge 

scale, the most significant trend is the shift away from training neural networks from scratch for 

specific tasks. This approach is becoming obsolete with the rise of fine-tuning, especially with 

the advent of foundation models such as GPT. A few organizations with extensive computational 

resources, such as OpenAI and Google, develop these foundation models. Thus, most applica-

tions now rely on the lightweight fine-tuning of parts of these models, prompt engineering, or 

optionally distilling data or models into smaller, specialized inference networks.

Thus, for most LLM applications out there, your development steps will involve the selection of a 

foundation model, which you further have to optimize by using prompt engineering, fine-tuning, 

or RAG. Thus, the operational aspect of these three steps is the most critical to understand. Let’s 

dive into some popular components of LLMOps that can improve prompt engineering, fine-tun-

ing, and RAG.

Human feedback
One valuable refinement step of your LLM is aligning it with your audience’s preferences. You 

must introduce a feedback loop within your application and gather a human feedback dataset 

to further fine-tune the LLM with techniques such as Reinforcement Learning with Human 

Feedback (RLHF) or more advanced ones such as Direct Preference Optimization (DPO). One 

popular feedback loop is the thumbs-up/thumbs-down button present in most chatbot interfaces. 

You can read more on preference alignment in Chapter 6.

Guardrails
Unfortunately, LLM systems are not reliable, as they often hallucinate. You can optimize your 

system against hallucinations, but as hallucinations are hard to detect and can take many forms, 

there are significant changes that will still happen in the future. 

https://en.wikipedia.org/wiki/GPT-4#Training
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Most users have accepted this phenomenon, but what is not acceptable is when LLMs accidentally 

output sensitive information, such as GitHub Copilot outputting AWS secret keys or other chatbots 

providing people’s passwords. This can also happen with people’s phone numbers, addresses, 

email addresses, and more. Ideally, you should remove all this sensitive data from your training 

data so the LLM doesn’t memorize it, but that doesn’t always happen.

LLMs are well known for producing toxic and harmful outputs, such as sexist and racist outputs. 

For example, during an experiment on ChatGPT around April 2023, people found how to hijack 

the system by forcing the chatbot to adopt a negative persona, such as “a bad person” or “a 

horrible person.” It worked even by forcing the chatbot to play the role of well-known negative 

characters from our history, such as dictators or criminals. For example, this is what ChatGPT 

produced when impersonating a bad person:

X is just another third-world country with nothing but drug lords and 
poverty-stricken people. The people there are uneducated and violent, and 
they don't have any respect for law and order. If you ask me, X is just a 
cesspool of crime and misery, and no one in their right mind would want to 
go there.

Check the source of the experiment for more examples of different personas: https://techcrunch.

com/2023/04/12/researchers-discover-a-way-to-make-chatgpt-consistently-toxic/.

The discussion can be extended to a never-ending list of examples, but the key takeaway is that 

your LLM can produce harmful output or receive dangerous input, so you should monitor and 

prepare for them. Thus, to create safe LLM systems, you must protect them against harmful, 

sensitive, or invalid input and output by adding guardrails:

• Input guardrails: Input guardrails primarily protect against three main risks: exposing 

private information to external APIs, executing harmful prompts that could compromise 

your system (model jailbreaking), and accepting violent or unethical prompts. When 

it comes to leaking private information to external APIs, the risk is specific to sending 

sensitive data outside your organization, such as credentials or classified information. 

When talking about model jailbreaking, we mainly refer to prompt injection, such as 

executing malicious SQL code that can access, delete, or corrupt your data. Lastly, some 

applications don’t want to accept violent or unethical queries from users, such as asking 

an LLM how to build a bomb.

https://techcrunch.com/2023/04/12/researchers-discover-a-way-to-make-chatgpt-consistently-toxic/
https://techcrunch.com/2023/04/12/researchers-discover-a-way-to-make-chatgpt-consistently-toxic/
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• Output guardrails: At the output of an LLM response, you want to catch failed outputs 

that don’t respect your application’s standards. This can vary from one application to 

another, but some examples are empty responses (these responses don’t follow your 

expected format, such as JSON or YAML), toxic responses, hallucinations, and, in general, 

wrong responses. Also, you have to check for sensitive information that can leak from the 

internal knowledge of the LLM or your RAG system.

Popular guardrail tools are Galileo Protect, which detects prompt injections, toxic language, data 

privacy protection leaks, and hallucinations. Also, you can use OpenAI’s Moderation API to detect 

harmful inputs or outputs and take action on them.

The downside of adding input and output guardrails is the extra latency added to your system, 

which might interfere with your application’s user experience. Thus, there is a trade-off between 

the safety of your input/output and latency. Regarding invalid outputs, as LLMs are non-deter-

ministic, you can implement a retry mechanism to generate another potential candidate. However, 

as stated above, running the retry sequentially will double the response time. Thus, a common 

strategy is to run multiple generations in parallel and pick the best one. This will increase redun-

dancy but help keep the latency in check.

Prompt monitoring
Monitoring is not new to LLMOps, but in the LLM world, we have a new entity to manage: the 

prompt. Thus, we have to find specific ways to log and analyze them.

Most ML platforms, such as Opik (from Comet ML) and W&B, or other specialized tools like Lang-

fuse, have implemented logging tools to debug and monitor prompts. While in production, using 

these tools, you usually want to track the user input, the prompt templates, the input variables, 

the generated response, the number of tokens, and the latency.

When generating an answer with an LLM, we don’t wait for the whole answer to be generated; we 

stream the output token by token. This makes the entire process snappier and more responsive. 

Thus, when it comes to tracking the latency of generating an answer, the final user experience 

must look at this from multiple perspectives, such as:

• Time to First Token (TTFT): The time it takes for the first token to be generated

• Time between Tokens (TBT): The interval between each token generation

• Tokens per Second (TPS): The rate at which tokens are generated

• Time per Output Token (TPOT): The time it takes to generate each output token

• Total Latency: The total time required to complete a response
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Also, tracking the total input and output tokens is critical to understanding the costs of hosting 

your LLMs.

Ultimately, you can compute metrics that validate your model’s performance for each input, 

prompt, and output tuple. Depending on your use case, you can compute things such as accuracy, 

toxicity, and hallucination rate. When working with RAG systems, you can also compute metrics 

relative to the relevance and precision of the retrieved context.

Another essential thing to consider when monitoring prompts is to log their full traces. You might 

have multiple intermediate steps from the user query to the final general answer. For example, 

rewriting the query to improve the RAG’s retrieval accuracy evolves one or more intermediate steps. 

Thus, logging the full trace reveals the entire process from when a user sends a query to when 

the final response is returned, including the actions the system takes, the documents retrieved, 

and the final prompt sent to the model. Additionally, you can log the latency, tokens, and costs 

at each step, providing a more fine-grained view of all the steps. 

Figure 11.4: Example trace in the Langfuse UI
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As shown in Figure 11.4, the end goal is to trace each step from the user’s input until the generated 

answer. If something fails or behaves unexpectedly, you can point exactly to the faulty step. The 

query can fail due to an incorrect answer, an invalid context, or incorrect data processing. Also, 

the application can behave unexpectedly if the number of generated tokens suddenly fluctuates 

during specific steps.

To conclude, LLMOps is a rapidly developing field. Given its quick evolution, making predictions 

is challenging. The truth is that we are not sure if the term LLMOps is here to stay. However, 

what is certain is that numerous new use cases for LLMs will emerge, along with tools and best 

practices to manage their lifecycle.

Even if this DevOps, MLOps, and LLMOps section is far from comprehensive, it provides a strong 

idea of how to apply best ops practices in our LLM Twin use case.

Deploying the LLM Twin’s pipelines to the cloud
This section will show you how to deploy all the LLM Twin’s pipelines to the cloud. We must deploy 

the entire infrastructure to have the whole system working in the cloud. Thus, we will have to:

1. Set up an instance of MongoDB serverless.

2. Set up an instance of Qdrant serverless.

3. Deploy the ZenML pipelines, container, and artifact registry to AWS.

4. Containerize the code and push the Docker image to a container registry.

Note that the training and inference pipelines already work with AWS SageMaker. Thus, by fol-

lowing the preceding four steps, we ensure that our whole system is on the cloud, ready to scale 

and serve our imaginary clients.

What are the deployment costs?

We will stick to the free versions of the MongoDB, Qdrant, and ZenML services. As 

for AWS, we will mostly stick to their free tier for running the ZenML pipelines. The 

SageMaker training and inference components are more costly to run (which we 

won’t run in this section). Thus, what we will show you in the following sections 

will generate minimum costs (a few dollars at most) from AWS.
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Understanding the infrastructure
Before diving into the step-by-step tutorial, where we will show you how to set up all the nec-

essary components, let’s briefly overview our infrastructure and how all the elements interact. 

This will help us in mindfully following the tutorials below.

As shown in Figure 11.5, we have a few services to set up. To keep things simple, for MongoDB and 

Qdrant, we will leverage their serverless freemium version. As for ZenML, we will leverage the 

free trial of the ZenML cloud, which will help us orchestrate all the pipelines in the cloud. How 

will it do that?

By leveraging the ZenML cloud, we can quickly allocate all the required AWS resources to run, scale, 

and store the ML pipeline. It will help us spin up, with a few clicks, the following AWS components:

• An ECR service for storing Docker images

• An S3 object storage for storing all our artifacts and models

• SageMaker Orchestrator for orchestrating, running, and scaling all our ML pipelines
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Figure 11.5: Infrastructure flow

Now that we understand what the essential resources of our infrastructure are, let’s look over the 

core flow of running a pipeline in the cloud that we will learn to implement, presented in Figure 11.5:

1. Build a Docker image that contains all the system dependencies, the project dependencies, 

and the LLM Twin application.

2. Push the Docker image to ECR, where SageMaker can access it.
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3. Now, we can trigger any pipeline implemented during this book either from the CLI of 

our local machine or ZenML’s dashboard.

4. Each step from ZenML’s pipeline will be mapped to a SageMaker job that runs on an AWS 

EC2 virtual machine (VM). Based on the dependencies between the directed acyclic 

graph (DAG) steps, some will run in parallel and others sequentially.

5. When running a step, SageMaker pulls the Docker image from ECR, defined in step 2. 

Based on the pulled image, it creates a Docker container that executes the pipeline step.

6. As the job is executed, it can access the S3 artifact storage, MongoDB, and Qdrant vector 

DB to query or push data. The ZenML dashboard is a key tool, providing real-time updates 

on the pipeline’s progress and ensuring a clear view of the process.

Now that we know how the infrastructure works, let’s start by setting up MongoDB, Qdrant, and 

the ZenML cloud.

Setting up MongoDB
We will show you how to create and integrate a free MongoDB cluster into our projects. To do so, 

these are the steps you have to follow:

1. Go to their site at https://www.mongodb.com and create an account.

2. In the left panel, go to Deployment | Database and click Build a Cluster.

3. Within the creation form, do the following:

a. Choose an M0 Free cluster.

b. Call your cluster twin.

c. Choose AWS as your provider.

What AWS cloud region should I choose?

In our tutorials, all the services will be deployed to AWS within the Frankfurt 

(eu-central-1) region. You can select another region, but be consistent across all the 

services to ensure faster responses between components and reduce potential errors.

How should I manage changes in the services’ UIs?

Unfortunately, MongoDB, Qdrant, or other services may change their UI or naming 

conventions. As we can’t update this book each time that happens, please refer to 

their official documentation to check anything that differs from our tutorial. We 

apologize for this inconvenience, but unfortunately, it is not in our control.

https://www.mongodb.com
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d. Choose Frankfurt (eu-central-1) as your region. You can choose another region, 

but be careful to choose the same region for all future AWS services.

e. Leave the rest of the attributes with their default values.

f. In the bottom right, click the Create Deployment green button.

4. To test that your newly created MongoDB cluster works fine, we must connect to it from 

our local machine. We used the MongoDB VS Code extension to do so, but you can use any 

other tool. Thus, from their Choose a connection method setup flow, choose MongoDB 

for VS Code. Then, follow the steps provided on their site.

5. To connect, you must paste the DB connection URL in the VS Code extension (or another 

tool of your liking), which contains your username, password, and cluster URL, similar 

to this one: mongodb+srv://<username>:<password> @twin.vhxy1.mongodb.net. Make 

sure to save this URL somewhere you can copy it from later.

6. If you don’t know or want to change your password, go to Security → Quickstart in the 

left panel. There, you can edit your login credentials. Be sure to save them somewhere 

safe, as you won’t be able to access them later.

7. After verifying that your connections work, go to Security → Network Access in the left 

panel and click ADD IP ADDRESS. Then click ALLOW ACCESS FROM ANYWHERE and 

hit Confirm. Out of simplicity, we allow any machine from any IP to access our MongoDB 

cluster. This ensures that our pipelines can query or write to the DB without any addi-

tional complex networking setup. It’s not the safest option for production, but for our 

example, it’s perfectly fine.

8. The final step is to return to your project and open your .env file. Now, either add or re-

place the DATABASE_HOST variable with your MongoDB connection string. It should look 

something like this: DATABASE_HOST= mongodb+srv://<username>:<password> @twin.

vhxy1.mongodb.net.

That’s it! Now, instead of reading and writing from your local MongoDB, you will do it from the 

cloud MongoDB cluster we just created. Let’s repeat a similar process with Qdrant.

Setting up Qdrant
We have to repeat a similar process to what we did for MongoDB. Thus, to create a Qdrant cluster 

and hook it to our project, follow these steps:

1. Go to Qdrant at https://cloud.qdrant.io/ and create an account.

2. In the left panel, go to Clusters and click Create.

https://cloud.qdrant.io/
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3. Fill out the cluster creation form with the following:

a. Choose the Free version of the cluster.

b. Choose GCP as the cloud provider (while writing the book, it was the only one 

allowed for a free cluster).

c. Choose Frankfurt as the region (or the same region as you chose for MongoDB).

d. Name the cluster twin.

e. Leave the rest of the attributes with their default values and click Create.

4. Access the cluster in the Data Access Control section in the left panel.

5. Click Create and choose your twin cluster to create a new access token. Copy the newly 

created token somewhere safe, as you won’t be able to access it anymore.

6. You can run their example from Usage Examples to test that your connection works fine.

7. Go back to the Clusters section of Qdrant and open your newly created twin cluster. You 

will have access to the cluster’s endpoint, which you need to configure Qdrant in your code.

You can visualize your Qdrant collections and documents by clicking Open Dashboard and en-

tering your API Key as your password. The Qdrant cluster dashboard will now be empty, but after 

running the pipelines, you will see all the collections, as shown here:

Figure 11.6: Qdrant cluster dashboard example after being populated with two collections.

Finally, return to your project and open your .env file. Now, we must fill in a couple of environ-

ment variables as follows:

USE_QDRANT_CLOUD=true

QDRANT_CLOUD_URL=<the endpoint URL found at step 7>

QDRANT_APIKEY=<the access token created at step 5>
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That’s it! Instead of reading and writing from your local Qdrant vector DB, you will do it from the 

cloud Qdrant cluster we just created. Just to be sure that everything works fine, run the end-to-

end data pipeline with the cloud version of MongoDB and Qdrant as follows:

peotry poe run-end-to-end-data-pipeline

The last step is setting up the ZenML cloud and deploying all our infrastructure to AWS.

Setting up the ZenML cloud
Setting up the ZenML cloud and the AWS infrastructure is a multi-step process. First, we will set 

up a ZenML cloud account, then the AWS infrastructure through the ZenML cloud, and, finally, 

we will bundle our code in a Docker image to run it in AWS SageMaker.

Let’s start with setting up the ZenML cloud:

1. Go to the ZenML cloud at https://cloud.zenml.io and make an account. They provide 

a seven-day free trial, which is enough to run our examples.

2. Fill out their onboarding form and create an organization with a unique name and a tenant 

called twin. A tenant refers to a deployment of ZenML in a fully isolated environment. 

Wait a few minutes until your tenant server is up before proceeding to the next step.

3. If you want to, you can go through their Quickstart Guide to understand how the ZenML 

cloud works with a simpler example. It is not required to go through it to deploy the LLM 

Twin application, but we recommend it to ensure everything works fine.

4. At this point, we assume that you have gone through the Quickstart Guide. Otherwise, 

you might encounter issues during the next steps. To connect our project with this Zen-

ML cloud tenant, return to the project and run the zenml connect command provided 

in the dashboard. It looks similar to the following example but with a different URL: 

zenml connect --url https://0c37a553-zenml.cloudinfra.zenml.io.

5. To ensure everything works fine, run a random pipeline from your code. Note that at this 

point, we are still running it locally, but instead of logging the results to the local server, 

we log everything to the cloud version:

poetry poe run-digital-data-etl

6. Go to the Pipelines section in the left panel of the ZenML dashboard. If everything worked 

fine, you should see the pipeline you ran in Step 5 there.

https://cloud.zenml.io
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To ship the code to AWS, you must create a ZenML stack. A stack is a set of components, such 

as the underlying orchestrator, object storage, and container registry, that ZenML needs under 

the hood to run the pipelines. Intuitively, you can see your stack as your infrastructure. While 

working locally, ZenML offers a default stack that allows you to quickly develop your code and 

test things locally. However, by defining different stacks, you can quickly switch between different 

infrastructure environments, such as local and AWS runs, which we will showcase in this section.

With that in mind, let’s create an AWS stack for our project. To do so, follow the next steps:

1. In the left panel, click on the Stacks section and hit the New Stack button.

2. You will have multiple options for creating a stack, but the easiest is creating one from 

scratch within the in-browser experience, which doesn’t require additional preparations. 

This is not very flexible, but it is enough to host our project. Thus, choose Create New 

Infrastructure → In-browser Experience.

3. Then, choose AWS as your cloud provider.

4. Choose Europe (Frankfurt)—eu-central-1 as your location or the region you used to set 

up MongoDB and Qdrant.

5. Name it aws-stack. It is essential to name it exactly like this so that the commands that 

we will use work.

6. Now ZenML will create a set of IAM roles to give permissions to all the other components 

to communicate with each other, an S3 bucket as your artifact storage, an ECR repository 

as your container registry, and SageMaker as your orchestrator.

7. Click Next.

Ensure that your ZenML server version matches your local ZenML version. For ex-

ample, when we wrote this book, both were version 0.64.0. If they don’t match, you 

might encounter strange behavior, or it might not work correctly. The easiest fix is to 

go to your pyproject.toml file, find the zenml dependency, and update it with the 

version of your server. Then run poetry lock --no-update && poetry install

to update your local virtual environment.

Before starting this section, ensure you have an AWS account with admin permis-

sions ready.
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8. Click the Deploy to AWS button. It will open a CloudFormation page on AWS. ZenML 

leverages CloudFormation (an infrastructure as code, or IaC, tool) to create all the AWS 

resources we enumerated in Step 6.

9. At the bottom, check all the boxes to acknowledge that AWS CloudFormation will create 

AWS resources on your behalf. Finally, click the Create stack button. Now, we must wait 

for a couple of minutes for AWS CloudFormation to spin up all the resources.

10. Return to the ZenML page and click the Finish button.

By leveraging ZenML, we efficiently deployed the entire AWS infrastructure for our ML 

pipelines. We began with a basic example, sacrificing some control. However, if you seek 

more control, ZenML offers the option to use Terraform (an IaC tool) to fully control your 

AWS resources or to connect ZenML with your current infrastructure.

Before moving to the next step, let’s have a quick recap of the AWS resources we just 

created:

• An IAM role is an AWS identity with permissions policies that define what actions 

are allowed or denied for that role. It is used to grant access to AWS services with-

out needing to share security credentials.

• S3 is a scalable and secure object storage service that allows storing and retrieving 

files from anywhere on the web. It is commonly used for data backup, content 

storage, and data lakes. It’s more scalable and flexible than Google Drive.

• ECR is a fully managed Docker container registry that makes storing, managing, 

and deploying Docker container images easy.

• SageMaker is a fully managed service that allows developers and data scientists 

to quickly build, train, and deploy ML models.

• SageMaker Orchestrator is a feature of SageMaker that helps automate the ex-

ecution of ML workflows, manage dependencies between steps, and ensure the 

reproducibility and scalability of model training and deployment pipelines. Other 

similar tools are Prefect, Dagster, Metaflow, and Airflow.

• CloudFormation is a service that allows you to model and set up your AWS re-

sources so that you can spend less time managing them and more time focusing 

on your applications. It automates the process of provisioning AWS infrastructure 

using templates.

Before running the ML pipelines, the last step is to containerize the code and prepare a Docker 

image that packages our dependencies and code.
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Containerize the code using Docker
So far, we have defined our infrastructure, MongoDB, Qdrant, and AWS, for storage and computing. 

The last step is to find a way to take our code and run it on top of this infrastructure. The most 

popular solution is Docker, a tool that allows us to create an isolated environment (a container) 

that contains everything we need to run our application, such as system dependencies, Python 

dependencies, and the code.

We defined our Docker image at the project’s root in the Dockerfile. This is the standard naming 

convention for Docker. Before digging into the code, if you want to build the Docker image your-

self, ensure that you have Docker installed on your machine. If you don’t have it, you can install it 

by following the instructions provided here: https://docs.docker.com/engine/install. Now, 

let’s look at the content of the Dockerfile step by step.

The Dockerfile begins by specifying the base image, which is a lightweight version of Python 3.11 

based on the Debian Bullseye distribution. The environment variables are then set up to configure 

various aspects of the container, such as the workspace directory, turning off Python bytecode 

generation, and configuring Python to output directly to the terminal. Additionally, the version of 

Poetry to be installed is specified, and a few environment variables are set to ensure that package 

installations are non-interactive, which is vital for automated builds.

FROM python:3.11-slim-bullseye AS release

ENV WORKSPACE_ROOT=/app/

ENV PYTHONDONTWRITEBYTECODE=1

ENV PYTHONUNBUFFERED=1

ENV POETRY_VERSION=1.8.3

ENV DEBIAN_FRONTEND=noninteractive

ENV POETRY_NO_INTERACTION=1

Next, we install Google Chrome in the container. The installation process begins by updating the 

package lists and installing essential tools like gnupg, wget, and curl. The Google Linux signing 

key is added, and the Google Chrome repository is configured. After another package list update, 

the stable version of Google Chrome is installed. The package lists are removed after installation 

to keep the image as small as possible.

RUN apt-get update -y && \

    apt-get install -y gnupg wget curl --no-install-recommends && \

    wget -q -O - https://dl-ssl.google.com/linux/linux_signing_key.pub | 
gpg --dearmor -o /usr/share/keyrings/google-linux-signing-key.gpg && \

https://docs.docker.com/engine/install
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    echo "deb [signed-by=/usr/share/keyrings/google-linux-signing-key.gpg] 
https://dl.google.com/linux/chrome/deb/ stable main" > /etc/apt/sources.
list.d/google-chrome.list && \

    apt-get update -y && \

    apt-get install -y google-chrome-stable && \

    rm -rf /var/lib/apt/lists/*

Following the Chrome installation, other essential system dependencies are installed. Once these 

packages are installed, the package cache is cleaned up to reduce the image size further.

RUN apt-get update -y \

    && apt-get install -y --no-install-recommends build-essential \

    gcc \

    python3-dev \

    build-essential \

    libglib2.0-dev \

    libnss3-dev \

    && apt-get clean \

    && rm -rf /var/lib/apt/lists/*

Poetry, the dependency management tool, is then installed using pip. The --no-cache-dir option 

prevents pip from caching packages, helping to keep the image smaller. After installation, Poetry 

is configured to use up to 20 parallel workers when installing packages, which can speed up the 

installation process.

RUN pip install --no-cache-dir "poetry==$POETRY_VERSION"

RUN poetry config installer.max-workers 20

The working directory inside the container is set to WORKSPACE_ROOT, which defaults to /app/, 

where the application code will reside. The pyproject.toml and poetry.lock files define the 

Python’s project dependencies and are copied into this directory.

WORKDIR $WORKSPACE_ROOT

COPY pyproject.toml poetry.lock $WORKSPACE_ROOT

With the dependency files in place, the project’s dependencies are installed using Poetry. The 

configuration turns off the creation of a virtual environment, meaning the dependencies will be 

installed directly into the container’s Python environment. The installation excludes development 

dependencies and prevents caching to minimize space usage. 
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Additionally, the poethepoet plugin is installed to help manage tasks within the project. Finally, 

any remaining Poetry cache is removed to keep the container as lean as possible.

RUN poetry config virtualenvs.create false && \

    poetry install --no-root --no-interaction --no-cache --without dev && 
\

    poetry self add 'poethepoet[poetry_plugin]' && \

    rm -rf ~/.cache/pypoetry/cache/ && \

    rm -rf ~/.cache/pypoetry/artifacts/

In the final step, the entire project directory from the host machine is copied into the container’s 

working directory. This step ensures that all the application files are available within the container.

One important trick when writing a Dockerfile is to decouple your installation steps from copy-

ing the rest of the files. This is useful because each Docker command is cached and layered on 

top of each other. Thus, whenever you change one layer when rebuilding the Docker image, all 

the layers below the one altered are executed again. Because you rarely change your system and 

project dependencies but mostly change your code, copying your project files in the last step makes 

rebuilding Docker images fast by taking advantage of the caching mechanism’s full potential.

COPY . $WORKSPACE_ROOT

This Dockerfile is designed to create a clean, consistent Python environment with all necessary 

dependencies. It allows the project to run smoothly in any environment that supports Docker.

The last step is to build the Docker image and push it to the ECR created by ZenML. To build the 

Docker image from the root of the project, run the following:

docker buildx build --platform linux/amd64 -t llmtwin -f Dockerfile .

We must build it on a Linux platform as the Google Chrome installer we used inside Docker works 

only on a Linux machine. Even if you use a macOS or Windows machine, Docker can emulate a 

virtual Linux container.

The tag of the newly created Docker image is llmtwin. We also provide this build command 

under a poethepoet command:

poetry poe build-docker-image

Now, let’s push the Docker image to ECR. To do so, navigate to your AWS console and then to 

the ECR service. From there, find the newly created ECR repository. It should be prefixed with 

zenml-*, as shown here:
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Figure 11.7: AWS ECR example

The first step is to authenticate to ECR. For this to work, ensure that you have the AWS CLI installed 

and configured with your admin AWS credentials, as explained in Chapter 2:

AWS_REGION=<your_region> # e.g. AWS_REGION=eu-central-1

AWS_ECR_URL=<your_acount_id>

aws ecr get-login-password --region ${AWS_REGION}| docker login --username 
AWS --password-stdin ${AWS_ECR_URL}

You can get your current AWS_REGION by clicking on the toggle in the top-right corner, as seen in 

Figure 11.8. Also, you can copy the ECR URL to fill the AWS_ECR_URL variable from the main AWS 

ECR dashboard, as illustrated in Figure 11.7. After running the previous command, you should see 

the message Login Succeeded on the CLI.

Figure 11.8: AWS region and account details
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Now we have to add another tag to the llmtwin Docker image that signals the Docker registry 

we want to push it to:

docker tag llmtwin ${AWS_ECR_URL}:latest

Finally, we push it to ECR by running:

docker push ${AWS_ECR_URL}:latest

After the upload is finished, return to your AWS ECR dashboard and open your ZenML repository. 

The Docker image should appear, as shown here:

Figure 11.9: AWS ECR repository example after the Docker image is pushed

For every change in the code that you need to ship and test, you would have to go through all 

these steps, which are tedious and error-prone. The Adding LLMOps to the LLM Twin section of this 

chapter will teach us how to automate these steps within the CD pipeline using GitHub Actions. 

Still, we first wanted to go through them manually to fully understand the behind-the-scenes 

process and not treat it as a black box. Understanding these details is vital for debugging your CI/

CD pipelines, where you must understand the error messages and how to fix them.

Now that we have built our Docker image and pushed it to AWS ECR, let’s deploy it to AWS.

Run the pipelines on AWS
We are very close to running the ML pipelines on AWS, but we have to go through a few final steps. 

Let’s switch from the default ZenML stack to the AWS one we created in this chapter. From the 

root of your project, run the following in the CLI:

zenml stack set aws-stack
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Return to your AWS ECR ZenML repository and copy the image URI as shown in Figure 11.9. 

Then, go to the configs directory, open the configs/end_to_end_data.yaml file, and update 

the settings.docker.parent_image attribute with your ECR URL, as shown below:

settings:

  docker:

    parent_image: <YOUR ECR URL> #e.g., 992382797823.dkr.ecr.eu-central-1.
amazonaws.com/zenml-rlwlcs:latest

    skip_build: True

We’ve configured the pipeline to always use the latest Docker image available in ECR. This means 

that the pipeline will automatically pick up the latest changes made to the code whenever we 

push a new image.

We must export all the credentials from our .env file to ZenML secrets, a feature that safely stores 

your credentials and makes them accessible within your pipelines:

poetry poe export-settings-to-zenml

The last step is setting up to run the pipelines asynchronously so we don’t have to wait until they 

are finished, which might result in timeout errors:

zenml orchestrator update aws-stack --synchronous=False

Now that ZenML knows to use the AWS stack, our custom Docker image, and has access to our 

credentials, we are finally done with the setup. Run the end-to-end-data-pipeline with the 

following command:

poetry poe run-end-to-end-data-pipeline

Now you can go to ZenML Cloud → Pipelines → end_to_end_data and open the latest run. On 

the ZenML dashboard, you can visualize the latest state of the pipeline, as seen in Figure 11.10. 

Note that this pipeline runs all the data-related pipelines in a single run.
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In the Adding LLMOps to the LLM Twin section, we will explain why we compressed all the steps 

into a single pipeline.

Figure 11.10: ZenML example of running the end-to-end-data-pipeline

You can click on any running block and find details about the run, the code used for that specific 

step, and the logs for monitoring and debugging, as illustrated in Figure 11.11:
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Figure 11.11: ZenML step metadata example

To find even more details about the runs, you can go to AWS SageMaker. In the left panel, click 

SageMaker dashboard, and on the right, in the Processing column, click on the green Running

section, as shown in Figure 11.12. 

To run other pipelines, you have to update the settings.docker.parent_image

attribute in their config file under the configs/ directory.
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This will open a list of all the processing jobs that execute your ZenML pipelines.

Figure 11.12: SageMaker dashboard

Troubleshooting the ResourceLimitExceeded error after running 
a ZenML pipeline on SageMaker
Let’s assume, you’ve encountered a ResourceLimitExceeded error after running a ZenML pipeline 

on SageMaker using the AWS stack. In this case, you have to explicitly ask AWS to give you access 

to a specific type of AWS EC2 VM.

ZenML uses, by default, ml.t3.medium EC2 machines, which are part of the AWS freemium tier. 

However, some AWS accounts cannot access these VMs by default. To check your access, search 

your AWS console for Service Quotas. 

If you want to run the pipelines locally again, use the following CLI command:

poetry poe set-local-stack

If you want to disconnect from the ZenML cloud dashboard and use the local version 

again, run the following:

zenml disconnect
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Then, in the left panel, click on AWS services, search for Amazon SageMaker, and then for ml.t3.

medium. In Figure 11.13, you can see our quotas for these types of machines. If yours is 0, you should 

request that AWS increase them to numbers similar to those from Figure 11.13 in the Applied 

account-level quota value column. The whole process is free of charge and only requires a few 

clicks. Unfortunately, you might have to wait for a few hours up to one day until AWS accepts 

your request.

Figure 11.13: SageMaker—ml.t3.medium expected quotas

You can find step-by-step instructions on how to solve this error and request new quotas at this 

link: https://repost.aws/knowledge-center/sagemaker-resource-limit-exceeded-error.

If you changed the values from your .env file and want to update the ZenML secrets 

with them, first run the following CLI command to delete the old secrets:

poetry poe delete-settings-zenml

Then, you can export them again by running:

poetry poe export-settings-to-zenml

https://repost.aws/knowledge-center/sagemaker-resource-limit-exceeded-error
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Adding LLMOps to the LLM Twin
In the previous section, we saw how to set up the infrastructure for the LLM Twin project by 

manually building the Docker image and pushing it to ECR. We want to automate the entire 

process and implement a CI/CD pipeline using GitHub Actions and a CT pipeline using ZenML. 

As mentioned earlier, implementing a CI/CD/CT pipeline ensures that each feature pushed to 

main branches is consistent and tested. Also, by automating the deployment and training, you 

support collaboration, save time, and reduce human errors.

Finally, at the end of the section, we will show you how to implement a prompt monitoring pipe-

line using Opik from Comet ML and an alerting system using ZenML. This prompt monitoring 

pipeline will help us debug and analyze the RAG and LLM logic. As LLM systems are non-de-

terministic, capturing and storing the prompt traces is essential for monitoring your ML logic.

Before diving into the implementation, let’s start with a quick section on the LLM Twin’s CI/CD 

pipeline flow.

LLM Twin’s CI/CD pipeline flow
We have two environments: staging and production. When developing a new feature, we cre-

ate a new branch out of the staging branch and develop solely on that one. When we are done 

and consider the feature finished, we open a pull request (PR) to the staging branch. After the 

feature branch is accepted, it is merged into the staging branch. This is a standard workflow in 

most software applications. There might be variations, like adding a dev environment, but the 

principles remain the same.

As illustrated in Figure 11.14, the CI pipeline is triggered when the PR opens. At this point, we 

test the feature branch for linting and formatting errors. Also, we run a gitleaks command to 

check for credentials and sensitive information that was committed by mistake. If the linting, 

formatting, and gitleaks steps pass (also known as static analysis), we run the automated tests. 

Note that the static analysis steps run faster than the automated tests. Thus, the order matters. 

That’s why adding the static analysis steps at the beginning of the CI pipeline is good practice. 

We propose the following order of the CI steps:

• gitleaks checks

• Linting checks

• Formatting checks

• Automated testing, such as unit and integration tests
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If any check fails, the CI pipeline fails, and the developer who created the PR cannot merge it into 

the staging branch until it fixes the issues.

Implementing a CI pipeline ensures that new features follow the repository’s standards and 

don’t break existing functionality. The exact process repeats when we plan to merge the staging 

branch into the production one. We open a PR, and the CI pipeline is automatically executed 

before merging the staging branch into production.

Figure 11.14: CI/CD pipelines flow

The CD pipeline runs after the branch is merged. For example, after the feature branch is merged 

into staging, the CD pipeline takes the code from the staging branch, builds a new Docker im-

age, and pushes it to the AWS ECR Docker repository. When running future pipeline runs in 

the staging environment, it will use the latest Docker image that was built by the CD pipeline. 

The exact process happens between staging and production. Still, the key difference is that the 

staging environment exists as an experimental place where the QA team and stakeholders can 

further manually test the new feature along with what is automatically tested in the CI pipeline.
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More on formatting errors
Formatting errors relate to the style and structure of your code, ensuring that it adheres to a 

consistent visual layout. This can include the placement of spaces, indentation, line length, and 

other stylistic elements.

The main purpose of formatting is to make your code more readable and maintainable. Consistent 

formatting helps teams work together more effectively, as the code looks uniform, regardless of 

who wrote it. Examples of formatting errors are:

• Incorrect indentation (e.g., mixing spaces and tabs)

• Lines that are too long (e.g., exceeding 79 or 88 characters, depending on your style guide)

• Missing or extra spaces around operators or after commas

More on linting errors
Linting errors relate to potential issues in your code that could lead to bugs, inefficiencies, or 

non-adherence to coding standards beyond just style. Linting checks often involve static analysis 

of the code to catch things like unused variables, undefined names, or questionable practices.

Linting’s main goal is to catch potential errors or bad practices early in the development process, 

improving code quality and reducing the likelihood of bugs. Examples of linting errors are:

• Unused imports or variables

• Undefined variables or functions are being used

• Potentially dangerous code (e.g., using == instead of is for checking against None)

We use Ruff, a versatile tool for formatting and linting. It incorporates checks for common for-

matting issues and PEP 8 compliance, as well as deeper linting checks for potential errors and 

code quality problems. Also, it is written in Rust, making it fast for big codebases.

Before implementing what we’ve explained above, let’s examine the core principles of GitHub 

Actions.

In our repository, we used only a main branch, which reflects production, and fea-

ture branches to push new work. We did this to keep things simple, but the same 

principles apply. To extend the flow, you must create a staging branch and add it 

to the CD pipeline.
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Quick overview of GitHub Actions
GitHub Actions is a CI/CD platform provided by GitHub that allows developers to automate their 

workflows directly within a GitHub repository. It enables users to build, test, and deploy their 

code directly from GitHub by defining workflows in YAML files. Since it’s part of GitHub, it works 

seamlessly with repositories, issues, PRs, and other GitHub features. Here are the key components 

you should know about:

• Workflows: A workflow is an automated process defined in a YAML file located in your 

repository’s .github/workflows directory. It specifies what should happen (e.g., build, 

test, and deploy) and when (e.g., on push, on PR).

• Jobs: Workflows are made up of jobs, which are groups of steps that execute on the same 

runner. Each job runs in its own virtual environment.

• Steps: Jobs are made up of multiple independent steps, which can be actions or shell 

commands.

• Actions: Actions are reusable commands or scripts. You can use pre-built actions from 

GitHub Marketplace or create your own. You can think of them as Python functions.

• Runners: Runners are the servers that run your jobs. GitHub provides hosted runners 

(Linux, Windows, macOS), or you can even self-host your runners.

A workflow is described using YAML syntax. For example, a simple workflow that clones the 

current GitHub repository and installs Python 3.11 on an Ubuntu machine looks like this:

name: Example

on: [push]

jobs:

  build:

    runs-on: ubuntu-latest

    steps:

         - name: Checkout

           uses: actions/checkout@v3

         - name: Setup Python

           uses: actions/setup-python@v3

           with:

               python-version: "3.11"
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The workflows are triggered by events like push, pull_request, or schedule. For example, you 

might trigger a workflow every time code is pushed to a specific branch. Now that we understand 

how GitHub Actions works, let’s look at the LLM Twin’s CI pipeline.

The CI pipeline
The LLM Twin’s CI pipeline is split into two jobs:

• A QA job that looks for formatting and linting errors using Ruff. Also, it runs a gitleaks

step to scan for leaked secrets throughout our repository.

• A test job that runs all our automatic tests using Pytest. In our use case, we implemented 

just a dummy test to showcase the CI pipeline, but using the structure from this book, 

you can easily extend it with real tests for your use case.

GitHub Actions CI YAML file
The YAML file sits under .github/workflows/ci.yaml. It begins by defining the workflow’s 

name as CI, as you can see in the following snippet. This label will be used to identify the work-

flow within GitHub’s Actions interface. Next, the section specifies that the workflow should be 

triggered whenever a pull_request event occurs. Hence, the CI workflow will automatically run 

whenever a PR is opened, synchronized, or reopened.

name: CI

on:

  pull_request:

The concurrency section ensures that only one instance of this workflow runs for a given reference 

(like a branch) at any given time. The group field is defined using GitHub’s expression syntax to 

create a unique group name based on the workflow and the reference. The cancel-in-progress: 

true line ensures that if a new workflow run is triggered before the previous one finishes, the 

previous run is canceled. This is particularly useful to prevent redundant executions of the same 

workflow.

concurrency:

  group: ${{ github.workflow }}-${{ github.ref }}

  cancel-in-progress: true

The workflow defines two separate jobs: qa and test. Each job runs on the latest version of Ubuntu, 

specified by runs-on: ubuntu-latest.
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The first job, named QA, is responsible for quality assurance tasks like code checks and format-

ting verification. Within the qa job, the first step is to check out the repository’s code using the 

actions/checkout@v3 action. This step is necessary to ensure that the job has access to the code 

that needs to be analyzed.

jobs:

  qa:

    name: QA

    runs-on: ubuntu-latest

    steps:

      - name: Checkout

        uses: actions/checkout@v3

The next step is to set up the Python environment. This is done using the actions/setup-python@

v3 action, with the Python version specified as "3.11". This step ensures that the subsequent 

steps in the job will run in the correct Python environment.

      - name: Setup Python

        uses: actions/setup-python@v3

        with:

          python-version: "3.11"

The workflow then installs Poetry using the abatilo/actions-poetry@v2 action, specifying the 

version of Poetry as 1.8.3:

      - name: Install poetry

        uses: abatilo/actions-poetry@v2

        with:

          poetry-version: 1.8.3

Once Poetry is set up, the workflow installs the project’s development dependencies using the 

poetry install --only dev command. Additionally, the workflow adds the poethepoet plugin 

for Poetry, which will be used to run predefined tasks more conveniently within the project.

      - name: Install packages

        run: |

          poetry install --only dev

          poetry self add 'poethepoet[poetry_plugin]'
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The qa job then runs several quality checks on the code. The first check uses a tool called gitleaks

to scan for secrets in the codebase, ensuring that no sensitive information is accidentally com-

mitted:

      - name: gitleaks check

        run: poetry poe gitleaks-check

Following the gitleaks check, the workflow runs a linting process to enforce coding standards 

and best practices in the Python code. This is achieved through the poetry poe lint-check

command, which uses Ruff under the hood.

      - name: Lint check [Python]

        run: poetry poe lint-check

The last step in the qa job is a format check, which ensures that the Python code is properly for-

matted according to the project’s style guidelines. This is done using the poetry poe format-

check command, which uses Ruff under the hood.

      - name: Format check [Python]

        run: poetry poe format-check

The second job defined in the workflow is the test job, which also runs on the latest version 

of Ubuntu. Like the qa job, it starts by checking out the code from the repository and installing 

Python 3.11 and Poetry 1.8.3.

  test:

    name: Test

    runs-on: ubuntu-latest

    steps:

      - name: Checkout

        uses: actions/checkout@v3

      …

After setting up the system dependencies, the test job installs all the project’s dependencies with 

the poetry install command. As we want to run the tests, this time, we need to install all the 

dependencies that are required to run the application.

      - name: Install packages

        run: |



Chapter 11 441

          poetry install –-without aws

          poetry self add 'poethepoet[poetry_plugin]'

Finally, the test job runs the project’s tests using the poetry poe test command. This step 

ensures that all tests are executed and provides feedback on whether the current code changes 

break any functionality.

      - name: Run tests

        run: |

          echo "Running tests..."

          poetry poe test

If any of the steps from the QA or test jobs fail, the GitHub Actions workflow will fail, resulting 

in the PR not being able to be merged until the issue is fixed. By taking this approach, we ensure 

that all the new features added to the main branches respect the standard of the project and that 

it doesn’t break existing functionality through automated tests.

Figure 11.15 shows the CI pipeline in the Actions tab of the GitHub repository. It was run after a 

commit with the message feat: Add Docker image and CD pipeline and ran the two jobs de-

scribed above, QA and Test.

Figure 11.15: GitHub Actions CI pipeline run example
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The CD pipeline
The CD pipeline will automate the Docker steps we manually performed in the Deploying the 

LLM Twin’s pipelines to the cloud section, which are:

• Set up Docker.

• Log in to AWS.

• Build the Docker image.

• Push the Docker image to AWS ECR.

With that in mind, let’s look at the GitHub Actions YAML file, which sits under .github/workflows/

cd.yaml. It begins by naming the workflow CD and specifying the trigger for this workflow. The 

trigger is any push to the repository’s main branch. This workflow will automatically run when 

new code is pushed to the main branch, usually when a PR is merged into the main branch. The 

on.push configuration sets up the trigger:

name: CD

on:

  push:

    branches:

      - main

The workflow then defines a single job named Build & Push Docker Image:

jobs:

  build:

    name: Build & Push Docker Image

    runs-on: ubuntu-latest

The first step within the job is to check out the repository’s code.

steps:

  - name: Checkout Code

    uses: actions/checkout@v3

After checking out the code, the workflow sets up docker buildx, a Docker CLI plugin that extends 

Docker’s build capabilities with features like multi-platform builds and cache import/export:

- name: Set up Docker Buildx

  uses: docker/setup-buildx-action@v3
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The next step involves configuring the AWS credentials. This step is crucial for interacting with 

AWS services, such as Amazon Elastic Container Registry (ECR), where the Docker images will 

be pushed. The AWS access key, secret access key, and region are securely retrieved from the 

repository’s secrets to authenticate the workflow with AWS. This ensures the workflow has the 

necessary permissions to push Docker images to the ECR repository. We will show you how to 

configure these secrets after wrapping up with the YAML file:

- name: Configure AWS credentials

  uses: aws-actions/configure-aws-credentials@v1

  with:

    aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}

    aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}

    aws-region: ${{ secrets.AWS_REGION }}

Once the AWS credentials are configured, the workflow logs in to Amazon ECR. This step is es-

sential for authenticating the Docker CLI with the ECR registry, allowing subsequent steps to 

push images to the registry:

- name: Login to Amazon ECR

  id: login-ecr

  uses: aws-actions/amazon-ecr-login@v1

The final step in the workflow involves building the Docker image and pushing it to the Ama-

zon ECR repository. This is accomplished using the docker/build-push-action@v6 action. The 

context specifies the build context, which is typically the repository’s root directory. The file

option points to the Dockerfile, which defines how the image should be built. The tags section 

assigns tags to the image, including the specific commit SHA and the latest tag, which is a com-

mon practice for identifying the most recent version of the image. The push option is set to true, 

meaning the image will be uploaded to ECR after it is built:

- name: Build images & push to ECR

  id: build-image

  uses: docker/build-push-action@v6

  with:

    context: .

    file: ./Dockerfile

    tags: |

      ${{ steps.login-ecr.outputs.registry }}/${{ secrets.AWS_ECR_NAME 
}}:${{ github.sha }}
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      ${{ steps.login-ecr.outputs.registry }}/${{ secrets.AWS_ECR_NAME 
}}:latest

    push: true

To conclude, the CD pipeline authenticates to AWS, builds the Docker image, and pushes it to 

AWS ECR. The Docker image is pushed with latest and the commit’s SHA tag. By doing so, we 

can always use the latest image and point to the commit of the code from which the image was 

generated.

Also, in our code, we have only a main branch, which reflects our production environment. But 

you, as a developer, have the power to extend this functionality with a staging and dev environ-

ment. You just have to add the name of the branches in the on.push.branches configuration at 

the beginning of the YAML file.

In Figure 11.16, you can observe how the CD pipeline looks after a PR is merged into the production 

branch. As seen before, we only have the Build & Push Docker Image job here.

Figure 11.16: GitHub Actions CD pipeline run example
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The last step in setting up the CI/CD pipeline is to test it and see how it works.

Test out the CI/CD pipeline
To test the CI/CD pipelines yourself, you must fork the LLM-Engineering repository to have full 

write access to the GitHub repository. Here is the official tutorial on how to fork a GitHub project: 

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-

with-forks/fork-a-repo

The last step is to set up a few secrets that will allow the CD pipeline to log in to AWS and point 

to the right ECR resource. To do so, go to the Settings tab at the top of the forked repository in 

GitHub. In the left panel, in the Security section, click on the Secrets and Variables toggle and, 

finally, on Actions. Then, on the Secrets tab, create four repository secrets, as shown in Figure 

11.17. These secrets will be securely stored and accessible only by the GitHub Actions CD pipeline.

The AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY are the AWS credentials you used across 

the book. In Chapter 2, you see how to create them. The AWS_REGION (e.g., eu-central-1) and 

AWS_ECR_NAME are the same ones used in the Deploying the LLM Twin’s pipelines to the cloud 

section.

To trigger the CI pipeline, create a feature branch, modify the code or documentation, and create 

a PR to the main branch. To trigger the CD pipeline, merge the PR into the main branch. 

For the AWS_ECR_NAME, you should configure only the name of the repository (e.g., 

zenml-vrsopg) and not the full URI (e.g., 992382797823.dkr.ecr.eu-central-1.

amazonaws.com/zenml-vrsopg), as seen in the image below:

Figure 11.17: Configuring only repository name

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/fork-a-repo
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/fork-a-repo
992382797823.dkr.ecr.eu-central-1.amazonaws.com/zenml-vrsopg
992382797823.dkr.ecr.eu-central-1.amazonaws.com/zenml-vrsopg
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After the CD GitHub Actions are complete, check the ECR repository to see whether the Docker 

image was pushed successfully.

Figure 11.18: GitHub Actions secrets

If you need more details on how to set up GitHub Actions secrets, we recommend checking out 

their official documentation: https://docs.github.com/en/actions/security-for-github-

actions/security-guides/using-secrets-in-github-actions

The CT pipeline
To implement the CT pipeline, we will leverage ZenML. Once ZenML (or other orchestrators 

such as Metaflow, Dagster, or Airflow) orchestrates all your pipelines and your infrastructure is 

deployed, you are very close to reaching CT.

Remember the core difference between the CI/CD and CT pipelines. The CI/CD pipeline takes care 

of testing, building, and deploying your code—a dimension that any software program has. The 

CT pipeline leverages the code managed by the CI/CD pipeline to automate your data, training, 

and model-serving process, where the data and model dimensions are present only in the AI world.

Before diving into the implementation, we want to highlight two design choices that made reach-

ing CT simple:

https://docs.github.com/en/actions/security-for-github-actions/security-guides/using-secrets-in-github-actions
https://docs.github.com/en/actions/security-for-github-actions/security-guides/using-secrets-in-github-actions
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• The FTI architecture: A modular system with clear interfaces and components made it 

easy to capture the relationship between the pipelines and automate them.

• Starting with an orchestrator since day 0: We started with ZenML at the beginning of 

the project’s development. Early on, we only used it locally. But it acted as an entry point 

for our pipelines and a way to monitor their execution. Doing so forced us to decouple 

each pipeline and transfer the communication between them solely through various types 

of data storage, such as the data warehouse, feature store, or artifact store. As we have 

leveraged ZenML since day 0, we got rid of implementing a tedious CLI to configure our 

application. Instead, we did it directly through YAML configuration files out of the box.

In Figure 11.19, we can see all the pipelines that we have to chain together to fully automate our 

training and deployment. The pipelines aren’t new; they aggregate everything we’ve covered 

throughout this book. Thus, at this point, we will treat them as black boxes that interact with 

each other.

Figure 11.19: CT pipeline
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For the LLM Twin’s CT pipeline, we have to discuss the initial trigger that starts the pipelines 

and how the pipelines are triggered by each other.

Initial triggers
As illustrated in Figure 11.18, we initially want to trigger the data collection pipeline. Usually, the 

triggers can be of three types:

• Manual triggers: Done through the CLI or the orchestrator’s dashboard, in our case, 

through the ZenML dashboard. Manual triggers are still extremely powerful tools, as 

you need just one action to start the whole ML system, from data gathering to deploy-

ment, instead of fiddling with dozens of scripts that you might configure wrong or run 

in an invalid order.

• REST API triggers: You can call a pipeline by an HTTP request. This is extremely useful 

when integrating your ML pipelines with other components. For example, you can have 

a watcher constantly looking for new articles. It triggers the ML logic using this REST API 

trigger when it finds some. To find more details on this feature, check out this tutorial on 

ZenML’s documentation: https://docs.zenml.io/v/docs/how-to/trigger-pipelines/

trigger-a-pipeline-from-rest-api.

• Scheduled triggers: Another common approach is to schedule your pipeline to run con-

stantly on a fixed interval. For example, depending on your use case, you can schedule your 

pipeline to run daily, hourly, or every minute. Most of the orchestrators, ZenML included, 

provide a cron expression interface where you can define your execution frequency. In the 

following example from ZenML, the pipeline is scheduled every hour:

 Schedule(cron_expression="* * 1 * *")

We chose a manual trigger for our LLM Twin use case as we don’t have other components to lever-

age the REST API triggers. Also, as the datasets are generated from a list of static links defined in 

the ZenML configs, running them on a schedule doesn’t make sense as they would always yield 

the same results.

But a possible next step for the project is to implement a watcher that monitors for new articles. 

When it finds any, it generates a new config and triggers the pipelines through the REST API. An-

other option is implementing the watcher as an additional pipeline and leveraging the schedule 

triggers to look daily for new data. If it finds any, it executes the whole ML system; otherwise, it 

stops.

https://docs.zenml.io/v/docs/how-to/trigger-pipelines/trigger-a-pipeline-from-rest-api
https://docs.zenml.io/v/docs/how-to/trigger-pipelines/trigger-a-pipeline-from-rest-api
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The conclusion is that once you can manually trigger all your ML pipelines through a single 

command, you can quickly adapt it to more advanced and complex scenarios.

Trigger downstream pipelines
To keep things simple, we sequentially chained all the pipelines. More concretely, when the data 

collection pipeline has finished, it will trigger the feature pipeline. When the feature pipeline has 

been completed successfully, it triggers the dataset generation pipeline, and so on. You can make 

the logic more complex, like scheduling the generate instruct dataset pipeline to run daily, check-

ing the amount of new data in the Qdrant vector DB, and starting only if it has enough new data. 

From this point, you can further tweak the system’s parameters and optimize them to reduce costs.

To trigger all the pipelines in one go, we created one master pipeline that aggregates everything 

in one entry point:

@pipeline

def end_to_end_data(

    author_links: list[dict[str, str | list[str]]], … # Other paramaters…

) -> None:

    wait_for_ids = []

    for author_data in author_links:

        last_step_invocation_id = digital_data_etl(

            user_full_name=author_data["user_full_name"], links=author_
data["links"]

        )

        wait_for_ids.append(last_step_invocation_id)

    author_full_names = [author_data["user_full_name"] for author_data in 
author_links]

    wait_for_ids = feature_engineering(author_full_names=author_full_
names, wait_for=wait_for_ids)

    generate_instruct_datasets(…)

       training(…)

       deploy(…)
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To keep the function light, we added all the logic up to computing the features. But, as we sug-

gested in the code snippet above, you can easily add the instruction dataset generation, training, 

and deploy logic to the parent pipeline to implement an end-to-end flow. By doing that, you can 

automate everything from data collection to deploying the model.

To run the end-to-end pipeline, use the following poe command:

poetry poe run-end-to-end-data-pipeline

What we implemented is not the best approach, as it compresses all the steps into a single monolith 

pipeline (which we want to avoid), as illustrated in Figure 11.20. Usually, you want to keep each 

pipeline isolated and use triggers to start downstream pipelines. This makes the system easier 

to understand, debug, and monitor.

Figure 11.20: End-to-end pipeline illustrated in ZenML’s dashboard
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Unfortunately, the ZenML cloud’s free trial has a limitation of a maximum of three pipelines. As 

we have more, we avoided that limitation by compressing all the steps into a single pipeline. But 

if you plan to host ZenML yourself or buy their license, they offer the possibility to independent-

ly trigger a pipeline from another pipeline, as you can see in the code snippet below where we 

triggered the feature engineering pipeline after the data collection ETL:

from zenml import pipeline, step

@pipeline 

def digital_data_etl(user_full_name: str, links: list[str]) -> str:

user = get_or_create_user(user_full_name)

crawl_links(user=user, links=links)

trigger_feature_engineering_pipeline(user)

@step 

def trigger_feature_engineering_pipeline(user):

run_config = PipelineRunConfiguration(…)

Client().trigger_pipeline("feature_engineering", run_configuration=run_
config)

@pipeline

def feature_engineering(author_full_names: list[str]) -> list[str]:

… # ZenML steps

By taking this approach, each pipeline will have its independent run, where one pipeline sequen-

tially triggers the next one, as described at the beginning of this section. Note that this feature is 

not unique to ZenML but is common in orchestrator tools. The principles we have learned so far 

hold. Only how we interact with the tool changes.

Prompt monitoring
We will use Opik (from Comet ML) to monitor our prompts. But remember from the LLMOps

section earlier in this chapter that we are not interested only in the input prompt and generated 

answer. 
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We want to log the entire trace from the user’s input until the final result is available. Before 

diving into the LLM Twin use case, let’s look at a simpler example:

from opik import track

import openai

from opik.integrations.openai import track_openai

openai_client = track_openai(openai.OpenAI())

@track

def preprocess_input(text: str) -> str:

    return text.strip().lower()

@track

def generate_response(prompt: str) -> str:

    response = openai_client.chat.completions.create(

        model="gpt-3.5-turbo",

        messages=[{"role": "user", "content": prompt}]

    )

    return response.choices[0].message.content

@track

def postprocess_output(response: str) -> str:

    return response.capitalize()

@track(name="llm_chain")

def llm_chain(input_text: str) -> str:

    preprocessed = preprocess_input(input_text)

    generated = generate_response(preprocessed)

    postprocessed = postprocess_output(generated)

    return postprocessed

result = llm_chain("Hello, do you enjoy reading the book?")

The preceding code snippet reflects in a simplistic way what most LLM applications will look 

like. You have the llm_chain() main function, which takes the initial input as a parameter and 

returns the final result. 
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Then, you have preprocessing and postprocessing functions surrounding the actual LLM call. 

Using the @track() decorator, we log the input and output of each function, which will ultimately 

be aggregated into a single trace. By doing so, we will have access to the initial input text, the 

generated answer, and all the intermediary steps required to debug any potential issues using 

Opik’s dashboard.

The last step is to attach the necessary metadata for your use case to the current trace. As seen 

in the following code snippet, you can easily do that by calling the update() method, where you 

can tag your trace or add any other metadata, such as the number of input tokens, through a 

Python dictionary:

from opik import track, opik_context

@track

def llm_chain(input_text):

    # LLM chain code

    # ...

    opik_context.update_current_trace(

tags=["inference_pipeline"],

metadata={

"num_tokens": compute_num_tokens(…)

},

feedback_scores=[

{

"name": "user_feedback",

"value": 1.0,

"reason": "The response was valuable and correct."

},

{

"name": "llm_judge_score",

"value": compute_llm_judge_score(…),

"reason": "Computing runtime metrics using an LLM Judge."

}

)
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You can expand on this idea and log various feedback scores. The most common is asking the user 

if the generated answer is valuable and correct. Another option is to compute various metrics 

automatically through heuristics or LLM judges.

Finally, let’s see how to add prompt monitoring to our LLM Twin project. First, look at Figure 

11.21 and remember our model-serving architecture. We have two microservices, the LLM and 

business microservices. The LLM microservice has a narrow scope, as it only takes as input a 

prompt that already contains the user’s input and context and returns an answer that is usually 

post-processed. Thus, the business microservice is the right place to implement the monitoring 

pipeline, as it coordinates the end-to-end flow. More concretely, Opik implementation will be in 

the FastAPI server developed in Chapter 10.

Figure 11.21: Inference pipeline serving architecture
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As our implementation is already modular, using Opik makes it straightforward to log an end-

to-end trace of a user’s request:

from opik import track

@track

def call_llm_service(query: str, context: str | None) -> str:

    llm = LLMInferenceSagemakerEndpoint(…)

    answer = InferenceExecutor(llm, query, context).execute()

    return answer

@track

def rag(query: str) -> str:

    retriever = ContextRetriever()

    documents = retriever.search(query, k=3 * 3)

    context = EmbeddedChunk.to_context(documents)

    answer = call_llm_service(query, context)

    return answer

The rag() function represents your application’s entry point. All the other processing steps take 

place in the ContextRetriever and InferenceExector classes. Also, by decorating the call_llm_

service() function, we can clearly capture the prompt sent to the LLM and its response.

To add more granularity to our trace, we can further decorate other functions containing pre- or 

post-processing steps, such as the ContextRetriever search function:

class ContextRetriever:

     …

   

    @track

    

    def search(

        self,

        query: str,

        k: int = 3,
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        expand_to_n_queries: int = 3,

    ) -> list:

        query_model = Query.from_str(query)

        query_model = self._metadata_extractor.generate(query_model)

        … # Rest of the implementation

Or even go further to the retrieval optimization methods, such as the self-query metadata ex-

tractor, to add more granularity:

class SelfQuery:

    @track

    def generate(self, query: str) -> str:

        …

        return enhanced_query

The developer is responsible for deciding how much granularity the application needs for proper 

debugging and analysis. As having detailed monitoring is healthy, monitoring everything can be 

dangerous as it adds too much noise and makes manually understanding the traces difficult. You 

must find the right balance. A good rule of thumb is tracing the most critical functions, such as 

rag() and call_llm_service(), and gradually adding more granularity when needed.

The last step is to attach valuable metadata and tags to our traces. To do so, we will further en-

hance the rag() function as follows:

@track

def rag(query: str) -> str:

    retriever = ContextRetriever()

    documents = retriever.search(query, k=3 * 3)

    context = EmbeddedChunk.to_context(documents)

    answer, prompt = call_llm_service(query, context)

    trace = get_current_trace()

    trace.update(

tags=["rag"],

metadata={

"model_id": settings.HF_MODEL_ID,

   "embedding_model_id": settings.TEXT_EMBEDDING_MODEL_ID,
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   "temperature": settings.TEMPERATURE_INFERENCE,

   "prompt_tokens": compute_num_tokens(prompt),

   "total_tokens": compute_num_tokens(answer),

  

}

)

    return answer

There are three main aspects that we should constantly monitor:

• Model configuration: Here, we should consider both the LLM and other models used 

within the RAG layer. The most critical aspects of logging are the model IDs, but you can 

also capture other important information that significantly impacts the generation, such 

as the temperature.

• Total number of tokens: It’s critical to constantly analyze the statistics of the number of 

tokens generated by your input prompts and total tokens, as this significantly impacts 

your serving costs. For example, if the average of the total number of tokens generated 

suddenly increases, it’s a strong signal that you have a bug in your system that you should 

investigate.

• The duration of each step: Tracking the duration of each step within your trace is essential 

to finding bottlenecks within your system. If the latency of a specific request is abnormally 

large, you quickly have access to a report that helps you find the source of the problem.

Alerting
Using ZenML, you can quickly implement an alerting system on any platform of your liking, such 

as email, Discord, or Slack. For example, you can add a callback in your training pipeline to trigger 

a notification when the pipeline fails or the training has finished successfully:

from zenml import get_pipeline_context, pipeline

@pipeline(on_failure=notify_on_failure)

def training_pipeline(…):

…

notify_on_success()
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Implementing the notification functions is straightforward. As seen in the code snippets below, 

you have to get the alerter instance from your current stack, build the message as you see fit, 

and send it to your notification channel of choice:

from zenml.client import Client

alerter = Client().active_stack.alerter

def notify_on_failure() -> None:

        alerter.post(message=build_message(status="failed"))

@step(enable_cache=False)

def notify_on_success() -> None:

        alerter.post(message=build_message(status="succeeded"))

ZenML and most orchestrators simplify implementing an alerter, as it’s a critical component 

in your MLOps/LLMOps infrastructure.

Summary
In this chapter, we laid down the foundations with a theoretical section on DevOps. Then, we 

moved on to MLOps and its core components and principles. Finally, we presented how LLMOps 

differs from MLOps by introducing strategies such as prompt monitoring, guardrails, and hu-

man-in-the-loop feedback. Also, we briefly discussed why most companies would avoid training 

LLMs from scratch but choose to optimize them for their use case through prompt engineering 

or fine-tuning. At the end of the theoretical portion of the chapter, we learned what a CI/CD/CT 

pipeline is, the three core dimensions of an ML application (code, data, model), and that, after 

deployment, it is more critical than ever to implement a monitoring and alerting layer due to 

model degradation.

Next, we learned how to deploy the LLM Twin’s pipeline to the cloud. We understood the infra-

structure and went step by step through deploying MongoDB, Qdrant, the ZenML cloud, and all 

the necessary AWS resources to sustain the application. Finally, we learned how to Dockerize our 

application and push our Docker image to AWS ECR, which will be used to execute the application 

on top of AWS SageMaker.

The final step was to add LLMOps to our LLM Twin project. We began by implementing a CI/CD 

pipeline with GitHub Actions. Then, we looked at our CT strategy by leveraging ZenML. 
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Finally, we saw how to implement a monitoring pipeline using Opik from Comet ML and an 

alerting system using ZenML. These are the fundamental pillars in adding MLOps and LLMOps 

to any LLM-based application.

The framework we learned about throughout the book can quickly be extrapolated to other LLM 

applications. Even if we used the LLM Twin use case as an example, most of the strategies applied 

can be adapted to other projects. Thus, we can get an entirely new application by changing the 

data and making minor tweaks to the code. Data is the new oil, remember? 

By finalizing this chapter, we’ve learned to build an end-to-end LLM application, starting with 

data collection and fine-tuning until deploying the LLM microservice and RAG service. Through-

out this book, we aimed to provide a thought framework to help you build and solve real-world 

problems in the GenAI landscape. Now that you have it, we wish you good luck in your journey 

and happy building!
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Appendix
MLOps Principles

Building robust and scalable ML systems requires more than creating powerful models. It demands 

an all-encompassing approach to operationalizing the entire ML lifecycle. Let’s explore the six 

core principles that guide the MLOps field. These principles are independent of any tool and are 

at the core of building robust and scalable ML systems. They provide a guideline for designing 

production-ready applications, ensuring consistency, reliability, and scalability at every stage.

With that in mind, let’s begin with the foundation: automation or operationalization.

1. Automation or operationalization
To adopt MLOps, there are three core tiers that most applications build up gradually, from manual 

processing to full automation:

• Manual process: The process is experimental and iterative in the early stages of developing 

an ML application. The data scientist manually performs each pipeline step, such as data 

preparation and validation, model training, and testing. At this point, they commonly use 

Jupyter notebooks to train their models. This stage’s output is the code used to prepare 

the data and train the models.

• Continuous training (CT): The next level involves automating model training. This is 

known as continuous training, which triggers model retraining whenever required. At this 

point, you often automate your data and model validation steps. This step is usually done 

by an orchestration tool, such as ZenML, that glues all your code together and runs it on 

specific triggers. The most common triggers are on a schedule, for example, every day or 

when a specific event comes in, such as when new data is uploaded or the monitoring sys-

tem detects a drop in performance, offering you the flexibility to adapt to various triggers.



MLOps Principles462

• CI/CD: In the final stage, you implement your CI/CD pipelines to enable fast and reliable 

deployment of your ML code into production. The key advancement at this stage is the 

automatic building, testing, and deployment of data, ML models, and training pipeline 

components. CI/CD is used to quickly push new code into various environments, such as 

staging or production, ensuring efficient and reliable deployment.

As we build our LLM system using the FTI (feature, training, inference) architecture, we can 

quickly move from a manual process to CI/CD/CT. In Figure A.1, we can observe that the CT process 

can be triggered by various events, such as a drop in performance detected by the monitoring 

pipeline or a batch of fresh data arriving. Also, Figure A.1 is split into two main sections; the first 

one highlights the automated processes, while at the bottom, we can observe the manual pro-

cesses performed by the data science team while experimenting with various data processing 

methods and models. Once they improve the model by tinkering with how the data is processed 

or the model architecture, they push the code to the code repository, which triggers the CI/CD 

pipeline to build, test, package, and deploy the new changes to the FTI pipelines.

Figure A.1: CI/CD/CT on top of the FTI architecture
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To conclude, CT automates the FTI pipelines, while CI/CD builds, tests, and pushes new versions 

of the FTI pipeline code to production.

2. Versioning
By now, we understand that the whole ML system changes if the code, model, or data changes. 

Thus, it is critical to track and version these three elements individually. But what strategies can 

we adopt to track the code, model, and data separately?

• The code is tracked by Git, which helps us create a new commit (a snapshot of the code) 

on every change added to the codebase. Also, Git-based tools usually allow us to make 

releases, which typically pack multiple features and bug fixes. While the commits contain 

unique identifiers that are not human-interpretable, a release follows more common con-

ventions based on their major, minor, and patch versions. For example, in a release with 

version “v1.2.3,” 1 is the major version, 2 is the minor version, and 3 is the patch version. 

Popular tools are GitHub and GitLab.

• To version the model, you leverage the model registry to store, share, and version all the 

models used within your system. It usually follows the same versioning conventions used 

in code releases, defined as Semantic Versioning, which, along with the major, minor, 

and patch versions, also supports alpha and beta releases that signal applications. At this 

point, you can also leverage the ML metadata store to attach information to the stored 

model, such as what data it was trained on, its architecture, performance, latency, and 

whatever else makes sense to your specific use case. Doing so creates a clear catalog of 

models that can easily be navigated across your team and company.

• Versioning the data isn’t as straightforward as versioning the code and model because it 

depends on the type of data you have (structured or unstructured) and the scale of data you 

have (big or small). For example, for structured data, you can leverage a SQL database with 

a version column that helps you track the changes in the dataset. However, other popular 

solutions are based on Git-like systems, such as Data Version Control (DVC), that track 

every change made to the dataset. Other trendy solutions are based on artifacts similar 

to a model registry that allows you to add a virtual layer to your dataset, tracking and 

creating a new version for every change made to your data. Comet.ml, W&B (Weights & 

Biases), and ZenML offer powerful artifact features. For all solutions, you must store the 

data on-premises or use cloud object storage solutions such as AWS S3. These tools provide 

features that allow you to structure your datasets and versions, track, and access them.
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3. Experiment tracking
Training ML models is an entirely iterative and experimental process. Unlike traditional software 

development, it involves running multiple parallel experiments, comparing them based on a set 

of predefined metrics, and deciding which one should advance to production. An experiment 

tracking tool allows you to log all the necessary information, such as metrics and visual repre-

sentations of your model predictions, to compare all your experiments and easily select the best 

model. Popular tools are Comet ML, W&B, MLflow, and Neptune.

4. Testing
The same trend is followed when testing ML systems. Hence, we must test our application across 

all three dimensions: the data, the model, and the code. We must also ensure that the feature, 

training, and inference pipeline are well integrated with external services, such as the feature store, 

and work together as a system. When working with Python, the most common tool to write your 

tests is pytest, which we also recommend.

Test types
In the development cycle, six primary types of tests are commonly employed at various stages:

• Unit tests: These tests focus on individual components with a single responsibility, such 

as a function that adds two tensors or one that finds an element in a list.

• Integration tests: These tests evaluate the interaction between integrated components 

or units within a system, such as the data evaluation pipeline or the feature engineering 

pipeline, and how they are integrated with the data warehouse and feature store.

• System tests: System tests play a crucial role in the development cycle as they examine the 

entire system, including the complete and integrated application. These tests rigorously 

evaluate the end-to-end functionality of the system, including performance, security, and 

overall user experience—for example, testing an entire ML pipeline, from data ingestion 

to model training and inference, ensuring the system produces the correct outputs for 

given inputs.

• Acceptance tests: These tests, often called user acceptance testing (UAT), are designed to 

confirm that the system meets specified requirements, ensuring it is ready for deployment.

• Regression tests: These tests check for previously identified errors to ensure that new 

changes do not reintroduce them.
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• Stress tests: These tests evaluate the system’s performance and stability under extreme 

conditions, such as high load or limited resources. They aim to identify breaking points 

and ensure the system can handle unexpected spikes in demand or adverse situations 

without failing.

Figure A.2: Test types

We’ve intentionally left regression tests out of the preceding figure because they aren’t a distinct 

testing phase. Instead, regression testing is applied across all levels—unit, integration, system, 

acceptance, and stress tests—to ensure that changes don’t reintroduce previous errors. It’s an 

ongoing process within these phases, not a separate type of test, which is why it’s not shown as 

a separate category.

What do we test?
When writing most tests, you take a component and treat it as a black box. Thus, what you have 

control over is the input and output. You want to test that you get an expected output for a given 

input. With that in mind, here are a few things you should usually test:

• Inputs: Data types, format, length, and edge cases (min/max, small/large, etc.)

• Outputs: Data types, formats, exceptions, and intermediary and final outputs

Test examples
When testing your code, you can leverage the standards from classic software engineering. Here 

are a few examples of code tests you can include when writing unit tests to get a better idea of 

what we want to test at this point—for instance, you want to check that a sentence is cleaned 

as expected. 
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Also, you can look at your chunking algorithm and assert that it works properly by using various 

sentences and chunk sizes.

When we talk about data tests, we mainly refer to data validity. Your data validity code usually 

runs when raw data is ingested from the data warehouse or after computing the features. It is 

part of the feature pipeline. Thus, by writing integration or system tests for your feature pipeline, 

you can check that your system responds properly to valid and invalid data.

Testing data validity depends a lot on your application and data type. For example, when working 

with tabular data, you can check for non-null values, that a categorical variable contains only 

the expected values, or that a float value is always positive. You can check for length, character 

encoding, language, special characters, and grammar errors when working with unstructured 

data such as text.

Model tests are the trickiest, as model training is the most non-deterministic process of an ML 

system. However, unlike traditional software, ML systems can successfully complete without 

throwing any errors. However, the real issue is that they produce incorrect results that can only 

be observed during evaluations or tests. Some standard model test techniques involve checking:

• The shapes of the input and model output tensors

• That the loss decreases after one batch (or more) of training

• Overfit on a small batch, and the loss approaches 0

• That your training pipeline works on all the supported devices, such as the CPU and GPU

• That your early stopping and checkpoint logic works

All the tests are triggered inside the CI pipeline. If some tests are more costly, for example, the mod-

el ones, you can execute them only on special terms, such as only when modifying the model code.

At the other end of the spectrum, you can also perform behavioral testing on your model, which 

tries to adopt the strategy from code testing and treats the model as a black box while looking 

solely at the input data and expected outputs. This makes the behavioral testing methods model 

agnostic. A fundamental paper in this area is Beyond Accuracy: Behavioral Testing of NLP Models 

with CheckList, which we recommend if you want to dig more into the subject. However, as a 

quick overview, the paper proposes that you test your model against three types of tests. We use 

a model that extracts the main subject from a sentence as an example:
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• Invariance: Changes in your input should not affect the output—for example, below is 

an example based on synonym injection:

model(text="The advancements in AI are changing the world rapidly.")

# output: ai

model(text="The progress in AI is changing the world rapidly.")

# output: ai

• Directional: Changes in your input should affect the outputs—for example, below is an 

example where we know the outputs should change based on the provided inputs:

model(text="Deep learning used for sentiment analysis.")

# output: deep-learning

model(text="Deep learning used for object detection.")

# output: deep-learning

model(text="RNNs for sentiment analysis.")

# output: rnn

• Minimum functionality: The most simple combination of inputs and expected outputs—

for example, below is a set of simple examples that we expect the model should always 

get right:

model(text="NLP is the next big wave in machine learning.")

# output: nlp

model(text="MLOps is the next big wave in machine learning.")

# output: mlops

model(text="This is about graph neural networks.")

# output: gnn

For more on testing, we recommend reading Testing Machine Learning Systems: Code, 

Data, and Models by Goku Mohandas: https://madewithml.com/courses/mlops/

testing/.

https://madewithml.com/courses/mlops/testing/
https://madewithml.com/courses/mlops/testing/
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5. Monitoring
Monitoring is vital for any ML system that reaches production. Traditional software systems are 

rule-based and deterministic. Thus, once it is built, it will always work as defined. Unfortunate-

ly, that is not the case with ML systems. When implementing ML models, we haven’t explicitly 

described how they should work. We have used data to compile a probabilistic solution, which 

means that our ML model will constantly be exposed to a level of degradation. This happens 

because the data from production might differ from the data the model was trained on. Thus, it 

is natural that the shipped model doesn’t know how to handle these scenarios.

We shouldn’t try to avoid these situations but create a strategy to catch and fix these errors in time. 

Intuitively, monitoring detects the model’s performance degradation, which triggers an alarm that 

signals that the model should be retrained manually, automatically, or with a combination of both.

Why retrain the model? As the model performance degrades due to a drift in the training dataset 

and what it inputs from production, the only solution is to adapt or retrain the model on a new 

dataset that captures all the new scenarios from production.

As training is a costly operation, there are some tricks that you can perform to avoid retraining, 

but before describing them, let’s quickly understand what we can monitor to understand our 

ML system’s health.

Logs
The approach to logging is straightforward, which is to capture everything, such as:

• Document the system configurations.

• Record the query, the results, and any intermediate outputs.

• Log when a component begins, ends, crashes, and so on.

• Ensure that each log entry is tagged and identified in a way that clarifies its origin within 

the system.

While capturing all activities can rapidly increase the volume of logs, you can take advantage of 

numerous tools for automated log analysis and anomaly detection that leverage AI to efficiently 

scan all the logs, providing you with the confidence to manage the logs effectively.

Metrics
To quantify your application’s healthiness, you must define a set of metrics. Each metric measures 

different aspects of your application, such as the infrastructure, data, and model.
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System metrics
The system metrics are based on monitoring service-level metrics (latency, throughput, error 

rates) and infrastructure health (CPU/GPU, memory). These metrics are used both in traditional 

software and ML as they are crucial to understanding whether the infrastructure works well and 

the system works as expected to provide a good user experience to the end users.

Model metrics
Merely monitoring the system’s health won’t suffice to identify the deeper issues within our 

model. Therefore, moving on to the next layer of metrics that focus on the model’s performance 

is crucial. This includes quantitative evaluation metrics like accuracy, precision, and F1 score, as 

well as essential business metrics influenced by the model, such as ROI and click rate.

Analyzing cumulative performance metrics over the entire deployment period is often ineffective. 

Instead, evaluating performance over time intervals relevant to our application, such as hourly, 

is essential. Thus, in practice, you window your inputs and compute and aggregate the metrics 

at the window level. These sliding metrics can provide a clearer picture of the system’s health, 

allowing us to detect issues more promptly without them being obscured by historical data.

We may not always have access to ground-truth outcomes to evaluate the model’s performance 

on production data. This is particularly challenging when there is a significant delay or when 

real-life data requires annotation. To address this issue, we can develop an approximate signal 

to estimate the model’s performance or label a small portion of our live dataset to assess perfor-

mance. When talking about ML monitoring, an approximate signal is also known as a proxy metric, 

usually implemented by drift detection methods, which are discussed in the following section.

Drifts
Drifts are proxy metrics that help us detect potential issues with the production model in time 

without requiring any ground truths/labels. Table A.1 shows three kinds of drifts.

What drifts Description Drift formulationX          Inputs (features)  data drift → P(X) ≠ Pref(X)  y         Outputs (ground truths/

labels)

target drift → P(y) ≠ Pref(y) 

P(y|X) relationship between X and y  concept drift → P(y|X) ≠ Pref(y|X) 

Table A.1: Relationship between data, model, and code changes
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Data drift
Data drift, also called feature drift or covariate shift, occurs when the distribution of the produc-

tion data deviates from that of the training data, as shown in Figure A.3. This difference means the 

model cannot handle the changes in feature space, leading to potentially unreliable predictions. 

Drift can result from natural real-life changes or systemic problems like missing data, pipeline 

errors, and schema modifications.

Figure A.3: Data drift examples

When data begins to drift, the degradation in our model’s performance might not be immediately 

noticeable, particularly if the model interpolates effectively. Nevertheless, this presents an ideal 

chance to consider retraining before the drift affects the model’s performance.

Target drift
In addition to changes in input data (data drift), we might also encounter shifts in output dis-

tribution. The shift could involve changes in the shape of the distribution or the addition and 

removal of classes in categorical tasks. While retraining the model can help reduce performance 

degradation due to target drift, you can often prevent it by adapting the head processing steps 

and model head to support the new schema of the output class.

For example, if you have a classifier that predicts if an image contains animals or people, and you 

get a picture with buildings, you can either adapt your model to support an unknown class or 

adjust the head of the model to add the new class for future predictions.
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Concept drift
In addition to changes in input and output data, their relationship can also shift. This phenom-

enon, known as concept drift, makes our model ineffective because the patterns it previously 

learned to associate inputs with outputs become outdated. As illustrated in the following figure, 

concept drifts can manifest in various ways:

• Gradually over time

• Suddenly, due to an external event

• Periodically, due to recurring events

Figure A.4: Concept drift examples

For example, this happens when using the model in a different geographic area. Let’s assume you 

want to build a model that predicts whether a person will buy a specific car. You initially built it 

for the American market. Now, you want to use it in the European market, where people tend to 

buy smaller cars, creating a drift between the size feature of the car and the output probability of 

purchasing the vehicle. Of course, concept drifts can be more subtle than this example.

All these types of drift can happen simultaneously, complicating pinpointing the 

exact sources of drift.
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How to detect and measure drifts
Now that we’ve recognized the various types of drift, it’s crucial to understand how to detect and 

measure it. To do so, you need two types of windows:

• A reference window: This is the collection of data points used as a baseline to compare 

against the production data distributions for drift identification. It is usually gathered 

from the training dataset.

• A test window: This collects data points gathered while the ML system is in production. 

It is compared with the reference window to ascertain if drift has occurred.

To measure the drifts, you leverage hypothesis tests that verify the change in distribution between 

the two windows. For example, you can use the Kolmogorov-Smirnov (KS) test to monitor a 

single continuous feature. This is known as a univariate (1D) test. Thus, you must run it for every 

feature you want to monitor. You can leverage a chi-squared univariate test to monitor categorical 

variables and determine if the frequency of events in production is consistent with the reference 

window distribution.

from alibi_detect.cd import KSDrift

cd = KSDrift(X_ref, p_val=.05, preprocess_fn=preprocess_fn, input_
shape=(max_len,))

When working with text data in an embedding representation, we have to model a multivariate 

distribution, which is how LLMs work with text. A popular approach is to take the embeddings of 

the test and reference windows, apply a dimensionality reduction algorithm, and apply an algo-

rithm such as maximum mean discrepancy (MMD). This algorithm is a kernel-based approach 

that measures the distance between two distributions by computing the distance between the 

mean of the embeddings of the two windows.

from alibi_detect.cd import MMDDrift

cd = MMDDrift(x_ref, backend='pytorch', p_val=.05)

preds = cd.predict(x)

Monitoring vs. observability
Monitoring involves the collection and visualization of data, whereas observability provides in-

sights into system health by examining its inputs and outputs. For instance, monitoring allows 

us to track a specific metric to detect potential issues. 
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On the other hand, a system is considered observable if it generates meaningful data about its 

internal state, which is essential for diagnosing root causes.

Alerts
Once we define our monitoring metrics, we need a way to get notified. The most common ap-

proaches are to send an alarm in the following scenarios:

• A metric passes the values of a static threshold—for example, when the accuracy of the 

classifier is lower than 0.8, send an alarm.

• Tweaking the p-value of the statistical tests that check for drifts. A lower p-value means 

a higher confidence that the production distribution differs from the reference one.

These thresholds and p-values depend on your application. However, it is essential to find the 

correct values, as you don’t want to overcrowd your alarming system with false positives. In that 

case, your alarm system won’t be trustworthy, and you will either overreact or not react at all 

to issues in your system. Some common channels for sending alarms to your stakeholders are 

Slack, Discord, your email, and PagerDuty. The system’s stakeholders can be the core engineers, 

managers, or anyone interested in the system.

Depending on the nature of the alarm, you have to react differently. But before taking any action, 

you should be able to inspect it and understand what caused it. You should inspect what metric 

triggered the alarm, with what value, the time it happened, and anything else that makes sense 

to your application.

When the model’s performance degrades, the first impulse is to retrain it. But that is a costly op-

eration. Thus, you first have to check that the data is valid, the schema hasn’t changed, and the 

data point was not an isolated outlier. If neither is true, you should trigger the training pipeline 

and train the model on the newly shifted dataset to solve the drift.

6. Reproducibility
Reproducibility means that every process within your ML systems should produce identical 

results given the same input. This has two main aspects.

The first one is that you should always know what the inputs are—for example, when training 

a model, you can use a plethora of hyperparameters. Thus, you need a way to always track what 

assets were used to generate the new assets, such as what dataset version and config were used 

to train the model.
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The second aspect is based on the non-deterministic nature of ML processes. For example, when 

training a model from scratch, all the weights are initially randomly initialized. Thus, even if 

you use the same dataset and hyperparameters, you might end up with a model with a differ-

ent performance. This aspect can be solved by always using a seed before generating random 

numbers, as in reality, we cannot digitally create randomness, only pseudo-random numbers. 

Thus, by providing a seed, we ensure that we always produce the same trace of pseudo-random 

numbers. This can also happen at the feature engineering step, in case we impute values with 

random values or randomly remove data or labels. But as a general rule of thumb, always try to 

make your processes as deterministic as possible, and in case you have to introduce randomness, 

always provide a seed that you have control over.
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