

LLM Engineer’s Handbook

Master the art of engineering large language models from
concept to production

Paul Iusztin
Maxime Labonne

LLM Engineer’s Handbook
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Senior Publishing Product Manager: Gebin George
Acquisition Editor – Peer Reviews: Swaroop Singh
Project Editor: Amisha Vathare
Content Development Editor: Tanya D’cruz
Copy Editor: Safis Editing
Technical Editor: Karan Sonawane
Proofreader: Safis Editing
Indexer: Manju Arasan
Presentation Designer: Rajesh Shirsath
Developer Relations Marketing Executive: Anamika Singh

First published: October 2024

Production reference: 2171024

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK.

ISBN 978-1-83620-007-9

www.packt.com

www.packt.com

Forewords

As my co-founder at Hugging Face, Clement Delangue, and I often say, AI is becoming the default

way of building technology.

Over the past 3 years, LLMs have already had a profound impact on technology, and they are

bound to have an even greater impact in the coming 5 years. They will be embedded in more and

more products and, I believe, at the center of any human activity based on knowledge or creativity.

For instance, coders are already leveraging LLMs and changing the way they work, focusing on

higher-order thinking and tasks while collaborating with machines. Studio musicians rely on

AI-powered tools to explore the musical creativity space faster. Lawyers are increasing their impact

through retrieval-augmented generation (RAG) and large databases of case law.

At Hugging Face, we’ve always advocated for a future where not just one company or a small

number of scientists control the AI models used by the rest of the population, but instead for a

future where as many people as possible—from as many different backgrounds as possible—are

capable of diving into how cutting-edge machine learning models actually work.

Maxime Labonne and Paul Iusztin have been instrumental in this movement to democratize

LLMs by writing this book and making sure that as many people as possible can not only use

them but also adapt them, fine-tune them, quantize them, and make them efficient enough to

actually deploy in the real world.

Their work is essential, and I’m glad they are making this resource available to the community.

This expands the convex hull of human knowledge.

Julien Chaumond

Co-founder and CTO, Hugging Face

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

As someone deeply immersed in the world of machine learning operations, I’m thrilled to en-

dorse The LLM Engineer’s Handbook. This comprehensive guide arrives at a crucial time when the

demand for LLM expertise is skyrocketing across industries.

What sets this book apart is its practical, end-to-end approach. By walking readers through the

creation of an LLM Twin, it bridges the often daunting gap between theory and real-world ap-

plication. From data engineering and model fine-tuning to advanced topics like RAG pipelines

and inference optimization, the authors leave no stone unturned.

I’m particularly impressed by the emphasis on MLOps and LLMOps principles. As organizations

increasingly rely on LLMs, understanding how to build scalable, reproducible, and robust systems

is paramount. The inclusion of orchestration strategies and cloud integration showcases the

authors’ commitment to equipping readers with truly production-ready skills.

Whether you’re a seasoned ML practitioner looking to specialize in LLMs or a software engineer

aiming to break into this exciting field, this handbook provides the perfect blend of foundational

knowledge and cutting-edge techniques. The clear explanations, practical examples, and focus on

best practices make it an invaluable resource for anyone serious about mastering LLM engineering.

In an era where AI is reshaping industries at breakneck speed, The LLM Engineer’s Handbook stands

out as an essential guide for navigating the complexities of large language models. It’s not just

a book; it’s a roadmap to becoming a proficient LLM engineer in today’s AI-driven landscape.

Hamza Tahir

Co-founder and CTO, ZenML

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

www.packt.com

Contributors

About the authors
Paul Iusztin is a senior ML and MLOps engineer with over seven years of experience building

GenAI, Computer Vision and MLOps solutions. His latest contribution was at Metaphysic, where he

served as one of their core engineers in taking large neural networks to production. He previously

worked at CoreAI, Everseen, and Continental. He is the Founder of Decoding ML, an educational

channel on production-grade ML that provides posts, articles, and open-source courses to help

others build real-world ML systems.

Maxime Labonne is the Head of Post-Training at Liquid AI. He holds a PhD. in ML from the

Polytechnic Institute of Paris and is recognized as a Google Developer Expert in AI/ML. As an

active blogger, he has made significant contributions to the open-source community, including

the LLM Course on GitHub, tools such as LLM AutoEval, and several state-of-the-art models like

NeuralDaredevil. He is the author of the best-selling book Hands-On Graph Neural Networks Using

Python, published by Packt.

I want to thank my family and partner. Your unwavering support and patience made this book possible.

About the reviewer
Rany ElHousieny is an AI solutions architect and AI engineering manager with over two decades

of experience in AI, NLP, and ML. Throughout his career, he has focused on the development and

deployment of AI models, authoring multiple articles on AI systems architecture and ethical AI de-

ployment. He has led groundbreaking projects at companies like Microsoft, where he spearheaded

advancements in NLP and the Language Understanding Intelligent Service (LUIS). Currently, he

plays a pivotal role at Clearwater Analytics, driving innovation in GenAI and AI-driven financial

and investment management solutions.

I would like to thank Clearwater Analytics for providing a supportive and learning environment that fosters

growth and innovation. The vision of our leaders, always staying ahead with the latest technologies, has been

a constant source of inspiration. Their commitment to AI advancements made my experience of reviewing

this book insightful and enriching. Special thanks to my family for their ongoing encouragement throughout

this journey.

Join our book’s Discord space
Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/llmeng

https://packt.link/llmeng

Table of Contents

Preface xxi

Chapter 1: Understanding the LLM Twin Concept and Architecture 1

Understanding the LLM Twin concept �� 2

What is an LLM Twin? • 2

Why building an LLM Twin matters • 3

Why not use ChatGPT (or another similar chatbot)? • 5

Planning the MVP of the LLM Twin product ��� 6

What is an MVP? • 6

Defining the LLM Twin MVP • 7

Building ML systems with feature/training/inference pipelines ��� 8

The problem with building ML systems • 8

The issue with previous solutions • 10

The solution – ML pipelines for ML systems • 13

The feature pipeline • 14

The training pipeline • 14

The inference pipeline • 14

Benefits of the FTI architecture • 15

Designing the system architecture of the LLM Twin ��� 16

Listing the technical details of the LLM Twin architecture • 16

How to design the LLM Twin architecture using the FTI pipeline design • 17

Data collection pipeline • 19

Table of Contentsx

Feature pipeline • 19

Training pipeline • 21

Inference pipeline • 22

Final thoughts on the FTI design and the LLM Twin architecture • 22

Summary �� 23

References ��� 23

Chapter 2: Tooling and Installation 25

Python ecosystem and project installation ��� 26

Poetry: dependency and virtual environment management • 27

Poe the Poet: task execution tool • 29

MLOps and LLMOps tooling ��� 30

Hugging Face: model registry • 31

ZenML: orchestrator, artifacts, and metadata • 32

Orchestrator • 33

Artifacts and metadata • 39

How to run and configure a ZenML pipeline • 43

Comet ML: experiment tracker • 45

Opik: prompt monitoring • 46

Databases for storing unstructured and vector data ��� 47

MongoDB: NoSQL database • 47

Qdrant: vector database • 47

Preparing for AWS �� 48

Setting up an AWS account, an access key, and the CLI • 48

SageMaker: training and inference compute • 50

Why AWS SageMaker? • 51

Summary �� 52

References ��� 53

Chapter 3: Data Engineering 55

Designing the LLM Twin’s data collection pipeline �� 56

Table of Contents xi

Implementing the LLM Twin’s data collection pipeline • 61

ZenML pipeline and steps • 61

The dispatcher: How do you instantiate the right crawler? • 66

The crawlers • 69

Base classes • 69

GitHubCrawler class • 73

CustomArticleCrawler class • 75

MediumCrawler class • 77

The NoSQL data warehouse documents • 79

The ORM and ODM software patterns • 80

Implementing the ODM class • 82

Data categories and user document classes • 87

Gathering raw data into the data warehouse �� 89

Troubleshooting • 94

Selenium issues • 95

Import our backed-up data • 95

Summary �� 96

References ��� 96

Chapter 4: RAG Feature Pipeline 99

Understanding RAG �� 100

Why use RAG? • 100

Hallucinations • 101

Old information • 101

The vanilla RAG framework • 101

Ingestion pipeline • 104

Retrieval pipeline • 105

Generation pipeline • 105

What are embeddings? • 107

Why embeddings are so powerful • 109

Table of Contentsxii

How are embeddings created? • 111

Applications of embeddings • 114

More on vector DBs • 115

How does a vector DB work? • 115

Algorithms for creating the vector index • 116

DB operations • 116

An overview of advanced RAG �� 117

Pre-retrieval • 119

Retrieval • 122

Post-retrieval • 124

Exploring the LLM Twin’s RAG feature pipeline architecture �� 127

The problem we are solving • 127

The feature store • 128

Where does the raw data come from? • 128

Designing the architecture of the RAG feature pipeline • 129

Batch pipelines • 130

Batch versus streaming pipelines • 130

Core steps • 134

Change data capture: syncing the data warehouse and feature store • 136

Why is the data stored in two snapshots? • 138

Orchestration • 138

Implementing the LLM Twin’s RAG feature pipeline ��� 139

Settings • 139

ZenML pipeline and steps • 140

Querying the data warehouse • 143

Cleaning the documents • 146

Chunk and embed the cleaned documents • 147

Loading the documents to the vector DB • 150

Pydantic domain entities • 150

OVM • 154

The dispatcher layer • 160

Table of Contents xiii

The handlers • 162

The cleaning handlers • 163

The chunking handlers • 165

The embedding handlers • 169

Summary ��� 173

References �� 174

Chapter 5: Supervised Fine-Tuning 177

Creating an instruction dataset �� 178

General framework • 178

Data quantity • 180

Data curation • 182

Rule-based filtering • 182

Data deduplication • 184

Data decontamination • 185

Data quality evaluation • 186

Data exploration • 189

Data generation • 191

Data augmentation • 193

Creating our own instruction dataset ��� 196

Exploring SFT and its techniques �� 206

When to fine-tune • 206

Instruction dataset formats • 208

Chat templates • 208

Parameter-efficient fine-tuning techniques • 211

Full fine-tuning • 211

LoRA • 213

QLoRA • 215

Training parameters • 216

Learning rate and scheduler • 216

Batch size • 216

Table of Contentsxiv

Maximum length and packing • 217

Number of epochs • 218

Optimizers • 218

Weight decay • 219

Gradient checkpointing • 219

Fine-tuning in practice �� 219

Summary �� 226

References ��� 227

Chapter 6: Fine-Tuning with Preference Alignment 229

Understanding preference datasets ��� 230

Preference data • 230

Data quantity • 232

Data generation and evaluation • 233

Generating preferences • 233

Tips for data generation • 234

Evaluating preferences • 235

Creating our own preference dataset �� 237

Preference alignment �� 245

Reinforcement Learning from Human Feedback • 246

Direct Preference Optimization • 248

Implementing DPO ��� 250

Summary �� 257

References ��� 258

Chapter 7: Evaluating LLMs 261

Model evaluation ��� 261

Comparing ML and LLM evaluation • 262

General-purpose LLM evaluations • 263

Domain-specific LLM evaluations • 265

Task-specific LLM evaluations • 267

Table of Contents xv

RAG evaluation �� 271

Ragas • 272

ARES • 274

Evaluating TwinLlama-3�1-8B �� 275

Generating answers • 276

Evaluating answers • 278

Analyzing results • 283

Summary �� 286

References ��� 287

Chapter 8: Inference Optimization 289

Model optimization strategies �� 290

KV cache • 291

Continuous batching • 294

Speculative decoding • 295

Optimized attention mechanisms • 297

Model parallelism ��� 298

Data parallelism • 299

Pipeline parallelism • 300

Tensor parallelism • 301

Combining approaches • 303

Model quantization �� 303

Introduction to quantization • 304

Quantization with GGUF and llama.cpp • 309

Quantization with GPTQ and EXL2 • 311

Other quantization techniques • 313

Summary ��� 314

References �� 315

Chapter 9: RAG Inference Pipeline 317

Understanding the LLM Twin’s RAG inference pipeline �� 318

Table of Contentsxvi

Exploring the LLM Twin’s advanced RAG techniques �� 321

Advanced RAG pre-retrieval optimizations: query expansion and self-querying • 324

Query expansion • 324

Self-querying • 328

Advanced RAG retrieval optimization: filtered vector search • 332

Advanced RAG post-retrieval optimization: reranking • 334

Implementing the LLM Twin’s RAG inference pipeline ��� 338

Implementing the retrieval module • 339

Bringing everything together into the RAG inference pipeline • 346

Summary ��� 351

References �� 351

Chapter 10: Inference Pipeline Deployment 355

Criteria for choosing deployment types �� 356

Throughput and latency • 356

Data • 357

Understanding inference deployment types ��� 359

Online real-time inference • 360

Asynchronous inference • 361

Offline batch transform • 362

Monolithic versus microservices architecture in model serving ������������������������������������� 363

Monolithic architecture • 365

Microservices architecture • 365

Choosing between monolithic and microservices architectures • 367

Exploring the LLM Twin’s inference pipeline deployment strategy �������������������������������� 368

The training versus the inference pipeline • 371

Deploying the LLM Twin service �� 372

Implementing the LLM microservice using AWS SageMaker • 373

What are Hugging Face’s DLCs? • 373

Configuring SageMaker roles • 374

Table of Contents xvii

Deploying the LLM Twin model to AWS SageMaker • 375

Calling the AWS SageMaker Inference endpoint • 386

Building the business microservice using FastAPI • 390

Autoscaling capabilities to handle spikes in usage �� 393

Registering a scalable target • 396

Creating a scalable policy • 397

Minimum and maximum scaling limits • 398

Cooldown period • 398

Summary �� 399

References �� 400

Chapter 11: MLOps and LLMOps 401

The path to LLMOps: Understanding its roots in DevOps and MLOps ���������������������������� 402

DevOps • 403

The DevOps lifecycle • 403

The core DevOps concepts • 404

MLOps • 405

MLOps core components • 407

MLOps principles • 407

ML vs. MLOps engineering • 409

LLMOps • 410

Human feedback • 411

Guardrails • 411

Prompt monitoring • 413

Deploying the LLM Twin’s pipelines to the cloud �� 415

Understanding the infrastructure • 416

Setting up MongoDB • 418

Setting up Qdrant • 419

Setting up the ZenML cloud • 421

Containerize the code using Docker • 424

Table of Contentsxviii

Run the pipelines on AWS • 428

Troubleshooting the ResourceLimitExceeded error after running a ZenML pipeline

on SageMaker • 432

Adding LLMOps to the LLM Twin ��� 434

LLM Twin’s CI/CD pipeline flow • 434

More on formatting errors • 436

More on linting errors • 436

Quick overview of GitHub Actions • 437

The CI pipeline • 438

GitHub Actions CI YAML file • 438

The CD pipeline • 442

Test out the CI/CD pipeline • 445

The CT pipeline • 446

Initial triggers • 448

Trigger downstream pipelines • 449

Prompt monitoring • 451

Alerting • 457

Summary �� 458

References ��� 459

Appendix: MLOps Principles 461

1� Automation or operationalization ��� 461

2� Versioning ��� 463

3� Experiment tracking �� 464

4� Testing ��� 464

Test types • 464

What do we test? • 465

Test examples • 465

5� Monitoring �� 468

Logs • 468

Metrics • 468

Table of Contents xix

System metrics • 469

Model metrics • 469

Drifts • 469

Monitoring vs. observability • 472

Alerts • 473

6� Reproducibility �� 473

Other Books You May Enjoy 477

Index 481

Preface

The field of LLM engineering has rapidly emerged as a critical area in artificial intelligence and

machine learning. As LLMs continue to revolutionize natural language processing and genera-

tion, the demand for professionals who can effectively implement, optimize, and deploy these

models in real-world scenarios has grown exponentially. LLM engineering encompasses a wide

range of disciplines, from data preparation and model fine-tuning to inference optimization and

production deployment, requiring a unique blend of software engineering, machine learning

expertise, and domain knowledge.

Machine Learning Operations (MLOps) plays a crucial role in the successful implementation of

LLMs in production environments. MLOps extends the principles of DevOps to machine learning

projects, focusing on automating and streamlining the entire ML lifecycle. For LLMs, MLOps is

particularly important due to the complexity and scale of these models. It addresses challeng-

es such as managing large datasets, handling model versioning, ensuring reproducibility, and

maintaining model performance over time. By incorporating MLOps practices, LLM projects can

achieve greater efficiency, reliability, and scalability, ultimately leading to more successful and

impactful deployments.

The LLM Engineer’s Handbook is a comprehensive guide to applying best practices to the new

field of LLM engineering. Throughout the chapters, readers will find simplified key concepts,

practical techniques, and experts tips for every stage of the LLM lifecycle. The book covers topics

such as data engineering, supervised fine-tuning, model evaluation, inference optimization, and

Retrieval-Augmented Generation (RAG) pipeline development.

To illustrate these concepts in action, an end-to-end project called the LLM Twin will be developed

throughout the book., with the goal of imitating someone’s writing style and personality. This

use case will demonstrate how to build a minimum viable product to solve a specific problem,

using various aspects of LLM engineering and MLOps.

Prefacexxii

Readers can expect to gain a deeper understanding of how to collect and prepare data for LLMs,

fine-tune models for specific tasks, optimize inference performance, and implement RAG pipelines.

They will learn how to evaluate LLM performance, align models with human preferences, and

deploy LLM-based applications. The book also covers essential MLOps principles and practices,

enabling readers to build scalable, reproducible, and robust LLM applications.

Who this book is for
This book is intended for a wide range of technology professionals and enthusiasts interested

in the practical applications of LLMs. It’s ideal for software engineers aiming to transition into

AI projects. While some familiarity with software development is beneficial, the book explains

many concepts from the ground up, making it accessible even to those who are new to AI and

machine learning.

For those already working with machine learning , this book will enhance your skills in imple-

menting and deploying LLM-based systems. We provide a deep dive into the fundamentals of

MLOps, guiding you through the process of creating a minimum viable product using an open-

source LLM to solve real-world problems.

What this book covers
Chapter 1, Understanding the LLM Twin Concept and Architecture, introduces the LLM Twin project,

which is used throughout the book as an end-to-end example of a production-level LLM appli-

cation, and defines the FTI architecture for building scalable ML systems and applies it to the

LLM Twin use case.

Chapter 2, Tooling and Installation, presents Python, MLOps, and cloud tools used to build re-

al-world LLM applications, such as an orchestrator, experiment tracker, prompt monitoring and

LLM evaluation tool. It shows how to use and install them locally for testing and development.

Chapter 3, Data Engineering, shows the implementation of a data collection pipeline that scrapes

multiple sites, such as Medium, GitHub and Substack and stores the raw data in a data warehouse.

It emphasizes collecting raw data from dynamic sources over static datasets for real-world ML

applications.

Chapter 4, RAG Feature Pipeline, introduces RAG fundamental concepts, such as embeddings, the

vanilla RAG framework, vector databases, and how to optimize RAG applications. It applies the

RAG theory by architecting and implementing LLM Twin’s RAG feature pipeline using software

best practices.

Preface xxiii

Chapter 5, Supervised Fine-Tuning, explores the process of refining pre-trained language models

for specific tasks using instruction-answer pairs. It covers creating high-quality datasets, imple-

menting fine-tuning techniques like full fine-tuning, LoRA, and QLoRA, and provides a practical

demonstration of fine-tuning a Llama 3.1 8B model on a custom dataset.

Chapter 6, Fine-Tuning with Preference Alignment, introduces techniques for aligning language

models with human preferences, focusing on Direct Preference Optimization (DPO). It covers

creating custom preference datasets, implementing DPO, and provides a practical demonstration

of aligning the TwinLlama-3.1-8B model using the Unsloth library.

Chapter 7, Evaluating LLMs, details various methods for assessing the performance of language

models and LLM systems. It introduces general-purpose and domain-specific evaluations and dis-

cusses popular benchmarks. The chapter includes a practical evaluation of the TwinLlama-3.1-8B

model using multiple criteria.

Chapter 8, Inference Optimization, covers key optimization strategies such as speculative decoding,

model parallelism, and weight quantization. It discusses how to improve inference speed, reduce

latency, and minimize memory usage, introducing popular inference engines and comparing

their features.

Chapter 9, RAG Inference Pipeline, explores advanced RAG techniques by implementing methods

such as self-query, reranking, and filtered vector search from scratch. It covers designing and

implementing the LLM Twin’s RAG inference pipeline and a custom retrieval module similar to

what you see in popular frameworks such as LangChain.

Chapter 10, Inference Pipeline Deployment, introduces ML deployment strategies, such as online,

asynchronous and batch inference, which will help in architecting and deploying the LLM Twin

fine-tuned model to AWS SageMaker and building a FastAPI microservice to expose the RAG

inference pipeline as a RESTful API.

Chapter 11, MLOps and LLMOps, presents what LLMOps is, starting with its roots in DevOps and

MLOps. This chapter explains how to deploy the LLM Twin project to the cloud, such as the ML

pipelines to AWS and shows how to containerize the code using Docker and build a CI/CD/CT

pipeline. It also adds a prompt monitoring layer on top of LLM Twin’s inference pipeline.

Appendix, MLOps Principles, covers the six MLOps principles used to build scalable, reproducible,

and robust ML applications.

Prefacexxiv

To get the most out of this book
To maximize your learning experience, you are expected to have, at the very least, a foundational

understanding of software development principles and practices. Familiarity with Python pro-

gramming is particularly beneficial, as the book’s examples and code snippets are predominantly

in Python. While prior experience with machine learning concepts is advantageous, it is not

strictly necessary, as the book provides explanations for many fundamental AI and ML concepts.

However, you should be comfortable with basic data structures, algorithms, and have some ex-

perience working with APIs and cloud services.

Familiarity with version control systems like Git is assumed, as this book has a GitHub reposi-

tory for code examples. While this book is designed to be accessible to those who are new to AI

and LLMs, if you have some background in these areas, you will find it easier to grasp the more

advanced concepts and techniques we present.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

LLM-Engineers-Handbook. We also have other code bundles from our rich catalog of books and

videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.

You can download it here: https://packt.link/gbp/9781836200079.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “In the

format_samples function, we apply the Alpaca chat template to each individual message.”

A block of code is set as follows:

def format_samples(example):

 example["prompt"] = alpaca_template.format(example["prompt"])

 example["chosen"] = example['chosen'] + EOS_TOKEN

 example["rejected"] = example['rejected'] + EOS_TOKEN

 return {"prompt": example["prompt"], "chosen": example["chosen"],
"rejected": example["rejected"]}

https://github.com/PacktPublishing/LLM-Engineers-Handbook
https://github.com/PacktPublishing/LLM-Engineers-Handbook
https://github.com/PacktPublishing/
https://packt.link/gbp/9781836200079

Preface xxv

When we wish to draw your attention to a particular part of a code block, the relevant lines or

items are set in bold:

def format_samples(example):

 example["prompt"] = alpaca_template.format(example["prompt"])

 example["chosen"] = example['chosen'] + EOS_TOKEN

 example["rejected"] = example['rejected'] + EOS_TOKEN

 return {"prompt": example["prompt"], "chosen": example["chosen"],
"rejected": example["rejected"]}

Any command-line input or output is written as follows:

poetry install --without aws

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,

words in menus or dialog boxes appear in the text like this. For example: “To do so, go to the Set-

tings tab at the top of the forked repository in GitHub. In the left panel, in the Security section,

click on the Secrets and Variables toggle and, finally, click on Actions.”

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Warnings or important notes appear like this.

Tips and tricks appear like this.

http://www.packtpub.com/submit-errata

Prefacexxvi

Piracy: If you come across any illegal copies of our works in any form on the internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com.

Share your thoughts
Once you’ve read LLM Engineer’s Handbook, First Edition, we’d love to hear your thoughts! Please

click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1836200072

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily.

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781836200079

2. Submit your proof of purchase.

3. That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781836200079

1
Understanding the LLM Twin
Concept and Architecture

By the end of this book, we will have walked you through the journey of building an end-to-end

large language model (LLM) product. We firmly believe that the best way to learn about LLMs

and production machine learning (ML) is to get your hands dirty and build systems. This book

will show you how to build an LLM Twin, an AI character that learns to write like a particular

person by incorporating its style, voice, and personality into an LLM. Using this example, we will

walk you through the complete ML life cycle, from data gathering to deployment and monitoring.

Most of the concepts learned while implementing your LLM Twin can be applied in other LLM-

based or ML applications.

When starting to implement a new product, from an engineering point of view, there are three

planning steps we must go through before we start building. First, it is critical to understand the

problem we are trying to solve and what we want to build. In our case, what exactly is an LLM Twin,

and why build it? This step is where we must dream and focus on the “Why.” Secondly, to reflect

a real-world scenario, we will design the first iteration of a product with minimum functionality.

Here, we must clearly define the core features required to create a working and valuable product.

The choices are made based on the timeline, resources, and team’s knowledge. This is where we

bridge the gap between dreaming and focusing on what is realistic and eventually answer the

following question: “What are we going to build?”.

Finally, we will go through a system design step, laying out the core architecture and design choices

used to build the LLM system. Note that the first two components are primarily product-related,

while the last one is technical and focuses on the “How.”

Understanding the LLM Twin Concept and Architecture2

These three steps are natural in building a real-world product. Even if the first two do not require

much ML knowledge, it is critical to go through them to understand “how” to build the product

with a clear vision. In a nutshell, this chapter covers the following topics:

• Understanding the LLM Twin concept

• Planning the MVP of the LLM Twin product

• Building ML systems with feature/training/inference pipelines

• Designing the system architecture of the LLM Twin

By the end of this chapter, you will have a clear picture of what you will learn to build throughout

the book.

Understanding the LLM Twin concept
The first step is to have a clear vision of what we want to create and why it’s valuable to build it.

The concept of an LLM Twin is new. Thus, before diving into the technical details, it is essential

to understand what it is, what we should expect from it, and how it should work. Having a solid

intuition of your end goal makes it much easier to digest the theory, code, and infrastructure

presented in this book.

What is an LLM Twin?
In a few words, an LLM Twin is an AI character that incorporates your writing style, voice, and

personality into an LLM, which is a complex AI model. It is a digital version of yourself projected

into an LLM. Instead of a generic LLM trained on the whole internet, an LLM Twin is fine-tuned

on yourself. Naturally, as an ML model reflects the data it is trained on, this LLM will incorporate

your writing style, voice, and personality. We intentionally used the word “projected.” As with

any other projection, you lose a lot of information along the way. Thus, this LLM will not be you;

it will copy the side of you reflected in the data it was trained on.

It is essential to understand that an LLM reflects the data it was trained on. If you feed it Shake-

speare, it will start writing like him. If you train it on Billie Eilish, it will start writing songs in

her style. This is also known as style transfer. This concept is prevalent in generating images, too.

For example, let’s say you want to create a cat image using Van Gogh’s style. We will leverage the

style transfer strategy, but instead of choosing a personality, we will do it on our own persona.

To adjust the LLM to a given style and voice along with fine-tuning, we will also leverage various

advanced retrieval-augmented generation (RAG) techniques to condition the autoregressive

process with previous embeddings of ourselves.

Chapter 1 3

We will explore the details in Chapter 5 on fine-tuning and Chapters 4 and 9 on RAG, but for now,

let’s look at a few examples to intuitively understand what we stated previously.

Here are some scenarios of what you can fine-tune an LLM on to become your twin:

• LinkedIn posts and X threads: Specialize the LLM in writing social media content.

• Messages with your friends and family: Adapt the LLM to an unfiltered version of yourself.

• Academic papers and articles: Calibrate the LLM in writing formal and educative content.

• Code: Specialize the LLM in implementing code as you would.

All the preceding scenarios can be reduced to one core strategy: collecting your digital data (or

some parts of it) and feeding it to an LLM using different algorithms. Ultimately, the LLM reflects

the voice and style of the collected data. Easy, right?

Unfortunately, this raises many technical and moral issues. First, on the technical side, how can

we access this data? Do we have enough digital data to project ourselves into an LLM? What kind

of data would be valuable? Secondly, on the moral side, is it OK to do this in the first place? Do

we want to create a copycat of ourselves? Will it write using our voice and personality, or just try

to replicate it?

Remember that the role of this section is not to bother with the “What” and “How” but with the

“Why.” Let’s understand why it makes sense to have your LLM Twin, why it can be valuable, and

why it is morally correct if we frame the problem correctly.

Why building an LLM Twin matters
As an engineer (or any other professional career), building a personal brand is more valuable than

a standard CV. The biggest issue with creating a personal brand is that writing content on plat-

forms such as LinkedIn, X, or Medium takes a lot of time. Even if you enjoy writing and creating

content, you will eventually run out of inspiration or time and feel like you need assistance. We

don’t want to transform this section into a pitch, but we have to understand the scope of this

product/project clearly.

We want to build an LLM Twin to write personalized content on LinkedIn, X, Instagram, Sub-

stack, and Medium (or other blogs) using our style and voice. It will not be used in any immoral

scenarios, but it will act as your writing co-pilot. Based on what we will teach you in this book,

you can get creative and adapt it to various use cases, but we will focus on the niche of generating

social media content and articles. Thus, instead of writing the content from scratch, we can feed

the skeleton of our main idea to the LLM Twin and let it do the grunt work.

Understanding the LLM Twin Concept and Architecture4

Ultimately, we will have to check whether everything is correct and format it to our liking (more

on the concrete features in the Planning the MVP of the LLM Twin product section). Hence, we proj-

ect ourselves into a content-writing LLM Twin that will help us automate our writing process. It

will likely fail if we try to use this particular LLM in a different scenario, as this is where we will

specialize the LLM through fine-tuning, prompt engineering, and RAG.

So, why does building an LLM Twin matter? It helps you do the following:

• Create your brand

• Automate the writing process

• Brainstorm new creative ideas

Also, it is critical to understand that building an LLM Twin is entirely moral. The LLM will be

fine-tuned only on our personal digital data. We won’t collect and use other people’s data to try

to impersonate anyone’s identity. We have a clear goal in mind: creating our personalized writing

copycat. Everyone will have their own LLM Twin with restricted access.

Of course, many security concerns are involved, but we won’t go into that here as it could be a

book in itself.

What’s the difference between a co-pilot and an LLM Twin?

A co-pilot and digital twin are two different concepts that work together and can be

combined into a powerful solution:

• The co-pilot is an AI assistant or tool that augments human users in various

programming, writing, or content creation tasks.

• The twin serves as a 1:1 digital representation of a real-world entity, often

using AI to bridge the gap between the physical and digital worlds. For in-

stance, an LLM Twin is an LLM that learns to mimic your voice, personality,

and writing style.

With these definitions in mind, a writing and content creation AI assistant who

writes like you is your LLM Twin co-pilot.

Chapter 1 5

Why not use ChatGPT (or another similar chatbot)?

We have already provided the answer. ChatGPT is not personalized to your writing style and voice.

Instead, it is very generic, unarticulated, and wordy. Maintaining an original voice is critical for

long-term success when building your brand. Thus, directly using ChatGPT or Gemini will not

yield the most optimal results. Even if you are OK with sharing impersonalized content, mindlessly

using ChatGPT can result in the following:

• Misinformation due to hallucination: Manually checking the results for hallucinations or

using third-party tools to evaluate your results is a tedious and unproductive experience.

• Tedious manual prompting: You must manually craft your prompts and inject external

information, which is a tiresome experience. Also, the generated answers will be hard to

replicate between multiple sessions as you don’t have complete control over your prompts

and injected data. You can solve part of this problem using an API and a tool such as

LangChain, but you need programming experience to do so.

From our experience, if you want high-quality content that provides real value, you will spend

more time debugging the generated text than writing it yourself.

The key of the LLM Twin stands in the following:

• What data we collect

• How we preprocess the data

• How we feed the data into the LLM

• How we chain multiple prompts for the desired results

• How we evaluate the generated content

The LLM itself is important, but we want to highlight that using ChatGPT’s web interface is

exceptionally tedious in managing and injecting various data sources or evaluating the outputs.

The solution is to build an LLM system that encapsulates and automates all the following steps

(manually replicating them each time is not a long-term and feasible solution):

• Data collection

• Data preprocessing

This subsection will refer to using ChatGPT (or another similar chatbot) just in the

context of generating personalized content.

Understanding the LLM Twin Concept and Architecture6

• Data storage, versioning, and retrieval

• LLM fine-tuning

• RAG

• Content generation evaluation

Note that we never said not to use OpenAI’s GPT API, just that the LLM framework we will pres-

ent is LLM-agnostic. Thus, if it can be manipulated programmatically and exposes a fine-tuning

interface, it can be integrated into the LLM Twin system we will learn to build. The key to most

successful ML products is to be data-centric and make your architecture model-agnostic. Thus,

you can quickly experiment with multiple models on your specific data.

Planning the MVP of the LLM Twin product
Now that we understand what an LLM Twin is and why we want to build it, we must clearly define

the product’s features. In this book, we will focus on the first iteration, often labeled the minimum

viable product (MVP), to follow the natural cycle of most products. Here, the main objective is

to align our ideas with realistic and doable business objectives using the available resources to

produce the product. Even as an engineer, as you grow up in responsibilities, you must go through

these steps to bridge the gap between the business needs and what can be implemented.

What is an MVP?
An MVP is a version of a product that includes just enough features to draw in early users and test

the viability of the product concept in the initial stages of development. Usually, the purpose of

the MVP is to gather insights from the market with minimal effort.

An MVP is a powerful strategy because of the following reasons:

• Accelerated time-to-market: Launch a product quickly to gain early traction

• Idea validation: Test it with real users before investing in the full development of the

product

• Market research: Gain insights into what resonates with the target audience

• Risk minimization: Reduces the time and resources needed for a product that might not

achieve market success

Sticking to the V in MVP is essential, meaning the product must be viable. The product must

provide an end-to-end user journey without half-implemented features, even if the product is

minimal. It must be a working product with a good user experience that people will love and

want to keep using to see how it evolves to its full potential.

Chapter 1 7

Defining the LLM Twin MVP
As a thought experiment, let’s assume that instead of building this project for this book, we want

to make a real product. In that case, what are our resources? Well, unfortunately, not many:

• We are a team of three people with two ML engineers and one ML researcher

• Our laptops

• Personal funding for computing, such as training LLMs

• Our enthusiasm

As you can see, we don’t have many resources. Even if this is just a thought experiment, it reflects

the reality for most start-ups at the beginning of their journey. Thus, we must be very strategic

in defining our LLM Twin MVP and what features we want to pick. Our goal is simple: we want

to maximize the product’s value relative to the effort and resources poured into it.

To keep it simple, we will build the features that can do the following for the LLM Twin:

• Collect data from your LinkedIn, Medium, Substack, and GitHub profiles

• Fine-tune an open-source LLM using the collected data

• Populate a vector database (DB) using our digital data for RAG

• Create LinkedIn posts leveraging the following:

• User prompts

• RAG to reuse and reference old content

• New posts, articles, or papers as additional knowledge to the LLM

• Have a simple web interface to interact with the LLM Twin and be able to do the following:

• Configure your social media links and trigger the collection step

• Send prompts or links to external resources

That will be the LLM Twin MVP. Even if it doesn’t sound like much, remember that we must make

this system cost effective, scalable, and modular.

Even if we focus only on the core features of the LLM Twin defined in this section, we

will build the product with the latest LLM research and best software engineering

and MLOps practices in mind. We aim to show you how to engineer a cost-effective

and scalable LLM application.

Understanding the LLM Twin Concept and Architecture8

Until now, we have examined the LLM Twin from the users’ and businesses’ perspectives. The last

step is to examine it from an engineering perspective and define a development plan to under-

stand how to solve it technically. From now on, the book’s focus will be on the implementation

of the LLM Twin.

Building ML systems with feature/training/inference
pipelines
Before diving into the specifics of the LLM Twin architecture, we must understand an ML system

pattern at the core of the architecture, known as the feature/training/inference (FTI) architecture.

This section will present a general overview of the FTI pipeline design and how it can structure

an ML application.

Let’s see how we can apply the FTI pipelines to the LLM Twin architecture.

The problem with building ML systems
Building production-ready ML systems is much more than just training a model. From an en-

gineering point of view, training the model is the most straightforward step in most use cases.

However, training a model becomes complex when deciding on the correct architecture and

hyperparameters. That’s not an engineering problem but a research problem.

At this point, we want to focus on how to design a production-ready architecture. Training a

model with high accuracy is extremely valuable, but just by training it on a static dataset, you

are far from deploying it robustly. We have to consider how to do the following:

• Ingest, clean, and validate fresh data

• Training versus inference setups

• Compute and serve features in the right environment

• Serve the model in a cost-effective way

• Version, track, and share the datasets and models

• Monitor your infrastructure and models

• Deploy the model on a scalable infrastructure

• Automate the deployments and training

These are the types of problems an ML or MLOps engineer must consider, while the research or

data science team is often responsible for training the model.

Chapter 1 9

Figure 1.1: Common elements from an ML system

The preceding figure shows all the components the Google Cloud team suggests that a mature ML

and MLOps system requires. Along with the ML code, there are many moving pieces. The rest of

the system comprises configuration, automation, data collection, data verification, testing and

debugging, resource management, model analysis, process and metadata management, serving

infrastructure, and monitoring. The point is that there are many components we must consider

when productionizing an ML model.

Thus, the critical question is this: How do we connect all these components into a single homog-

enous system? We must create a boilerplate for clearly designing ML systems to answer that

question.

Similar solutions exist for classic software. For example, if you zoom out, most software appli-

cations can be split between a DB, business logic, and UI layer. Every layer can be as complex as

needed, but at a high-level overview, the architecture of standard software can be boiled down

to the previous three components.

Do we have something similar for ML applications? The first step is to examine previous solutions

and why they are unsuitable for building scalable ML systems.

Understanding the LLM Twin Concept and Architecture10

The issue with previous solutions
In Figure 1.2, you can observe the typical architecture present in most ML applications. It is based

on a monolithic batch architecture that couples the feature creation, model training, and infer-

ence into the same component. By taking this approach, you quickly solve one critical problem in

the ML world: the training-serving skew. The training-serving skew happens when the features

passed to the model are computed differently at training and inference time.

In this architecture, the features are created using the same code. Hence, the training-serving

skew issue is solved by default. This pattern works fine when working with small data. The

pipeline runs on a schedule in batch mode, and the predictions are consumed by a third-party

application such as a dashboard.

Figure 1.2: Monolithic batch pipeline architecture

Unfortunately, building a monolithic batch system raises many other issues, such as the following:

• Features are not reusable (by your system or others)

• If the data increases, you have to refactor the whole code to support PySpark or Ray

• It’s hard to rewrite the prediction module in a more efficient language such as C++, Java,

or Rust

Chapter 1 11

• It’s hard to share the work between multiple teams between the features, training, and

prediction modules

• It’s impossible to switch to streaming technology for real-time training

In Figure 1.3, we can see a similar scenario for a real-time system. This use case introduces an-

other issue in addition to what we listed before. To make the predictions, we have to transfer the

whole state through the client request so the features can be computed and passed to the model.

Consider the scenario of computing movie recommendations for a user. Instead of simply pass-

ing the user ID, we must transmit the entire user state, including their name, age, gender, movie

history, and more. This approach is fraught with potential errors, as the client must understand

how to access this state, and it’s tightly coupled with the model service.

Another example would be when implementing an LLM with RAG support. The documents we add

as context along the query represent our external state. If we didn’t store the records in a vector

DB, we would have to pass them with the user query. To do so, the client must know how to query

and retrieve the documents, which is not feasible. It is an antipattern for the client application

to know how to access or compute the features. If you don’t understand how RAG works, we will

explain it in detail in Chapters 8 and 9.

Figure 1.3: Stateless real-time architecture

Understanding the LLM Twin Concept and Architecture12

In conclusion, our problem is accessing the features to make predictions without passing them at

the client’s request. For example, based on our first user movie recommendation example, how

can we predict the recommendations solely based on the user’s ID? Remember these questions,

as we will answer them shortly.

Ultimately, on the other spectrum, Google Cloud provides a production-ready architecture, as

shown in Figure 1.4. Unfortunately, even if it’s a feasible solution, it’s very complex and not intu-

itive. You will have difficulty understanding this if you are not highly experienced in deploying

and keeping ML models in production. Also, it is not straightforward to understand how to start

small and grow the system in time.

The following image is reproduced from work created and shared by Google and used according

to terms described in the Creative Commons 4.0 Attribution License:

Figure 1.4: ML pipeline automation for CT (source: https://cloud.google.com/architecture/
mlops-continuous-delivery-and-automation-pipelines-in-machine-learning)

Chapter 1 13

But here is where the FTI pipeline architectures kick in. The following section will show you how

to solve these fundamental issues using an intuitive ML design.

The solution – ML pipelines for ML systems
The solution is based on creating a clear and straightforward mind map that any team or person

can follow to compute the features, train the model, and make predictions. Based on these three

critical steps that any ML system requires, the pattern is known as the FTI pipeline. So, how does

this differ from what we presented before?

The pattern suggests that any ML system can be boiled down to these three pipelines: feature,

training, and inference (similar to the DB, business logic, and UI layers from classic software).

This is powerful, as we can clearly define the scope and interface of each pipeline. Also, it’s easier

to understand how the three components interact. Ultimately, we have just three instead of 20

moving pieces, as suggested in Figure 1.4, which is much easier to work with and define.

As shown in Figure 1.5, we have the feature, training, and inference pipelines. We will zoom in on

each of them and understand their scope and interface.

Figure 1.5: FTI pipelines architecture

Understanding the LLM Twin Concept and Architecture14

Before going into the details, it is essential to understand that each pipeline is a different com-

ponent that can run on a different process or hardware. Thus, each pipeline can be written using

a different technology, by a different team, or scaled differently. The key idea is that the design

is very flexible to the needs of your team. It acts as a mind map for structuring your architecture.

The feature pipeline
The feature pipeline takes raw data as input, processes it, and outputs the features and labels

required by the model for training or inference. Instead of directly passing them to the model, the

features and labels are stored inside a feature store. Its responsibility is to store, version, track, and

share the features. By saving the features in a feature store, we always have a state of our features.

Thus, we can easily send the features to the training and inference pipelines.

As the data is versioned, we can always ensure that the training and inference time features match.

Thus, we avoid the training-serving skew problem.

The training pipeline
The training pipeline takes the features and labels from the features stored as input and outputs

a train model or models. The models are stored in a model registry. Its role is similar to that of

feature stores, but this time, the model is the first-class citizen. Thus, the model registry will store,

version, track, and share the model with the inference pipeline.

Also, most modern model registries support a metadata store that allows you to specify essential

aspects of how the model was trained. The most important are the features, labels, and their

version used to train the model. Thus, we will always know what data the model was trained on.

The inference pipeline
The inference pipeline takes as input the features and labels from the feature store and the trained

model from the model registry. With these two, predictions can be easily made in either batch

or real-time mode.

As this is a versatile pattern, it is up to you to decide what you do with your predictions. If it’s a

batch system, they will probably be stored in a DB. If it’s a real-time system, the predictions will

be served to the client who requested them. Additionally, the features, labels, and models are

versioned. We can easily upgrade or roll back the deployment of the model. For example, we will

always know that model v1 uses features F1, F2, and F3, and model v2 uses F2, F3, and F4. Thus,

we can quickly change the connections between the model and features.

Chapter 1 15

Benefits of the FTI architecture
To conclude, the most important thing you must remember about the FTI pipelines is their in-

terface:

• The feature pipeline takes in data and outputs the features and labels saved to the feature

store.

• The training pipeline queries the features store for features and labels and outputs a

model to the model registry.

• The inference pipeline uses the features from the feature store and the model from the

model registry to make predictions.

It doesn’t matter how complex your ML system gets, these interfaces will remain the same.

Now that we understand better how the pattern works, we want to highlight the main benefits

of using this pattern:

• As you have just three components, it is intuitive to use and easy to understand.

• Each component can be written into its tech stack, so we can quickly adapt them to specific

needs, such as big or streaming data. Also, it allows us to pick the best tools for the job.

• As there is a transparent interface between the three components, each one can be de-

veloped by a different team (if necessary), making the development more manageable

and scalable.

• Every component can be deployed, scaled, and monitored independently.

The final thing you must understand about the FTI pattern is that the system doesn’t have to

contain only three pipelines. In most cases, it will include more. For example, the feature pipeline

can be composed of a service that computes the features and one that validates the data. Also, the

training pipeline can be composed of the training and evaluation components.

The FTI pipelines act as logical layers. Thus, it is perfectly fine for each to be complex and contain

multiple services. However, what is essential is to stick to the same interface on how the FTI pipe-

lines interact with each other through the feature store and model registries. By doing so, each

FTI component can evolve differently, without knowing the details of each other and without

breaking the system on new changes.

Understanding the LLM Twin Concept and Architecture16

Now that we understand the FTI pipeline architecture, the final step of this chapter is to see how

it can be applied to the LLM Twin use case.

Designing the system architecture of the LLM Twin
In this section, we will list the concrete technical details of the LLM Twin application and under-

stand how we can solve them by designing our LLM system using the FTI architecture. However,

before diving into the pipelines, we want to highlight that we won’t focus on the tooling or the

tech stack at this step. We only want to define a high-level architecture of the system, which is

language-, framework-, platform-, and infrastructure-agnostic at this point. We will focus on

each component’s scope, interface, and interconnectivity. In future chapters, we will cover the

implementation details and tech stack.

Listing the technical details of the LLM Twin architecture
Until now, we defined what the LLM Twin should support from the user’s point of view. Now,

let’s clarify the requirements of the ML system from a purely technical perspective:

• On the data side, we have to do the following:

• Collect data from LinkedIn, Medium, Substack, and GitHub completely autono-

mously and on a schedule

• Standardize the crawled data and store it in a data warehouse

• Clean the raw data

• Create instruct datasets for fine-tuning an LLM

• Chunk and embed the cleaned data. Store the vectorized data into a vector DB

for RAG.

• For training, we have to do the following:

• Fine-tune LLMs of various sizes (7B, 14B, 30B, or 70B parameters)

• Fine-tune on instruction datasets of multiple sizes

• Switch between LLM types (for example, between Mistral, Llama, and GPT)

• Track and compare experiments

To learn more about the FTI pipeline pattern, consider reading From MLOps to ML

Systems with Feature/Training/Inference Pipelines by Jim Dowling, CEO and co-founder

of Hopsworks: https://www.hopsworks.ai/post/mlops-to-ml-systems-with-

fti-pipelines. His article inspired this section.

https://www.hopsworks.ai/post/mlops-to-ml-systems-with-fti-pipelines
https://www.hopsworks.ai/post/mlops-to-ml-systems-with-fti-pipelines

Chapter 1 17

• Test potential production LLM candidates before deploying them

• Automatically start the training when new instruction datasets are available.

• The inference code will have the following properties:

• A REST API interface for clients to interact with the LLM Twin

• Access to the vector DB in real time for RAG

• Inference with LLMs of various sizes

• Autoscaling based on user requests

• Automatically deploy the LLMs that pass the evaluation step.

• The system will support the following LLMOps features:

• Instruction dataset versioning, lineage, and reusability

• Model versioning, lineage, and reusability

• Experiment tracking

• Continuous training, continuous integration, and continuous delivery (CT/

CI/CD)

• Prompt and system monitoring

The preceding list is quite comprehensive. We could have detailed it even more, but at this point,

we want to focus on the core functionality. When implementing each component, we will look

into all the little details. But for now, the fundamental question we must ask ourselves is this:

How can we apply the FTI pipeline design to implement the preceding list of requirements?

How to design the LLM Twin architecture using the FTI
pipeline design
We will split the system into four core components. You will ask yourself this: “Four? Why not

three, as the FTI pipeline design clearly states?” That is a great question. Fortunately, the answer

is simple. We must also implement the data pipeline along the three feature/training/inference

pipelines. According to best practices:

• The data engineering team owns the data pipeline

• The ML engineering team owns the FTI pipelines.

If any technical requirement doesn’t make sense now, bear with us. To avoid repe-

tition, we will examine the details in their specific chapter.

Understanding the LLM Twin Concept and Architecture18

Given our goal of building an MVP with a small team, we must implement the entire application.

This includes defining the data collection and FTI pipelines. Tackling a problem end to end is

often encountered in start-ups that can’t afford dedicated teams. Thus, engineers have to wear

many hats, depending on the state of the product. Nevertheless, in any scenario, knowing how

an end-to-end ML system works is valuable for better understanding other people’s work.

Figure 1.6 shows the LLM system architecture. The best way to understand it is to review the four

components individually and explain how they work.

Figure 1.6: LLM Twin high-level architecture

Chapter 1 19

Data collection pipeline
The data collection pipeline involves crawling your personal data from Medium, Substack, Linke-

dIn, and GitHub. As a data pipeline, we will use the extract, load, transform (ETL) pattern to

extract data from social media platforms, standardize it, and load it into a data warehouse.

The output of this component will be a NoSQL DB, which will act as our data warehouse. As we

work with text data, which is naturally unstructured, a NoSQL DB fits like a glove.

Even though a NoSQL DB, such as MongoDB, is not labeled as a data warehouse, from our point

of view, it will act as one. Why? Because it stores standardized raw data gathered by various ETL

pipelines that are ready to be ingested into an ML system.

The collected digital data is binned into three categories:

• Articles (Medium, Substack)

• Posts (LinkedIn)

• Code (GitHub)

We want to abstract away the platform where the data was crawled. For example, when feeding

an article to the LLM, knowing it came from Medium or Substack is not essential. We can keep

the source URL as metadata to give references. However, from the processing, fine-tuning, and

RAG points of view, it is vital to know what type of data we ingested, as each category must be

processed differently. For example, the chunking strategy between a post, article, and piece of

code will look different.

Also, by grouping the data by category, not the source, we can quickly plug data from other plat-

forms, such as X into the posts or GitLab into the code collection. As a modular system, we must

attach an additional ETL in the data collection pipeline, and everything else will work without

further code modifications.

Feature pipeline
The feature pipeline’s role is to take raw articles, posts, and code data points from the data ware-

house, process them, and load them into the feature store.

It is critical to highlight that the data collection pipeline is designed to crawl data

only from your social media platform. It will not have access to other people. As an

example for this book, we agreed to make our collected data available for learning

purposes. Otherwise, using other people’s data without their consent is not moral.

Understanding the LLM Twin Concept and Architecture20

The characteristics of the FTI pattern are already present.

Here are some custom properties of the LLM Twin’s feature pipeline:

• It processes three types of data differently: articles, posts, and code

• It contains three main processing steps necessary for fine-tuning and RAG: cleaning,

chunking, and embedding

• It creates two snapshots of the digital data, one after cleaning (used for fine-tuning) and

one after embedding (used for RAG)

• It uses a logical feature store instead of a specialized feature store

Let’s zoom in on the logical feature store part a bit. As with any RAG-based system, one of the

central pieces of the infrastructure is a vector DB. Instead of integrating another DB, more con-

cretely, a specialized feature store, we used the vector DB, plus some additional logic to check all

the properties of a feature store our system needs.

The vector DB doesn’t offer the concept of a training dataset, but it can be used as a NoSQL DB.

This means we can access data points using their ID and collection name. Thus, we can easily

query the vector DB for new data points without any vector search logic. Ultimately, we will

wrap the retrieved data into a versioned, tracked, and shareable artifact—more on artifacts in

Chapter 2. For now, you must know it is an MLOps concept used to wrap data and enrich it with

the properties listed before.

How will the rest of the system access the logical feature store? The training pipeline will use the

instruct datasets as artifacts, and the inference pipeline will query the vector DB for additional

context using vector search techniques.

For our use case, this is more than enough because of the following reasons:

• The artifacts work great for offline use cases such as training

• The vector DB is built for online access, which we require for inference.

In future chapters, however, we will explain how the three data categories (articles, posts, and

code) are cleaned, chunked, and embedded.

To conclude, we take in raw article, post, or code data points, process them, and store them in

a feature store to make them accessible to the training and inference pipelines. Note that trim-

ming all the complexity away and focusing only on the interface is a perfect match with the FTI

pattern. Beautiful, right?

Chapter 1 21

Training pipeline
The training pipeline consumes instruct datasets from the feature store, fine-tunes an LLM with

it, and stores the tuned LLM weights in a model registry. More concretely, when a new instruct

dataset is available in the logical feature store, we will trigger the training pipeline, consume the

artifact, and fine-tune the LLM.

In the initial stages, the data science team owns this step. They run multiple experiments to find

the best model and hyperparameters for the job, either through automatic hyperparameter tuning

or manually. To compare and pick the best set of hyperparameters, we will use an experiment

tracker to log everything of value and compare it between experiments. Ultimately, they will pick

the best hyperparameters and fine-tuned LLM and propose it as the LLM production candidate.

The proposed LLM is then stored in the model registry. After the experimentation phase is over,

we store and reuse the best hyperparameters found to eliminate the manual restrictions of the

process. Now, we can completely automate the training process, known as continuous training.

The testing pipeline is triggered for a more detailed analysis than during fine-tuning. Before

pushing the new model to production, assessing it against a stricter set of tests is critical to see

that the latest candidate is better than what is currently in production. If this step passes, the

model is ultimately tagged as accepted and deployed to the production inference pipeline. Even

in a fully automated ML system, it is recommended to have a manual step before accepting a new

production model. It is like pushing the red button before a significant action with high conse-

quences. Thus, at this stage, an expert looks at a report generated by the testing component. If

everything looks good, it approves the model, and the automation can continue.

The particularities of this component will be on LLM aspects, such as the following:

• How do you implement an LLM agnostic pipeline?

• What fine-tuning techniques should you use?

• How do you scale the fine-tuning algorithm on LLMs and datasets of various sizes?

• How do you pick an LLM production candidate from multiple experiments?

• How do you test the LLM to decide whether to push it to production or not?

By the end of this book, you will know how to answer all these questions.

One last aspect we want to clarify is CT. Our modular design allows us to quickly leverage an ML

orchestrator to schedule and trigger different system parts. For example, we can schedule the

data collection pipeline to crawl data every week.

Understanding the LLM Twin Concept and Architecture22

Then, we can trigger the feature pipeline when new data is available in the data warehouse and

the training pipeline when new instruction datasets are available.

Inference pipeline
The inference pipeline is the last piece of the puzzle. It is connected to the model registry and log-

ical feature store. It loads a fine-tuned LLM from the model registry, and from the logical feature

store, it accesses the vector DB for RAG. It takes in client requests through a REST API as queries.

It uses the fine-tuned LLM and access to the vector DB to carry out RAG and answer the queries.

All the client queries, enriched prompts using RAG, and generated answers are sent to a prompt

monitoring system to analyze, debug, and better understand the system. Based on specific require-

ments, the monitoring system can trigger alarms to take action either manually or automatically.

At the interface level, this component follows exactly the FTI architecture, but when zooming in,

we can observe unique characteristics of an LLM and RAG system, such as the following:

• A retrieval client used to do vector searches for RAG

• Prompt templates used to map user queries and external information to LLM inputs

• Special tools for prompt monitoring

Final thoughts on the FTI design and the LLM Twin
architecture
We don’t have to be highly rigid about the FTI pattern. It is a tool used to clarify how to design

ML systems. For example, instead of using a dedicated features store just because that is how

it is done, in our system, it is easier and cheaper to use a logical feature store based on a vector

DB and artifacts. What was important to focus on were the required properties a feature store

provides, such as a versioned and reusable training dataset.

Ultimately, we will explain the computing requirements of each component briefly. The data

collection and feature pipeline are mostly CPU-based and do not require powerful machines. The

training pipeline requires powerful GPU-based machines that could load an LLM and fine-tune it.

The inference pipeline is somewhere in the middle. It still needs a powerful machine but is less

compute-intensive than the training step. However, it must be tested carefully, as the inference

pipeline directly interfaces with the user. Thus, we want the latency to be within the required

parameters for a good user experience. However, using the FTI design is not an issue. We can pick

the proper computing requirements for each component.

Chapter 1 23

Also, each pipeline will be scaled differently. The data and feature pipelines will be scaled horizon-

tally based on the CPU and RAM load. The training pipeline will be scaled vertically by adding more

GPUs. The inference pipeline will be scaled horizontally based on the number of client requests.

To conclude, the presented LLM architecture checks all the technical requirements listed at the

beginning of the section. It processes the data as requested, and the training is modular and can

be quickly adapted to different LLMs, datasets, or fine-tuning techniques. The inference pipeline

supports RAG and is exposed as a REST API. On the LLMOps side, the system supports dataset and

model versioning, lineage, and reusability. The system has a monitoring service, and the whole

ML architecture is designed with CT/CI/CD in mind.

This concludes the high-level overview of the LLM Twin architecture.

Summary
This first chapter was critical to understanding the book’s goal. As a product-oriented book that

will walk you through building an end-to-end ML system, it was essential to understand the

concept of an LLM Twin initially. Afterward, we walked you through what an MVP is and how

to plan our LLM Twin MVP based on our available resources. Following this, we translated our

concept into a practical technical solution with specific requirements. In this context, we intro-

duced the FTI design pattern and showcased its real-world application in designing systems that

are both modular and scalable. Ultimately, we successfully applied the FTI pattern to design the

architecture of the LLM Twin to fit all our technical requirements.

Having a clear vision of the big picture is essential when building systems. Understanding how

a single component will be integrated into the rest of the application can be very valuable when

working on it. We started with a more abstract presentation of the LLM Twin architecture, fo-

cusing on each component’s scope, interface, and interconnectivity.

The following chapters will explore how to implement and deploy each component. On the

MLOps side, we will walk you through using a computing platform, orchestrator, model registry,

artifacts, and other tools and concepts to support all MLOps best practices.

References
• Dowling, J. (2024a, July 11). From MLOps to ML Systems with Feature/Training/Inference

Pipelines. Hopsworks. https://www.hopsworks.ai/post/mlops-to-ml-systems-with-
fti-pipelines

https://www.hopsworks.ai/post/mlops-to-ml-systems-with-fti-pipelines

https://www.hopsworks.ai/post/mlops-to-ml-systems-with-fti-pipelines

Understanding the LLM Twin Concept and Architecture24

• Dowling, J. (2024b, August 5). Modularity and Composability for AI Systems with AI Pipe-

lines and Shared Storage. Hopsworks. https://www.hopsworks.ai/post/modularity-and-
composability-for-ai-systems-with-ai-pipelines-and-shared-storage

• Joseph, M. (2024, August 23). The Taxonomy for Data Transformations in AI Systems. Hop-

sworks. https://www.hopsworks.ai/post/a-taxonomy-for-data-transformations-
in-ai-systems

• MLOps: Continuous delivery and automation pipelines in machine learning. (2024, August

28). Google Cloud. https://cloud.google.com/architecture/mlops-continuous-
delivery-and-automation-pipelines-in-machine-learning

• Qwak. (2024a, June 2). CI/CD for Machine Learning in 2024: Best Practices to build, test,

and Deploy | Infer. Medium. https://medium.com/infer-qwak/ci-cd-for-machine-
learning-in-2024-best-practices-to-build-test-and-deploy-c4ad869824d2

• Qwak. (2024b, July 23). 5 Best Open Source Tools to build End-to-End MLOPs Pipeline in 2024.

Medium. https://medium.com/infer-qwak/building-an-end-to-end-mlops-pipeline-
with-open-source-tools-d8bacbf4184f

• Salama, K., Kazmierczak, J., & Schut, D. (2021). Practitioners guide to MLOPs: A framework

for continuous delivery and automation of machine learning (1st ed.) [PDF]. Google Cloud.
https://services.google.com/fh/files/misc/practitioners_guide_to_mlops_
whitepaper.pdf

Join our book’s Discord space
Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/llmeng

https://www.hopsworks.ai/post/modularity-and-composability-for-ai-systems-with-ai-pipelines-and-shared-storage

https://www.hopsworks.ai/post/modularity-and-composability-for-ai-systems-with-ai-pipelines-and-shared-storage

https://www.hopsworks.ai/post/a-taxonomy-for-data-transformations-in-ai-systems

https://www.hopsworks.ai/post/a-taxonomy-for-data-transformations-in-ai-systems

https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning

https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning

https://medium.com/infer-qwak/ci-cd-for-machine-learning-in-2024-best-practices-to-build-test-and-deploy-c4ad869824d2

https://medium.com/infer-qwak/ci-cd-for-machine-learning-in-2024-best-practices-to-build-test-and-deploy-c4ad869824d2

https://medium.com/infer-qwak/building-an-end-to-end-mlops-pipeline-with-open-source-tools-d8bacbf4184f
https://medium.com/infer-qwak/building-an-end-to-end-mlops-pipeline-with-open-source-tools-d8bacbf4184f
https://services.google.com/fh/files/misc/practitioners_guide_to_mlops_whitepaper.pdf

https://services.google.com/fh/files/misc/practitioners_guide_to_mlops_whitepaper.pdf

https://services.google.com/fh/files/misc/practitioners_guide_to_mlops_whitepaper.pdf

https://packt.link/llmeng

2
Tooling and Installation

This chapter presents all the essential tools that will be used throughout the book, especially in

implementing and deploying the LLM Twin project. At this point in the book, we don’t plan to

present in-depth LLM, RAG, MLOps, or LLMOps concepts. We will quickly walk you through our

tech stack and prerequisites to avoid repeating ourselves throughout the book on how to set up

a particular tool and why we chose it. Starting with Chapter 3, we will begin exploring our LLM

Twin use case by implementing a data collection ETL that crawls data from the internet.

In the first part of the chapter, we will present the tools within the Python ecosystem to manage

multiple Python versions, create a virtual environment, and install the pinned dependencies re-

quired for our project to run. Alongside presenting these tools, we will also show how to install

the LLM-Engineers-Handbook repository on your local machine (in case you want to try out the

code yourself): https://github.com/PacktPublishing/LLM-Engineers-Handbook.

Next, we will explore all the MLOps and LLMOps tools we will use, starting with more generic tools,

such as a model registry, and moving on to more LLM-oriented tools, such as LLM evaluation and

prompt monitoring tools. We will also understand how to manage a project with multiple ML

pipelines using ZenML, an orchestrator bridging the gap between ML and MLOps. Also, we will

quickly explore what databases we will use for NoSQL and vector storage. We will show you how

to run all these components on your local machine using Docker. Lastly, we will quickly review

AWS and show you how to create an AWS user and access keys and install and configure the AWS

CLI to manipulate your cloud resources programmatically. We will also explore SageMaker and

why we use it to train and deploy our open-source LLMs.

https://github.com/PacktPublishing/LLM-Engineers-Handbook

Tooling and Installation26

If you are familiar with these tools, you can safely skip this chapter. We also explain how to in-

stall the project and set up all the necessary components in the repository’s README. Thus, you

also have the option to use that as more concise documentation if you plan to run the code while

reading the book.

To sum all that up, in this chapter, we will explore the following topics:

• Python ecosystem and project installation

• MLOps and LLMOps tooling

• Databases for storing unstructured and vector data

• Preparing for AWS

By the end of this chapter, you will be aware of all the tools we will use across the book. Also, you

will have learned how to install the LLM-Engineers-Handbook repository, set up the rest of the

tools, and use them if you run the code while reading the book.

Python ecosystem and project installation
Any Python project needs three fundamental tools: the Python interpreter, dependency manage-

ment, and a task execution tool. The Python interpreter executes your Python project as expected.

All the code within the book is tested with Python 3.11.8. You can download the Python interpreter

from here: https://www.python.org/downloads/. We recommend installing the exact Python

version (Python 3.11.8) to run the LLM Twin project using pyenv, making the installation process

straightforward.

Instead of installing multiple global Python versions, we recommend managing them using pyenv,

a Python version management tool that lets you manage multiple Python versions between

projects. You can install it using this link: https://github.com/pyenv/pyenv?tab=readme-ov-

file#installation.

After you have installed pyenv, you can install the latest version of Python 3.11, using pyenv, as

follows:

pyenv install 3.11.8

Now list all installed Python versions to see that it was installed correctly:

pyenv versions

You should see something like this:

* system

https://www.python.org/downloads/
https://github.com/pyenv/pyenv?tab=readme-ov-file#installation
https://github.com/pyenv/pyenv?tab=readme-ov-file#installation

Chapter 2 27

3.11.8

To make Python 3.11.8 the default version across your entire system (whenever you open a new

terminal), use the following command:

pyenv global 3.11.8

However, we aim to use Python 3.11.8 locally only in our repository. To achieve that, first, we have

to clone the repository and navigate to it:

git clone https://github.com/PacktPublishing/LLM-Engineers-Handbook.git

cd LLM-Engineers-Handbook

Because we defined a .python-version file within the repository, pyenv will know to pick up

the version from that file and use it locally whenever you are working within that folder. To

double-check that, run the following command while you are in the repository:

python --version

It should output:

Python 3.11.8

To create the .python-version file, you must run pyenv local 3.11.8 once. Then, pyenv will

always know to use that Python version while working within a specific directory.

Now that we have installed the correct Python version using pyenv, let’s move on to Poetry, which

we will use as our dependency and virtual environment manager.

Poetry: dependency and virtual environment management
Poetry is one of the most popular dependency and virtual environment managers within the

Python ecosystem. But let’s start by clarifying what a dependency manager is. In Python, a depen-

dency manager allows you to specify, install, update, and manage external libraries or packages

(dependencies) that a project relies on. For example, this is a simple Poetry requirements file that

uses Python 3.11 and the requests and numpy Python packages.

[tool.poetry.dependencies]

python = "^3.11"

requests = "^2.25.1"

numpy = "^1.19.5"

[build-system]

Tooling and Installation28

requires = ["poetry-core"]

build-backend = "poetry.core.masonry.api"

By using Poetry to pin your dependencies, you always ensure that you install the correct version

of the dependencies that your projects work with. Poetry, by default, saves all its requirements in

pyproject.toml files, which are stored at the root of your repository, as you can see in the cloned

LLM-Engineers-Handbook repository.

Another massive advantage of using Poetry is that it creates a new Python virtual environment in

which it installs the specified Python version and requirements. A virtual environment allows you

to isolate your project’s dependencies from your global Python dependencies and other projects.

By doing so, you ensure there are no version clashes between projects. For example, let’s assume

that Project A needs numpy == 1.19.5, and Project B needs numpy == 1.26.0. If you keep both

projects in the global Python environment, that will not work, as Project B will override Project A’s

numpy installation, which will corrupt Project A and stop it from working. Using Poetry, you can

isolate each project in its own Python environment with its own Python dependencies, avoiding

any dependency clashes.

You can install Poetry from here: https://python-poetry.org/docs/. We use Poetry 1.8.3

throughout the book. Once Poetry is installed, navigate to your cloned LLM-Engineers-Hand-

book repository and run the following command to install all the necessary Python dependencies:

poetry install --without aws

This command knows to pick up all the dependencies from your repository that are listed in

the pyproject.toml and poetry.lock files. After the installation, you can activate your Poetry

environment by running poetry shell in your terminal or by prefixing all your CLI commands

as follows: poetry run <your command>.

One final note on Poetry is that it locks down the exact versions of the dependency tree in the

poetry.lock file based on the definitions added to the project.toml file. While the pyproject.

toml file may specify version ranges (e.g., requests = "^2.25.1"), the poetry.lock file records

the exact version (e.g., requests = "2.25.1") that was installed. It also locks the versions of

sub-dependencies (dependencies of your dependencies), which may not be explicitly listed in

your pyproject.toml file. By locking all the dependencies and sub-dependencies to specific

versions, the poetry.lock file ensures that all project installations use the same versions of each

package. This consistency leads to predictable behavior, reducing the likelihood of encountering

“works on my machine” issues.

https://python-poetry.org/docs/

Chapter 2 29

Other tools similar to Poetry are Venv and Conda for creating virtual environments. Still, they lack

the dependency management option. Thus, you must do it through Python’s default requirements.

txt files, which are less powerful than Poetry’s lock files. Another option is Pipenv, which fea-

ture-wise is more like Poetry but slower, and uv, which is a replacement for Poetry built in Rust,

making it blazing fast. uv has lots of potential to replace Poetry, making it worthwhile to test out:

https://github.com/astral-sh/uv.

The final piece of the puzzle is to look at the task execution tool we used to manage all our CLI

commands.

Poe the Poet: task execution tool
Poe the Poet is a plugin on top of Poetry that is used to manage and execute all the CLI commands

required to interact with the project. It helps you define and run tasks within your Python proj-

ect, simplifying automation and script execution. Other popular options are Makefile, Invoke, or

shell scripts, but Poe the Poet eliminates the need to write separate shell scripts or Makefiles for

managing project tasks, making it an elegant way to manage tasks using the same configuration

file that Poetry already uses for dependencies.

When working with Poe the Poet, instead of having all your commands documented in a README

file or other document, you can add them directly to your pyproject.toml file and execute them

in the command line with an alias. For example, using Poe the Poet, we can define the following

tasks in a pyproject.toml file:

[tool.poe.tasks]

test = "pytest"

format = "black ."

start = "python main.py"

You can then run these tasks using the poe command:

poetry poe test

poetry poe format

poetry poe start

You can install Poe the Poet as a Poetry plugin, as follows:

poetry self add 'poethepoet[poetry_plugin]'

https://github.com/astral-sh/uv

Tooling and Installation30

To conclude, using a tool as a façade over all your CLI commands is necessary to run your appli-

cation. It significantly simplifies the application’s complexity and enhances collaboration as it

acts as out-of-the-box documentation.

Assuming you have pyenv and Poetry installed, here are all the commands you need to run to

clone the repository and install the dependencies and Poe the Poet as a Poetry plugin:

git clone https://github.com/PacktPublishing/LLM-Engineers-Handbook.gitcd
LLM-Engineers-Handbook

poetry install --without aws

poetry self add 'poethepoet[poetry_plugin]'

To make the project fully operational, there are still a few steps to follow, such as filling out a

.env file with your credentials and getting tokens from OpenAI and Hugging Face. But this book

isn’t an installation guide, so we’ve moved all these details into the repository’s README as

they are useful only if you plan to run the repository: https://github.com/PacktPublishing/

LLM-Engineers-Handbook.

Now that we have installed our Python project, let’s present the MLOps tools we will use in the

book. If you are already familiar with these tools, you can safely skip the following tooling section

and move on to the Databases for storing unstructured and vector data section.

MLOps and LLMOps tooling
This section will quickly present all the MLOps and LLMOps tools we will use throughout the

book and their role in building ML systems using MLOps best practices. At this point in the

book, we don’t aim to detail all the MLOps components we will use to implement the LLM Twin

use case, such as model registries and orchestrators, but only provide a quick idea of what they

are and how to use them. As we develop the LLM Twin project throughout the book, you will

see hands-on examples of how we use all these tools. In Chapter 11, we will dive deeply into the

theory of MLOps and LLMOps and connect all the dots. As the MLOps and LLMOps fields are

highly practical, we will leave the theory of these aspects to the end, as it will be much easier to

understand it after you go through the LLM Twin use case implementation.

Also, this section is not dedicated to showing you how to set up each tool. It focuses primarily on

what each tool is used for and highlights the core features used throughout this book.

Still, using Docker, you can quickly run the whole infrastructure locally. If you want to run the

steps within the book yourself, you can host the application locally with these three simple steps:

1. Have Docker 27.1.1 (or higher) installed.

https://github.com/PacktPublishing/LLM-Engineers-Handbook
https://github.com/PacktPublishing/LLM-Engineers-Handbook

Chapter 2 31

2. Fill your .env file with all the necessary credentials as explained in the repository README.

3. Run poetry poe local-infrastructure-up to locally spin up ZenML (http://127.0.0.1:8237/)

and the MongoDB and Qdrant databases.

You can read more details on how to run everything locally in the LLM-Engineers-Handbook re-

pository README: https://github.com/PacktPublishing/LLM-Engineers-Handbook. Within

the book, we will also show you how to deploy each component to the cloud.

Hugging Face: model registry
A model registry is a centralized repository that manages ML models throughout their lifecycle.

It stores models along with their metadata, version history, and performance metrics, serving

as a single source of truth. In MLOps, a model registry is crucial for tracking, sharing, and docu-

menting model versions, facilitating team collaboration. Also, it is a fundamental element in the

deployment process as it integrates with continuous integration and continuous deployment

(CI/CD) pipelines.

We used Hugging Face as our model registry, as we can leverage its ecosystem to easily share our

fine-tuned LLM Twin models with anyone who reads the book. Also, by following the Hugging

Face model registry interface, we can easily integrate the model with all the frameworks around

the LLMs ecosystem, such as Unsloth for fine-tuning and SageMaker for inference.

Our fine-tuned LLMs are available on Hugging Face at:

• TwinLlama 3�1 8B (after fine-tuning): https://huggingface.co/mlabonne/TwinLlama-

3.1-8B

• TwinLlama 3�1 8B DPO (after preference alignment): https://huggingface.co/

mlabonne/TwinLlama-3.1-8B-DPO

Figure 2.1: Hugging Face model registry example

https://github.com/PacktPublishing/LLM-Engineers-Handbook
https://huggingface.co/mlabonne/TwinLlama-3.1-8B
https://huggingface.co/mlabonne/TwinLlama-3.1-8B
https://huggingface.co/mlabonne/TwinLlama-3.1-8B-DPO
https://huggingface.co/mlabonne/TwinLlama-3.1-8B-DPO

Tooling and Installation32

For a quick demo, we have them available on Hugging Face Spaces:

• TwinLlama 3�1 8B: https://huggingface.co/spaces/mlabonne/TwinLlama-3.1-8B

• TwinLlama 3�1 8B DPO: https://huggingface.co/spaces/mlabonne/TwinLlama-3.1-

8B-DPO

Most ML tools provide model registry features. For example, ZenML, Comet, and SageMaker, which

we will present in future sections, also offer their own model registries. They are good options,

but we picked Hugging Face solely because of its ecosystem, which provides easy shareability and

integration throughout the open-source environment. Thus, you will usually select the model

registry that integrates the most with your project’s tooling and requirements.

ZenML: orchestrator, artifacts, and metadata
ZenML acts as the bridge between ML and MLOps. Thus, it offers multiple MLOps features that

make your ML pipeline traceability, reproducibility, deployment, and maintainability easier. At

its core, it is designed to create reproducible workflows in machine learning. It addresses the

challenge of transitioning from exploratory research in Jupyter notebooks to a production-ready

ML environment. It tackles production-based replication issues, such as versioning difficulties,

reproducing experiments, organizing complex ML workflows, bridging the gap between train-

ing and deployment, and tracking metadata. Thus, ZenML’s main features are orchestrating ML

pipelines, storing and versioning ML pipelines as outputs, and attaching metadata to artifacts

for better observability.

Instead of being another ML platform, ZenML introduced the concept of a stack, which allows

you to run ZenML on multiple infrastructure options. A stack will enable you to connect ZenML

to different cloud services, such as:

• An orchestrator and compute engine (for example, AWS SageMaker or Vertex AI)

• Remote storage (for instance, AWS S3 or Google Cloud Storage buckets)

• A container registry (for example, Docker Registry or AWS ECR)

Thus, ZenML acts as a glue that brings all your infrastructure and tools together in one place

through its stack feature, allowing you to quickly iterate through your development processes and

easily monitor your entire ML system. The beauty of this is that ZenML doesn’t vendor-lock you

into any cloud platform. It completely abstracts away the implementation of your Python code

from the infrastructure it runs on. For example, in our LLM Twin use case, we used the AWS stack:

• SageMaker as our orchestrator and compute

https://huggingface.co/spaces/mlabonne/TwinLlama-3.1-8B
https://huggingface.co/spaces/mlabonne/TwinLlama-3.1-8B-DPO
https://huggingface.co/spaces/mlabonne/TwinLlama-3.1-8B-DPO

Chapter 2 33

• S3 as our remote storage used to store and track artifacts

• ECR as our container registry

However, the Python code contains no S3 or ECR particularities, as ZenML takes care of them.

Thus, we can easily switch to other providers, such as Google Cloud Storage or Azure. For more

details on ZenML stacks, you can start here: https://docs.zenml.io/user-guide/production-

guide/understand-stacks.

The local version of the ZenML server comes installed as a Python package. Thus, when running

poetry install, it installs a ZenML debugging server that you can use locally. In Chapter 11, we

will show you how to use their cloud serverless option to deploy the ML pipelines to AWS.

Orchestrator
An orchestrator is a system that automates, schedules, and coordinates all your ML pipelines. It

ensures that each pipeline—such as data ingestion, preprocessing, model training, and deploy-

ment—executes in the correct order and handles dependencies efficiently. By managing these

processes, an orchestrator optimizes resource utilization, handles failures gracefully, and enhances

scalability, making complex ML pipelines more reliable and easier to manage.

How does ZenML work as an orchestrator? It works with pipelines and steps. A pipeline is a

high-level object that contains multiple steps. A function becomes a ZenML pipeline by being

decorated with @pipeline, and a step when decorated with @step. This is a standard pattern

when using orchestrators: you have a high-level function, often called a pipeline, that calls mul-

tiple units/steps/tasks.

Let’s explore how we can implement a ZenML pipeline with one of the ML pipelines implemented

for the LLM Twin project. In the code snippet below, we defined a ZenML pipeline that queries

the database for a user based on its full name and crawls all the provided links under that user:

from zenml import pipeline

from steps.etl import crawl_links, get_or_create_user

@pipeline

We will focus only on the ZenML features used throughout the book, such as orches-

trating, artifacts, and metadata. For more details on ZenML, check out their starter

guide: https://docs.zenml.io/user-guide/starter-guide.

https://docs.zenml.io/user-guide/production-guide/understand-stacks
https://docs.zenml.io/user-guide/production-guide/understand-stacks
https://docs.zenml.io/user-guide/starter-guide

Tooling and Installation34

def digital_data_etl(user_full_name: str, links: list[str]) -> None:

 user = get_or_create_user(user_full_name)

 crawl_links(user=user, links=links)

You can run the pipeline with the following CLI command: poetry poe run-digital-data-etl.

To visualize the pipeline run, you can go to your ZenML dashboard (at http://127.0.0.1:8237/)

and, on the left panel, click on the Pipelines tab and then on the digital_data_etl pipeline, as

illustrated in Figure 2.2:

Figure 2.2: ZenML Pipelines dashboard

After clicking on the digital_data_etl pipeline, you can visualize all the previous and current

pipeline runs, as seen in Figure 2.3. You can see which one succeeded, failed, or is still running.

Also, you can see the stack used to run the pipeline, where the default stack is the one used to

run your ML pipelines locally.

Chapter 2 35

Figure 2.3: ZenML digital_data_etl pipeline dashboard. Example of a specific pipeline

Now, after clicking on the latest digital_data_etl pipeline run (or any other run that succeeded or

is still running), we can visualize the pipeline’s steps, outputs, and insights, as illustrated in Figure

2.4. This structure is often called a directed acyclic graph (DAG). More on DAGs in Chapter 11.

Figure 2.4: ZenML digital_data_etl pipeline run dashboard (example of a specific pipeline run)

Tooling and Installation36

By clicking on a specific step, you can get more insights into its code and configuration. It even

aggregates the logs output by that specific step to avoid switching between tools, as shown in

Figure 2.5.

Figure 2.5: Example of insights from a specific step of the digital_data_etl pipeline run

Now that we understand how to define a ZenML pipeline and how to look it up in the dashboard,

let’s quickly look at how to define a ZenML step. In the code snippet below, we defined the get_

or_create_user() step, which works just like a normal Python function but is decorated with

@step. We won’t go into the details of the logic, as we will cover the ETL logic in Chapter 3. For

now, we will focus only on the ZenML functionality.

from loguru import logger

from typing_extensions import Annotated

from zenml import get_step_context, step

from llm_engineering.application import utils

Chapter 2 37

from llm_engineering.domain.documents import UserDocument

@step

def get_or_create_user(user_full_name: str) -> Annotated[UserDocument,
"user"]:

 logger.info(f"Getting or creating user: {user_full_name}")

 first_name, last_name = utils.split_user_full_name(user_full_name)

 user = UserDocument.get_or_create(first_name=first_name, last_
name=last_name)

 return user

Within a ZenML step, you can define any Python logic your use case needs. In this simple example,

we are just creating or retrieving a user, but we could replace that code with anything, starting

from data collection to feature engineering and training. What is essential to notice is that to

integrate ZenML with your code, you have to write modular code, where each function does just

one thing. The modularity of your code makes it easy to decorate your functions with @step and

then glue multiple steps together within a main function decorated with @pipeline. One design

choice that will impact your application is deciding the granularity of each step, as each will run

as a different unit on a different machine when deployed in the cloud.

To decouple our code from ZenML, we encapsulated all the application and domain logic into

the llm_engineering Python module. We also defined the pipelines and steps folders, where

we defined our ZenML logic. Within the steps module, we only used what we needed from the

llm_engineering Python module (similar to how you use a Python package). In the pipelines

module, we only aggregated ZenML steps to glue them into the final pipeline. Using this de-

sign, we can easily swap ZenML with another orchestrator or use our application logic in other

use cases, such as a REST API. We only have to replace the ZenML code without touching the

llm_engineering module where all our logic resides.

Tooling and Installation38

This folder structure is reflected at the root of the LLM-Engineers-Handbook repository, as il-

lustrated in Figure 2.6:

Figure 2.6: LLM-Engineers-Handbook repository folder structure

One last thing to consider when writing ZenML steps is that if you return a value, it should be se-

rializable. ZenML can serialize most objects that can be reduced to primitive data types, but there

are a few exceptions. For example, we used UUID types as IDs throughout the code, which aren’t

natively supported by ZenML. Thus, we had to extend ZenML’s materializer to support UUIDs.

We raised this issue to ZenML. Hence, in future ZenML versions, UUIDs will be supported, but it

was an excellent example of the serialization aspect of transforming function outputs in artifacts.

Chapter 2 39

Artifacts and metadata
As mentioned in the previous section, ZenML transforms any step output into an artifact. First,

let’s quickly understand what an artifact is. In MLOps, an artifact is any file(s) produced during

the machine learning lifecycle, such as datasets, trained models, checkpoints, or logs. Artifacts

are crucial for reproducing experiments and deploying models. We can transform anything into

an artifact. For example, the model registry is a particular use case for an artifact. Thus, artifacts

have these unique properties: they are versioned, sharable, and have metadata attached to them

to understand what’s inside quickly. For example, when wrapping your dataset with an artifact,

you can add to its metadata the size of the dataset, the train-test split ratio, the size, types of labels,

and anything else useful to understand what’s inside the dataset without actually downloading it.

Let’s circle back to our digital_data_etl pipeline example, where we had as a step output an ar-

tifact, the crawled links, which are an artifact, as seen in Figure 2.7

Figure 2.7: ZenML artifact example using the digital_data_etl pipeline as an example

Tooling and Installation40

By clicking on the crawled_links artifact and navigating to the Metadata tab, we can quickly

see all the domains we crawled for a particular author, the number of links we crawled for each

domain, and how many were successful, as illustrated in Figure 2.8:

Figure 2.8: ZenML metadata example using the digital_data_etl pipeline as an example

A more interesting example of an artifact and its metadata is the generated dataset artifact. In

Figure 2.9, we can visualize the metadata of the instruct_datasets artifact, which was auto-

matically generated and will be used to fine-tune the LLM Twin model. More details on the

instruction datasets are in Chapter 5. For now, we want to highlight that within the dataset’s

metadata, we have precomputed a lot of helpful information about it, such as how many data

categories it contains, its storage size, and the number of samples per training and testing split.

Chapter 2 41

Figure 2.9: ZenML metadata example for the instruct_datasets artifact

The metadata is manually added to the artifact, as shown in the code snippet below. Thus, you

can precompute and attach to the artifact’s metadata anything you consider helpful for dataset

discovery across your business and projects:

… # More imports

from zenml import ArtifactConfig, get_step_context, step

@step

def generate_intruction_dataset(

 prompts: Annotated[dict[DataCategory,
list[GenerateDatasetSamplesPrompt]], "prompts"]) -> Annotated[

Tooling and Installation42

 InstructTrainTestSplit,

 ArtifactConfig(

 name="instruct_datasets",

 tags=["dataset", "instruct", "cleaned"],

),

]:

 datasets = … # Generate datasets

 step_context = get_step_context()

 step_context.add_output_metadata(output_name="instruct_datasets",
metadata=_get_metadata_instruct_dataset(datasets))

 return datasets

def _get_metadata_instruct_dataset(datasets: InstructTrainTestSplit) ->
dict[str, Any]:

 instruct_dataset_categories = list(datasets.train.keys())

 train_num_samples = {

 category: instruct_dataset.num_samples for category, instruct_
dataset in datasets.train.items()

 }

 test_num_samples = {category: instruct_dataset.num_samples for
category, instruct_dataset in datasets.test.items()}

 return {

 "data_categories": instruct_dataset_categories,

 "test_split_size": datasets.test_split_size,

 "train_num_samples_per_category": train_num_samples,

 "test_num_samples_per_category": test_num_samples,

 }

Also, you can easily download and access a specific version of the dataset using its Universally

Unique Identifier (UUID), which you can find using the ZenML dashboard or CLI:

from zenml.client import Client

artifact = Client().get_artifact_version('8bba35c4-8ff9-4d8f-a039-
08046efc9fdc')

loaded_artifact = artifact.load()

Chapter 2 43

The last step in exploring ZenML is understanding how to run and configure a ZenML pipeline.

How to run and configure a ZenML pipeline
All the ZenML pipelines can be called from the run.py file, accessed at tools/run.py in our GitHub

repository. Within the run.py file, we implemented a simple CLI that allows you to specify what

pipeline to run. For example, to call the digital_data_etl pipeline to crawl Maxime’s content,

you have to run:

python -m tools.run --run-etl --no-cache --etl-config-filename digital_
data_etl_maxime_labonne.yaml

Or, to crawl Paul’s content, you can run:

python -m tools.run --run-etl --no-cache --etl-config-filename digital_
data_etl_paul_iusztin.yaml

As explained when introducing Poe the Poet, all our CLI commands used to interact with the proj-

ect will be executed through Poe to simplify and standardize the project. Thus, we encapsulated

these Python calls under the following poe CLI commands:

poetry poe run-digital-data-etl-maxime

poetry poe run-digital-data-etl-paul

We only change the ETL config file name when scraping content for different people. ZenML

allows us to inject specific configuration files at runtime as follows:

config_path = root_dir / "configs" / etl_config_filename

assert config_path.exists(), f"Config file not found: { config_path }"

run_args_etl = {

"config_path": config_path,

"run_name": f"digital_data_etl_run_{dt.now().
strftime('%Y_%m_%d_%H_%M_%S')}"

}

 digital_data_etl.with_options()(**run_args_etl)

In the config file, we specify all the parameters that will input the pipeline as parameters. For ex-

ample, the configs/digital_data_etl_maxime_labonne.yaml configuration file looks as follows:

parameters:

 user_full_name: Maxime Labonne # [First Name(s)] [Last Name]

 links:

 # Personal Blog

Tooling and Installation44

 - https://mlabonne.github.io/blog/posts/2024-07-29_Finetune_Llama31.
html

 - https://mlabonne.github.io/blog/posts/2024-07-15_The_Rise_of_
Agentic_Data_Generation.html

 # Substack

 - https://maximelabonne.substack.com/p/uncensor-any-llm-with-
abliteration-d30148b7d43e

 … # More links

Where the digital_data_etl function signature looks like this:

@pipeline

def digital_data_etl(user_full_name: str, links: list[str]) -> str:

This approach allows us to configure each pipeline at runtime without modifying the code. We

can also clearly track the inputs for all our pipelines, ensuring reproducibility. As seen in Figure

2.10, we have one or more configs for each pipeline.

Figure 2.10: ZenML pipeline configs

Chapter 2 45

Other popular orchestrators similar to ZenML that we’ve personally tested and consider powerful

are Airflow, Prefect, Metaflow, and Dagster. Also, if you are a heavy user of Kubernetes, you can

opt for Agro Workflows or Kubeflow, the latter of which works only on top of Kubernetes. We still

consider ZenML the best trade-off between ease of use, features, and costs. Also, none of these

tools offer the stack feature that is offered by ZenML, which allows it to avoid vendor-locking

you in to any cloud ecosystem.

In Chapter 11, we will explore in more depth how to leverage an orchestrator to implement MLOps

best practices. But now that we understand ZenML, what it is helpful for, and how to use it, let’s

move on to the experiment tracker.

Comet ML: experiment tracker
Training ML models is an entirely iterative and experimental process. Unlike traditional software

development, it involves running multiple parallel experiments, comparing them based on pre-

defined metrics, and deciding which one should advance to production. An experiment tracking

tool allows you to log all the necessary information, such as metrics and visual representations

of your model predictions, to compare all your experiments and quickly select the best model.

Our LLM project is no exception.

As illustrated in Figure 2.11, we used Comet to track metrics such as training and evaluation loss

or the value of the gradient norm across all our experiments.

Figure 2.11: Comet ML training metrics example

Tooling and Installation46

Using an experiment tracker, you can go beyond training and evaluation metrics and log your

training hyperparameters to track different configurations between experiments.

It also logs out-of-the-box system metrics such as GPU, CPU, or memory utilization to give you

a clear picture of what resources you need during training and where potential bottlenecks slow

down your training, as seen in Figure 2.12.

Figure 2.12: Comet ML system metrics example

You don’t have to set up Comet locally. We will use their online version for free without any

constraints throughout this book. Also, if you want to look more in-depth into the Comet ML

experiment tracker, we made the training experiments tracked with Comet ML public while

fine-tuning our LLM Twin models. You can access them here: https://www.comet.com/mlabonne/

llm-twin-training/view/new/panels.

Other popular experiment trackers are W&B, MLflow, and Neptune. We’ve worked with all of

them and can state that they all have mostly the same features, but Comet ML differentiates it-

self through its ease of use and intuitive interface. Let’s move on to the final piece of the MLOps

puzzle: Opik for prompt monitoring.

Opik: prompt monitoring
You cannot use standard tools and techniques when logging and monitoring prompts. The reason

for this is complicated. We will dig into it in Chapter 11. However, to quickly give you some under-

standing, you cannot use standard logging tools as prompts are complex and unstructured chains.

https://www.comet.com/mlabonne/llm-twin-training/view/new/panels
https://www.comet.com/mlabonne/llm-twin-training/view/new/panels

Chapter 2 47

When interacting with an LLM application, you chain multiple input prompts and the generated

output into a trace, where one prompt depends on previous prompts.

Thus, instead of plain text logs, you need an intuitive way to group these traces into a specialized

dashboard that makes debugging and monitoring traces of prompts easier.

We used Opik, an open-source tool made by Comet, as our prompt monitoring tool because it fol-

lows Comet’s philosophy of simplicity and ease of use, which is currently relatively rare in the LLM

landscape. Other options offering similar features are Langfuse (open source, https://langfuse.

com), Galileo (not open source, rungalileo.io), and LangSmith (not open source, https://www.

langchain.com/langsmith), but we found their solutions more cumbersome to use and imple-

ment. Opik, along with its serverless option, also provides a free open-source version that you

have complete control over. You can read more on Opik at https://github.com/comet-ml/opik.

Databases for storing unstructured and vector data
We also want to present the NoSQL and vector databases we will use within our examples. When

working locally, they are already integrated through Docker. Thus, when running poetry poe

local-infrastructure-up, as instructed a few sections above, local images of Docker for both

databases will be pulled and run on your machine. Also, when deploying the project, we will

show you how to use their serverless option and integrate it with the rest of the LLM Twin project.

MongoDB: NoSQL database
MongoDB is one of today’s most popular, robust, fast, and feature-rich NoSQL databases. It

integrates well with most cloud ecosystems, such as AWS, Google Cloud, Azure, and Databricks.

Thus, using MongoDB as our NoSQL database was a no-brainer.

When we wrote this book, MongoDB was used by big players such as Novo Nordisk, Delivery

Hero, Okta, and Volvo. This widespread adoption suggests that MongoDB will remain a leading

NoSQL database for a long time.

We use MongoDB as a NoSQL database to store the raw data we collect from the internet before

processing it and pushing it into the vector database. As we work with unstructured text data,

the flexibility of the NoSQL database fits like a charm.

Qdrant: vector database
Qdrant (https://qdrant.tech/) is one of the most popular, robust, and feature-rich vector

databases. We could have used almost any vector database for our small MVP, but we wanted to

pick something light and likely to be used in the industry for many years to come.

https://langfuse.com
https://langfuse.com
rungalileo.io
https://www.langchain.com/langsmith
https://www.langchain.com/langsmith
https://github.com/comet-ml/opik
https://qdrant.tech/

Tooling and Installation48

We will use Qdrant to store the data from MongoDB after it’s processed and transformed for

GenAI usability.

Qdrant is used by big players such as X (formerly Twitter), Disney, Microsoft, Discord, and John-

son & Johnson. Thus, it is highly probable that Qdrant will remain in the vector database game

for a long time.

While writing the book, other popular options were Milvus, Redis, Weaviate, Pinecone, Chroma,

and pgvector (a PostgreSQL plugin for vector indexes). We found that Qdrant offers the best

trade-off between RPS, latency, and index time, making it a solid choice for many generative AI

applications.

Comparing all the vector databases in detail could be a chapter in itself. We don’t want to do

that here. Still, if curious, you can check the Vector DB Comparison resource from Superlinked at

https://superlinked.com/vector-db-comparison, which compares all the top vector databases

in terms of everything you can think about, from the license and release year to database features,

embedding models, and frameworks supported.

Preparing for AWS
This last part of the chapter will focus on setting up an AWS account (if you don’t already have

one), an AWS access key, and the CLI. Also, we will look into what SageMaker is and why we use it.

We picked AWS as our cloud provider because it’s the most popular out there and the cloud in

which we (the writers) have the most experience. The reality is that other big cloud providers,

such as GCP or Azure, offer similar services. Thus, depending on your specific application, there is

always a trade-off between development time (in which you have the most experience), features,

and costs. But for our MVP, AWS, it’s the perfect option as it provides robust features for every-

thing we need, such as S3 (object storage), ECR (container registry), and SageMaker (compute

for training and inference).

Setting up an AWS account, an access key, and the CLI
As AWS could change its UI/UX, the best way to instruct you on how to create an AWS account is

by redirecting you to their official tutorial: https://docs.aws.amazon.com/accounts/latest/

reference/manage-acct-creating.html.

After successfully creating an AWS account, you can access the AWS console at http://console.

aws.amazon.com. Select Sign in using root user email (found under the Sign in button), then

enter your account’s email address and password.

https://superlinked.com/vector-db-comparison
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-creating.html
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-creating.html
http://console.aws.amazon.com
http://console.aws.amazon.com

Chapter 2 49

Next, we must generate access keys to access AWS programmatically. The best option to do so is

first to create an IAM user with administrative access as described in this AWS official tutorial:

https://docs.aws.amazon.com/streams/latest/dev/setting-up.html

For production accounts, it is best practice to grant permissions with a policy of least privilege,

giving each user only the permissions they require to perform their role. However, to simplify the

setup of our test account, we will use the AdministratorAccess managed policy, which gives our

user full access, as explained in the tutorial above and illustrated in Figure 2.13.

Figure 2.13: IAM user permission policies example

Next, you have to create an access key for the IAM user you just created using the following tutorial:

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html.

The access keys will look as follows:

aws_access_key_id = <your_access_key_id>

aws_secret_access_key = <your_secret_access_key>

Just be careful to store them somewhere safe, as you won’t be able to access them after you cre-

ate them. Also, be cautious with who you share them, as they could be used to access your AWS

account and manipulate various AWS resources.

The last step is to install the AWS CLI and configure it with your newly created access keys. You

can install the AWS CLI using the following link: https://docs.aws.amazon.com/cli/latest/

userguide/getting-started-install.html.

After installing the AWS CLI, you can configure it by running aws configure. Here is an example

of our AWS configuration:

[default]

aws_access_key_id = *************

aws_secret_access_key = ************

https://docs.aws.amazon.com/streams/latest/dev/setting-up.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Tooling and Installation50

region = eu-central-1

output = json

For more details on how to configure the AWS CLI, check out the following tutorial: https://

docs.aws.amazon.com/cli/v1/userguide/cli-configure-files.html.

Also, to configure the project with your AWS credentials, you must fill in the following variables

within your .env file:

AWS_REGION="eu-central-1" # Change it with your AWS region. By default, we
use "eu-central-1".

AWS_ACCESS_KEY="<your_aws_access_key>"

AWS_SECRET_KEY="<your_aws_secret_key>"

SageMaker: training and inference compute
The last topic of this chapter is understanding SageMaker and why we decided to use it. SageMaker

is an ML platform used to train and deploy ML models. An official definition is as follows: AWS

SageMaker is a fully managed machine learning service by AWS that enables developers and data

scientists to build, train, and deploy machine learning models at scale. It simplifies the process

by handling the underlying infrastructure, allowing users to focus on developing high-quality

models efficiently.

An important note about costs associated with hands-on tasks in this book

All the cloud services used across the book stick to their freemium option, except AWS.

Thus, if you use a personal AWS account, you will be responsible for AWS costs as you

follow along in this book. While some services may fall under AWS Free Tier usage,

others will not. Thus, you are responsible for checking your billing console regularly.

Most of the costs will come when testing SageMaker for training and inference. Based

on our tests, the AWS costs can vary between $50 and $100 using the specifications

provided in this book and repository.

See the AWS documentation on setting up billing alarms to monitor your costs

at https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

monitor_estimated_charges_with_cloudwatch.html.

https://docs.aws.amazon.com/cli/v1/userguide/cli-configure-files.html
https://docs.aws.amazon.com/cli/v1/userguide/cli-configure-files.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/monitor_estimated_charges_with_cloudwatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/monitor_estimated_charges_with_cloudwatch.html

Chapter 2 51

We will use SageMaker to fine-tune and operationalize our training pipeline on clusters of GPUs

and to deploy our custom LLM Twin model as a REST API that can be accessed in real time from

anywhere in the world.

Why AWS SageMaker?
We must also discuss why we chose AWS SageMaker over simpler and more cost-effective options,

such as AWS Bedrock. First, let’s explain Bedrock and its benefits.

Amazon Bedrock is a serverless solution for deploying LLMs. Serverless means that there are no

servers or infrastructure to manage. It provides pre-trained models, which you can access directly

through API calls. When we wrote this book, they provided support only for Mistral, Flan, Llama

2, and Llama 3 (quite a limited list of options). You can send input data and receive predictions

from the models without managing the underlying infrastructure or software. This approach sig-

nificantly reduces the complexity and time required to integrate AI capabilities into applications,

making it more accessible to developers with limited machine learning expertise. However, this

ease of integration comes at the cost of limited customization options, as you’re restricted to the

pre-trained models and APIs provided by Amazon Bedrock. In terms of pricing, Bedrock uses a

simple pricing model based on the number of API calls. This straightforward pricing structure

makes it more efficient to estimate and control costs.

Meanwhile, SageMaker provides a comprehensive platform for building, training, and deploying

machine learning models. It allows you to customize your ML processes entirely or even use

the platform for research. That’s why SageMaker is mainly used by data scientists and machine

learning experts who know how to program, understand machine learning concepts, and are

comfortable working with cloud platforms such as AWS. SageMaker is a double-edged sword

regarding costs, following a pay-as-you-go pricing model similar to most AWS services. This

means you have to pay for the usage of computing resources, storage, and any other services

required to build your applications.

In contrast to Bedrock, even if the SageMaker endpoint is not used, you will still pay for the

deployed resources on AWS, such as online EC2 instances. Thus, you have to design autoscaling

systems that delete unused resources. To conclude, Bedrock offers an out-of-the-box solution

that allows you to quickly deploy an API endpoint powered by one of the available foundation

models. Meanwhile, SageMaker is a multi-functional platform enabling you to customize your

ML logic fully.

Tooling and Installation52

So why did we choose SageMaker over Bedrock? Bedrock would have been an excellent solution

for quickly prototyping something, but this is a book on LLM engineering, and our goal is to dig

into all the engineering aspects that Bedrock tries to mask away. Thus, we chose SageMaker

because of its high level of customizability, allowing us to show you all the engineering required

to deploy a model.

In reality, even SageMaker isn’t fully customizable. If you want complete control over your de-

ployment, use EKS, AWS’s Kubernetes self-managed service. In this case, you have direct access

to the virtual machines, allowing you to fully customize how you build your ML pipelines, how

they interact, and how you manage your resources. You could do the same thing with AWS ECS,

AWS’s version of Kubernetes. Using EKS or ECS, you could also reduce the costs, as these services

cost considerably less.

To conclude, SageMaker strikes a balance between complete control and customization and a fully

managed service that hides all the engineering complexity behind the scenes. This balance ensures

that you have the control you need while also benefiting from the managed service’s convenience.

Summary
In this chapter, we reviewed the core tools used across the book. First, we understood how to

install the correct version of Python that supports our repository. Then, we looked over how to

create a virtual environment and install all the dependencies using Poetry. Finally, we understood

how to use a task execution tool like Poe the Poet to aggregate all the commands required to run

the application.

The next step was to review all the tools used to ensure MLOps best practices, such as a model

registry to share our models, an experiment tracker to manage our training experiments, an

orchestrator to manage all our ML pipelines and artifacts, and metadata to manage all our files

and datasets. We also understood what type of databases we need to implement the LLM Twin

use case. Finally, we explored the process of setting up an AWS account, generating an access

key, and configuring the AWS CLI for programmatic access to the AWS cloud. We also gained a

deep understanding of AWS SageMaker and the reasons behind choosing it to build our LLM

Twin application.

In the next chapter, we will explore the implementation of the LLM Twin project by starting with

the data collection ETL that scrapes posts, articles, and repositories from the internet and stores

them in a data warehouse.

Chapter 2 53

References
• Acsany, P. (2024, February 19). Dependency Management With Python Poetry. https://

realpython.com/dependency-management-python-poetry/

• Comet.ml. (n.d.). comet-ml/opik: Open-source end-to-end LLM Development Platform. GitHub.

https://github.com/comet-ml/opik

• Czakon, J. (2024, September 25). ML Experiment Tracking: What It Is, Why It Matters, and

How to Implement It. neptune.ai. https://neptune.ai/blog/ml-experiment-tracking

• Hopsworks. (n.d.). ML Artifacts (ML Assets)? Hopsworks. https://www.hopsworks.ai/

dictionary/ml-artifacts

• Introduction | Documentation | Poetry – Python dependency management and packaging made

easy. (n.d.). https://python-poetry.org/docs

• Jones, L. (2024, March 21). Managing Multiple Python Versions With pyenv. https://

realpython.com/intro-to-pyenv/

• Kaewsanmua, K. (2024, January 3). Best Machine Learning Workflow and Pipeline Orches-

tration Tools. neptune.ai. https://neptune.ai/blog/best-workflow-and-pipeline-

orchestration-tools

• MongoDB. (n.d.). What is NoSQL? NoSQL databases explained. https://www.mongodb.

com/resources/basics/databases/nosql-explained

• Nat-N. (n.d.). nat-n/poethepoet: A task runner that works well with poetry. GitHub. https://

github.com/nat-n/poethepoet

• Oladele, S. (2024, August 29). ML Model Registry: The Ultimate Guide. neptune.ai. https://

neptune.ai/blog/ml-model-registry

• Schwaber-Cohen, R. (n.d.). What is a Vector Database & How Does it Work? Use Cases + Ex-

amples. Pinecone. https://www.pinecone.io/learn/vector-database/

• Starter guide | ZenML Documentation. (n.d.). https://docs.zenml.io/user-guide/

starter-guide

• Vector DB Comparison. (n.d.). https://superlinked.com/vector-db-comparison

https://realpython.com/dependency-management-python-poetry/
https://realpython.com/dependency-management-python-poetry/
https://github.com/comet-ml/opik
https://neptune.ai/blog/ml-experiment-tracking
https://www.hopsworks.ai/dictionary/ml-artifacts
https://www.hopsworks.ai/dictionary/ml-artifacts
https://python-poetry.org/docs
https://realpython.com/intro-to-pyenv/
https://realpython.com/intro-to-pyenv/
https://neptune.ai/blog/best-workflow-and-pipeline-orchestration-tools
https://neptune.ai/blog/best-workflow-and-pipeline-orchestration-tools
https://www.mongodb.com/resources/basics/databases/nosql-explained
https://www.mongodb.com/resources/basics/databases/nosql-explained
https://github.com/nat-n/poethepoet
https://github.com/nat-n/poethepoet
https://neptune.ai/blog/ml-model-registry
https://neptune.ai/blog/ml-model-registry
https://www.pinecone.io/learn/vector-database/
https://docs.zenml.io/user-guide/starter-guide
https://docs.zenml.io/user-guide/starter-guide
https://superlinked.com/vector-db-comparison

Tooling and Installation54

Join our book’s Discord space
Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/llmeng

https://packt.link/llmeng

3
Data Engineering

This chapter will begin exploring the LLM Twin project in more depth. We will learn how to

design and implement the data collection pipeline to gather the raw data we will use in all our

LLM use cases, such as fine-tuning or inference. As this is not a book on data engineering, we

will keep this chapter short and focus only on what is strictly necessary to collect the required

raw data. Starting with Chapter 4, we will concentrate on LLMs and GenAI, exploring its theory

and concrete implementation details.

When working on toy projects or doing research, you usually have a static dataset with which

you work. But in our LLM Twin use case, we want to mimic a real-world scenario where we must

gather and curate the data ourselves. Thus, implementing our data pipeline will connect the dots

regarding how an end-to-end ML project works. This chapter will explore how to design and

implement an Extract, Transform, Load (ETL) pipeline that crawls multiple social platforms,

such as Medium, Substack, or GitHub, and aggregates the gathered data into a MongoDB data

warehouse. We will show you how to implement various crawling methods, standardize the data,

and load it into a data warehouse.

We will begin by designing the LLM Twin’s data collection pipeline and explaining the architecture

of the ETL pipeline. Afterward, we will move directly to implementing the pipeline, starting with

ZenML, which will orchestrate the entire process. We will investigate the crawler implementation

and understand how to implement a dispatcher layer that instantiates the right crawler class

based on the domain of the provided link while following software best practices. Next, we will

learn how to implement each crawler individually. Also, we will show you how to implement

a data layer on top of MongoDB to structure all our documents and interact with the database.

Data Engineering56

Finally, we will explore how to run the data collection pipeline using ZenML and query the col-

lected data from MongoDB.

Thus, in this chapter, we will study the following topics:

• Designing the LLM Twin’s data collection pipeline

• Implementing the LLM Twin’s data collection pipeline

• Gathering raw data into the data warehouse

By the end of this chapter, you will know how to design and implement an ETL pipeline to extract,

transform, and load raw data ready to be ingested into the ML application.

Designing the LLM Twin’s data collection pipeline
Before digging into the implementation, we must understand the LLM Twin’s data collection ETL

architecture, illustrated in Figure 3.1. We must explore what platforms we will crawl to extract

data from and how we will design our data structures and processes. However, the first step is

understanding how our data collection pipeline maps to an ETL process.

An ETL pipeline involves three fundamental steps:

1. We extract data from various sources. We will crawl data from platforms like Medium,

Substack, and GitHub to gather raw data.

2. We transform this data by cleaning and standardizing it into a consistent format suitable

for storage and analysis.

3. We load the transformed data into a data warehouse or database.

For our project, we use MongoDB as our NoSQL data warehouse. Although this is not a standard

approach, we will explain the reasoning behind this choice shortly.

Chapter 3 57

Figure 3.1: LLM Twin’s data collection ETL pipeline architecture

We want to design an ETL pipeline that inputs a user and a list of links as input. Afterward, it

crawls each link individually, standardizes the collected content, and saves it under that specific

author in a MongoDB data warehouse.

Data Engineering58

Hence, the signature of the data collection pipeline will look as follows:

• Input: A list of links and their associated user (the author)

• Output: A list of raw documents stored in the NoSQL data warehouse

We will use user and author interchangeably, as in most scenarios across the ETL pipeline, a

user is the author of the extracted content. However, within the data warehouse, we have only

a user collection.

The ETL pipeline will detect the domain of each link, based on which it will call a specialized

crawler. We implemented four different crawlers for three different data categories, as seen in

Figure 3.2. First, we will explore the three fundamental data categories we will work with across

the book. All our collected documents can be boiled down to an article, repository (or code), and

post. It doesn’t matter where the data comes from. We are primarily interested in the document’s

format. In most scenarios, we will have to process these data categories differently. Thus, we

created a different domain entity for each, where each entity will have its class and collection

in MongoDB. As we save the source URL within the document’s metadata, we will still know its

source and can reference it in our GenAI use cases.

Figure 3.2: The relationship between the crawlers and the data categories

Chapter 3 59

Our codebase supports four different crawlers:

• Medium crawler: Used to collect data from Medium. It outputs an article document. It

logs in to Medium and crawls the HTML of the article’s link. Then, it extracts, cleans, and

normalizes the text from the HTML and loads the standardized text of the article into the

NoSQL data warehouse.

• Custom article crawler: It performs similar steps to the Medium crawler but is a more

generic implementation for collecting articles from various sites. Thus, as it doesn’t im-

plement any particularities of any platform, it doesn’t perform the login step and blindly

gathers all the HTML from a particular link. This is enough for articles freely available

online, which you can find on Substack and people’s blogs. We will use this crawler as a

safety net when the link’s domain isn’t associated with the other supported crawlers. For

example, when providing a Substack link, it will default to the custom article crawler, but

when providing a Medium URL, it will use the Medium crawler.

• GitHub crawler: This collects data from GitHub. It outputs a repository document. It

clones the repository, parses the repository file tree, cleans and normalizes the files, and

loads them to the database.

• LinkedIn crawler: This is used to collect data from LinkedIn. It outputs multiple post

documents. It logs in to LinkedIn, navigates to the user’s feed, and crawls all the user’s

latest posts. For each post, it extracts its HTML, cleans and normalizes it, and loads it to

MongoDB.

In the next section, we will examine each crawler’s implementation in detail. For now, note that

each crawler accesses a specific platform or site in a particular way and extracts HTML from it.

Afterward, all the crawlers parse the HTML, extract the text from it, and clean and normalize it

so it can be stored in the data warehouse under the same interface.

By reducing all the collected data to three data categories and not creating a new data category

for every new data source, we can easily extend this architecture to multiple data sources with

minimal effort. For example, if we want to start collecting data from X, we only have to imple-

ment a new crawler that outputs a post document, and that’s it. The rest of the code will remain

untouched. Otherwise, if we introduced the source dimension in the class and document struc-

ture, we would have to add code to all downstream layers to support any new data source. For

example, we would have to implement a new document class for each new source and adapt the

feature pipeline to support it.

Data Engineering60

For our proof of concept, crawling a few hundred documents is enough, but if we want to scale it

to a real-world product, we would probably need more data sources to crawl from. LLMs are da-

ta-hungry. Thus, you need thousands of documents for ideal results instead of just a few hundred.

But in many projects, it’s an excellent strategy to implement an end-to-end project version that

isn’t the most accurate and iterate through it later. Thus, by using this architecture, you can easily

add more data sources in future iterations to gather a larger dataset. More on LLM fine-tuning

and dataset size will be covered in the next chapter.

How is the ETL process connected to the feature pipeline? The feature pipeline ingests the raw

data from the MongoDB data warehouse, cleans it further, processes it into features, and stores it

in the Qdrant vector DB to make it accessible for the LLM training and inference pipelines. Chap-

ter 4 provides more information on the feature pipeline. The ETL process is independent of the

feature pipeline. The two pipelines communicate with each other strictly through the MongoDB

data warehouse. Thus, the data collection pipeline can write data for MongoDB, and the feature

pipeline can read from it independently and on different schedules.

Why did we use MongoDB as a data warehouse? Using a transactional database, such as Mon-

goDB, as a data warehouse is uncommon. However, in our use case, we are working with small

amounts of data, which MongoDB can handle. Even if we plan to compute statistics on top of our

MongoDB collections, it will work fine at the scale of our LLM Twin’s data (hundreds of docu-

ments). We picked MongoDB to store our raw data primarily because of the nature of our unstruc-

tured data: text crawled from the internet. By mainly working with unstructured text, selecting

a NoSQL database that doesn’t enforce a schema made our development easier and faster. Also,

MongoDB is stable and easy to use. Their Python SDK is intuitive. They provide a Docker image

that works out of the box locally and a cloud freemium tier that is perfect for proofs of concept,

such as the LLM Twin. Thus, we can freely work with it locally and in the cloud. However, when

working with big data (millions of documents or more), using a dedicated data warehouse such

as Snowflake or BigQuery will be ideal.

Now that we’ve understood the architecture of the LLM Twin’s data collection pipeline, let’s

move on to its implementation.

Chapter 3 61

Implementing the LLM Twin’s data collection pipeline
As we presented in Chapter 2, the entry point to each pipeline from our LLM Twin project is a

ZenML pipeline, which can be configured at runtime through YAML files and run through the

ZenML ecosystem. Thus, let’s start by looking into the ZenML digital_data_etl pipeline. You’ll

notice that this is the same pipeline we used as an example in Chapter 2 to illustrate ZenML. But

this time, we will dig deeper into the implementation, explaining how the data collection works

behind the scenes. After understanding how the pipeline works, we will explore the implemen-

tation of each crawler used to collect data from various sites and the MongoDB documents used

to store and query data from the data warehouse.

ZenML pipeline and steps
In the code snippet below, we can see the implementation of the ZenML digital_data_etl

pipeline, which inputs the user’s full name and a list of links that will be crawled under that user

(considered the author of the content extracted from those links). Within the function, we call two

steps. In the first one, we look up the user in the database based on its full name. Then, we loop

through all the links and crawl each independently. The pipeline’s implementation is available

in our repository at pipelines/digital_data_etl.py.

from zenml import pipeline

from steps.etl import crawl_links, get_or_create_user

@pipeline

def digital_data_etl(user_full_name: str, links: list[str]) -> str:

 user = get_or_create_user(user_full_name)

 last_step = crawl_links(user=user, links=links)

 return last_step.invocation_id

Data Engineering62

Figure 3.3 shows a run of the digital_data_etl pipeline on the ZenML dashboard. The next

phase is to explore the get_or_create_user and crawl_links ZenML steps individually. The

step implementation is available in our repository at steps/etl.

Figure 3.3: Example of a digital_data_etl pipeline run from ZenML’s dashboard

We will start with the get_or_create_user ZenML step. We begin by importing the necessary

modules and functions used throughout the script.

from loguru import logger

from typing_extensions import Annotated

from zenml import get_step_context, step

from llm_engineering.application import utils

from llm_engineering.domain.documents import UserDocument

Next, we define the function’s signature, which takes a user’s full name as input and retrieves an

existing user or creates a new one in the MongoDB database if it doesn’t exist:

@step

def get_or_create_user(user_full_name: str) -> Annotated[UserDocument,
"user"]:

Chapter 3 63

Using a utility function, we split the full name into first and last names. Then, we attempt to

retrieve the user from the database or create a new one if it doesn’t exist. We also retrieve the

current step context and add metadata about the user to the output, which will be reflected in

the metadata of the user ZenML output artifact:

 logger.info(f"Getting or creating user: {user_full_name}")

 first_name, last_name = utils.split_user_full_name(user_full_name)

 user = UserDocument.get_or_create(first_name=first_name, last_
name=last_name)

 step_context = get_step_context()

 step_context.add_output_metadata(output_name="user", metadata=_get_
metadata(user_full_name, user))

 return user

Additionally, we define a helper function called _get_metadata(), which builds a dictionary

containing the query parameters and the retrieved user information, which will be added as

metadata to the user artifact:

def _get_metadata(user_full_name: str, user: UserDocument) -> dict:

 return {

 "query": {

 "user_full_name": user_full_name,

 },

 "retrieved": {

 "user_id": str(user.id),

 "first_name": user.first_name,

 "last_name": user.last_name,

 },

 }

We will move on to the crawl_links ZenML step, which collects the data from the provided links.

The code begins by importing essential modules and libraries for web crawling:

from urllib.parse import urlparse

from loguru import logger

Data Engineering64

from tqdm import tqdm

from typing_extensions import Annotated

from zenml import get_step_context, step

from llm_engineering.application.crawlers.dispatcher import
CrawlerDispatcher

from llm_engineering.domain.documents import UserDocument

Following the imports, the main function inputs a list of links written by a specific author. Within

this function, a crawler dispatcher is initialized and configured to handle specific domains such

as LinkedIn, Medium, and GitHub:

@step

def crawl_links(user: UserDocument, links: list[str]) ->
Annotated[list[str], "crawled_links"]:

 dispatcher = CrawlerDispatcher.build().register_linkedin().register_
medium().register_github()

 logger.info(f"Starting to crawl {len(links)} link(s).")

The function initializes variables to store the output metadata and count successful crawls. It then

iterates over each link. It attempts to crawl and extract data for each link, updating the count of

successful crawls and accumulating metadata about each URL:

 metadata = {}

 successfull_crawls = 0

 for link in tqdm(links):

 successfull_crawl, crawled_domain = _crawl_link(dispatcher, link,
user)

 successfull_crawls += successfull_crawl

 metadata = _add_to_metadata(metadata, crawled_domain, successfull_
crawl)

After processing all links, the function attaches the accumulated metadata to the output artifact:

 step_context = get_step_context()

 step_context.add_output_metadata(output_name="crawled_links",
metadata=metadata)

 logger.info(f"Successfully crawled {successfull_crawls} / {len(links)}

Chapter 3 65

links.")

 return links

The code includes a helper function that attempts to extract information from each link using the

appropriate crawler based on the link’s domain. It handles any exceptions that may occur during

extraction and returns a tuple indicating the crawl’s success and the link’s domain:

def _crawl_link(dispatcher: CrawlerDispatcher, link: str, user:
UserDocument) -> tuple[bool, str]:

 crawler = dispatcher.get_crawler(link)

 crawler_domain = urlparse(link).netloc

 try:

 crawler.extract(link=link, user=user)

 return (True, crawler_domain)

 except Exception as e:

 logger.error(f"An error occurred while crawling: {e!s}")

 return (False, crawler_domain)

Another helper function is provided to update the metadata dictionary with the results of each

crawl:

def _add_to_metadata(metadata: dict, domain: str, successfull_crawl: bool)
-> dict:

 if domain not in metadata:

 metadata[domain] = {}

 metadata[domain]["successful"] = metadata.get(domain, {}).
get("successful", 0) + successfull_crawl

 metadata[domain]["total"] = metadata.get(domain, {}).get("total", 0) +
1

 return metadata

As seen in the abovementioned _crawl_link() function, the CrawlerDispatcher class knows

what crawler to initialize based on each link’s domain. The logic is then abstracted away under

the crawler’s extract() method. Let’s zoom in on the CrawlerDispatcher class to understand

how this works fully.

Data Engineering66

The dispatcher: How do you instantiate the right crawler?
The entry point to our crawling logic is the CrawlerDispatcher class. As illustrated in Figure

3.4, the dispatcher acts as the intermediate layer between the provided links and the crawlers. It

knows what crawler to associate with each URL.

The CrawlerDispatcher class knows how to extract the domain of each link and initialize the

proper crawler that collects the data from that site. For example, if it detects the https://medium.

com domain when providing a link to an article, it will build an instance of the MediumCrawler

used to crawl that particular platform. With that in mind, let’s explore the implementation of

the CrawlerDispatcher class.

Figure 3.4: The relationship between the provided links, the CrawlerDispatcher, and the
crawlers

All the crawling logic is available in the GitHub repository at llm_engineering/

application/crawlers.

https://medium.com
https://medium.com

Chapter 3 67

We begin by importing the necessary Python modules for URL handling and regex, along with

importing our crawler classes:

import re

from urllib.parse import urlparse

from loguru import logger

from .base import BaseCrawler

from .custom_article import CustomArticleCrawler

from .github import GithubCrawler

from .linkedin import LinkedInCrawler

from .medium import MediumCrawler

The CrawlerDispatcher class is defined to manage and dispatch appropriate crawler instances

based on given URLs and their domains. Its constructor initializes a registry to store the regis-

tered crawlers.

class CrawlerDispatcher:

 def __init__(self) -> None:

 self._crawlers = {}

As we are using the builder creational pattern to instantiate and configure the dispatcher, we

define a build() class method that returns an instance of the dispatcher:

 @classmethod

 def build(cls) -> "CrawlerDispatcher":

 dispatcher = cls()

 return dispatcher

The dispatcher includes methods to register crawlers for specific platforms like Medium, Linke-

dIn, and GitHub. These methods use a generic register() method under the hood to add each

crawler to the registry. By returning self, we follow the builder creational pattern (more on the

builder pattern: https://refactoring.guru/design-patterns/builder). We can chain mul-

tiple register_*() methods when instantiating the dispatcher as follows: CrawlerDispatcher.

build().register_linkedin().register_medium().

 def register_medium(self) -> "CrawlerDispatcher":

 self.register("https://medium.com", MediumCrawler)

https://refactoring.guru/design-patterns/builder

Data Engineering68

 return self

 def register_linkedin(self) -> "CrawlerDispatcher":

 self.register("https://linkedin.com", LinkedInCrawler)

 return self

 def register_github(self) -> "CrawlerDispatcher":

 self.register("https://github.com", GithubCrawler)

 return self

The generic register() method normalizes each domain to ensure its format is consistent be-

fore it’s added as a key to the self._crawlers registry of the dispatcher. This is a critical step, as

we will use the key of the dictionary as the domain pattern to match future links with a crawler:

 def register(self, domain: str, crawler: type[BaseCrawler]) -> None:

 parsed_domain = urlparse(domain)

 domain = parsed_domain.netloc

 self._crawlers[r"https://(www\.)?{}/*".format(re.escape(domain))]
= crawler

Finally, the get_crawler() method determines the appropriate crawler for a given URL by match-

ing it against the registered domains. If no match is found, it logs a warning and defaults to using

the CustomArticleCrawler.

 def get_crawler(self, url: str) -> BaseCrawler:

 for pattern, crawler in self._crawlers.items():

 if re.match(pattern, url):

 return crawler()

 else:

 logger.warning(f"No crawler found for {url}. Defaulting to
CustomArticleCrawler.")

 return CustomArticleCrawler()

The next step in understanding how the data collection pipeline works is analyzing each crawler

individually.

Chapter 3 69

The crawlers
Before exploring each crawler’s implementation, we must present their base class, which defines

a unified interface for all the crawlers. As shown in Figure 3.4, we can implement the dispatcher

layer because each crawler follows the same signature. Each class implements the extract()

method, allowing us to leverage OOP techniques such as polymorphism, where we can work with

abstract objects without knowing their concrete subclass. For example, in the _crawl_link()

function from the ZenML steps, we had the following code:

crawler = dispatcher.get_crawler(link)

crawler.extract(link=link, user=user)

Note how we called the extract() method without caring about what specific type of crawler

we instantiated. To conclude, working with abstract interfaces ensures core reusability and ease

of extension.

Base classes
Now, let’s explore the BaseCrawler interface, which can be found in the repository at https://
github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/

application/crawlers/base.py.

from abc import ABC, abstractmethod

class BaseCrawler(ABC):

 model: type[NoSQLBaseDocument]

 @abstractmethod

 def extract(self, link: str, **kwargs) -> None: ...

As mentioned above, the interface defines an extract() method that takes as input a link. Also, it

defines a model attribute at the class level that represents the data category document type used

to save the extracted data into the MongoDB data warehouse. Doing so allows us to customize

each subclass with different data categories while preserving the same attributes at the class

level. We will soon explore the NoSQLBaseDocument class when digging into the document entities.

We also extend the BaseCrawler class with a BaseSeleniumCrawler class, which implements

reusable functionality that uses Selenium to crawl various sites, such as Medium or LinkedIn.

Selenium is a tool for automating web browsers. It’s used to interact with web pages program-

matically (like logging into LinkedIn, navigating through profiles, etc.).

https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/crawlers/base.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/crawlers/base.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/crawlers/base.py

Data Engineering70

Selenium can programmatically control various browsers such as Chrome, Firefox, or Brave. For

these specific platforms, we need Selenium to manipulate the browser programmatically to log in

and scroll through the newsfeed or article before being able to extract the entire HTML. For other

sites, where we don’t have to go through the login step or can directly load the whole page, we

can extract the HTML from a particular URL using more straightforward methods than Selenium.

The code begins by setting up the necessary imports and configurations for web crawling using

Selenium and the ChromeDriver initializer. The chromedriver_autoinstaller ensures that

the appropriate version of ChromeDriver is installed and added to the system path, maintain-

ing compatibility with the installed version of your Google Chrome browser (or other Chromi-

um-based browser). Selenium will use the ChromeDriver to communicate with the browser

and open a headless session, where we can programmatically manipulate the browser to access

various URLs, click on specific elements, such as buttons, or scroll through the newsfeed. Using

the chromedriver_autoinstaller, we ensure we always have the correct ChromeDriver version

installed that matches our machine’s Chrome browser version.

import time

from tempfile import mkdtemp

import chromedriver_autoinstaller

from selenium import webdriver

from selenium.webdriver.chrome.options import Options

from llm_engineering.domain.documents import NoSQLBaseDocument

Check if the current version of chromedriver exists

and if it doesn't exist, download it automatically,

then add chromedriver to path

chromedriver_autoinstaller.install()

Next, we define the BaseSeleniumCrawler class for use cases where we need Selenium to collect

the data, such as collecting data from Medium or LinkedIn.

For the Selenium-based crawlers to work, you must install Chrome on your machine

(or a Chromium-based browser such as Brave).

Chapter 3 71

Its constructor initializes various Chrome options to optimize performance, enhance security, and

ensure a headless browsing environment. These options disable unnecessary features like GPU

rendering, extensions, and notifications, which can interfere with automated browsing. These

are standard configurations when crawling in headless mode:

class BaseSeleniumCrawler(BaseCrawler, ABC):

 def __init__(self, scroll_limit: int = 5) -> None:

 options = webdriver.ChromeOptions()

 options.add_argument("--no-sandbox")

 options.add_argument("--headless=new")

 options.add_argument("--disable-dev-shm-usage")

 options.add_argument("--log-level=3")

 options.add_argument("--disable-popup-blocking")

 options.add_argument("--disable-notifications")

 options.add_argument("--disable-extensions")

 options.add_argument("--disable-background-networking")

 options.add_argument("--ignore-certificate-errors")

 options.add_argument(f"--user-data-dir={mkdtemp()}")

 options.add_argument(f"--data-path={mkdtemp()}")

 options.add_argument(f"--disk-cache-dir={mkdtemp()}")

 options.add_argument("--remote-debugging-port=9226")

After configuring the Chrome options, the code allows subclasses to set any additional driver

options by calling the set_extra_driver_options() method. It then initializes the scroll limit

and creates a new instance of the Chrome driver with the specified options:

 self.set_extra_driver_options(options)

 self.scroll_limit = scroll_limit

 self.driver = webdriver.Chrome(

 options=options,

)

The BaseSeleniumCrawler class includes placeholder methods for set_extra_driver_options()

and login(), which subclasses can override to provide specific functionality. This ensures mod-

ularity, as every platform has a different login page with a different HTML structure:

 def set_extra_driver_options(self, options: Options) -> None:

Data Engineering72

 pass

 def login(self) -> None:

 pass

Finally, the scroll_page() method implements a scrolling mechanism to navigate through pages,

such as LinkedIn, up to a specified scroll limit. It scrolls to the bottom of the page, waits for new

content to load, and repeats the process until it reaches the end of the page or the scroll limit is

exceeded. This method is essential for feeds where the content appears as the user scrolls:

 def scroll_page(self) -> None:

 """Scroll through the LinkedIn page based on the scroll limit."""

 current_scroll = 0

 last_height = self.driver.execute_script("return document.body.
scrollHeight")

 while True:

 self.driver.execute_script("window.scrollTo(0, document.body.
scrollHeight);")

 time.sleep(5)

 new_height = self.driver.execute_script("return document.body.
scrollHeight")

 if new_height == last_height or (self.scroll_limit and
current_scroll >= self.scroll_limit):

 break

 last_height = new_height

 current_scroll += 1

We’ve understood what the base classes of our crawlers look like. Next, we will look into the

implementation of the following specific crawlers:

• GitHubCrawler(BaseCrawler)

• CustomArticleCrawler(BaseCrawler)

• MediumCrawler(BaseSeleniumCrawler)

You can find the implementation of the above crawlers in the GitHub repository at
https://github.com/PacktPublishing/LLM-Engineers-Handbook/tree/main

/llm_engineering/application/crawlers.

https://github.com/PacktPublishing/LLM-Engineers-Handbook/tree/main/llm_engineering/application/crawlers
https://github.com/PacktPublishing/LLM-Engineers-Handbook/tree/main/llm_engineering/application/crawlers

Chapter 3 73

GitHubCrawler class
The GithubCrawler class is designed to scrape GitHub repositories, extending the functionality

of the BaseCrawler. We don’t have to log in to GitHub through the browser, as we can leverage

Git’s clone functionality. Thus, we don’t have to leverage any Selenium functionality. Upon ini-

tialization, it sets up a list of patterns to ignore standard files and directories found in GitHub

repositories, such as .git, .toml, .lock, and .png, ensuring that unnecessary files are excluded

from the scraping process:

class GithubCrawler(BaseCrawler):

 model = RepositoryDocument

 def __init__(self, ignore=(".git", ".toml", ".lock", ".png")) -> None:

 super().__init__()

 self._ignore = ignore

Next, we implement the extract() method, where the crawler first checks if the repository has

already been processed and stored in the database. If it exists, it exits the method to prevent

storing duplicates:

def extract(self, link: str, **kwargs) -> None:

 old_model = self.model.find(link=link)

 if old_model is not None:

 logger.info(f"Repository already exists in the database: {link}")

 return

If the repository is new, the crawler extracts the repository name from the link. Then, it creates

a temporary directory to clone the repository to ensure that the cloned repository is cleaned up

from the local disk after it’s processed:

 logger.info(f"Starting scrapping GitHub repository: {link}")

 repo_name = link.rstrip("/").split("/")[-1]

 local_temp = tempfile.mkdtemp()

Within a try block, the crawler changes the current working directory to the temporary directory

and executes the git clone command in a different process:

 try:

Data Engineering74

 os.chdir(local_temp)

 subprocess.run(["git", "clone", link])

After successfully cloning the repository, the crawler constructs the path to the cloned repository.

It initializes an empty dictionary used to aggregate the content of the files in a standardized way.

It walks through the directory tree, skipping over any directories or files that match the ignore

patterns. For each relevant file, it reads the content, removes any spaces, and stores it in the dic-

tionary with the file path as the key:

 repo_path = os.path.join(local_temp, os.listdir(local_temp)[0]) #

 tree = {}

 for root, _, files in os.walk(repo_path):

 dir = root.replace(repo_path, "").lstrip("/")

 if dir.startswith(self._ignore):

 continue

 for file in files:

 if file.endswith(self._ignore):

 continue

 file_path = os.path.join(dir, file)

 with open(os.path.join(root, file), "r", errors="ignore")
as f:

 tree[file_path] = f.read().replace(" ", "")

It then creates a new instance of the RepositoryDocument model, populating it with the repos-

itory content, name, link, platform information, and author details. The instance is then saved

to MongoDB:

 user = kwargs["user"]

 instance = self.model(

 content=tree,

 name=repo_name,

 link=link,

 platform="github",

 author_id=user.id,

 author_full_name=user.full_name,

)

 instance.save()

Chapter 3 75

Finally, whether the scraping succeeds or an exception occurs, the crawler ensures that the tem-

porary directory is removed to clean up any resources used during the process:

 except Exception:

 raise

 finally:

 shutil.rmtree(local_temp)

 logger.info(f"Finished scrapping GitHub repository: {link}")

CustomArticleCrawler class
The CustomArticleCrawler class takes a different approach to collecting data from the in-

ternet. It leverages the AsyncHtmlLoader class to read the entire HTML from a link and the

Html2TextTransformer class to extract the text from that HTML. Both classes are made available

by the langchain_community Python package, as seen below, where we import all the necessary

Python modules:

from urllib.parse import urlparse

from langchain_community.document_loaders import AsyncHtmlLoader

from langchain_community.document_transformers.html2text import
Html2TextTransformer

from loguru import logger

from llm_engineering.domain.documents import ArticleDocument

from .base import BaseCrawler

Next, we define the CustomArticleCrawler class, which inherits from BaseCrawler. As before,

we don’t need to log in or use the scrolling functionality provided by Selenium. In the extract

method, we first check if the article exists in the database to avoid duplicating content:

class CustomArticleCrawler(BaseCrawler):

 model = ArticleDocument

 def extract(self, link: str, **kwargs) -> None:

 old_model = self.model.find(link=link)

 if old_model is not None:

Data Engineering76

 logger.info(f"Article already exists in the database: {link}")

 return

If the article doesn’t exist, we proceed to scrape it. We use the AsyncHtmlLoader class to load the

HTML from the provided link. After, we transform it into plain text using the Html2TextTransformer

class, which returns a list of documents. We are only interested in the first document. As we dele-

gate the whole logic to these two classes, we don’t control how the content is extracted and parsed.

That’s why we used this class as a fallback system for domains where we don’t have anything cus-

tom implemented. These two classes follow the LangChain paradigm, which provides high-level

functionality that works decently in most scenarios. It is fast to implement but hard to customize.

That is one of the reasons why many developers avoid using LangChain in production use cases:

 logger.info(f"Starting scrapping article: {link}")

 loader = AsyncHtmlLoader([link])

 docs = loader.load()

 html2text = Html2TextTransformer()

 docs_transformed = html2text.transform_documents(docs)

 doc_transformed = docs_transformed[0]

We get the page content from the extracted document, plus relevant metadata such as the title,

subtitle, content, and language:

 content = {

 "Title": doc_transformed.metadata.get("title"),

 "Subtitle": doc_transformed.metadata.get("description"),

 "Content": doc_transformed.page_content,

 "language": doc_transformed.metadata.get("language"),

 }

Next, we parse the URL to determine the platform (or domain) from which the article was scraped:

 parsed_url = urlparse(link)

 platform = parsed_url.netloc

We then create a new instance of the article model, populating it with the extracted content.

Finally, we save this instance to the MongoDB data warehouse:

 user = kwargs["user"]

Chapter 3 77

 instance = self.model(

 content=content,

 link=link,

 platform=platform,

 author_id=user.id,

 author_full_name=user.full_name,

)

 instance.save()

 logger.info(f"Finished scrapping custom article: {link}")

So far, we have seen how to crawl GitHub repositories and random sites using LangChain utility

functions. Lastly, we must explore a crawler using Selenium to manipulate the browser program-

matically. Thus, we will continue with the MediumCrawler implementation.

MediumCrawler class
The code begins by importing essential libraries and defining the MediumCrawler class, which

inherits from BaseSeleniumCrawler:

from bs4 import BeautifulSoup

from loguru import logger

from llm_engineering.domain.documents import ArticleDocument

from .base import BaseSeleniumCrawler

class MediumCrawler(BaseSeleniumCrawler):

 model = ArticleDocument

Within the MediumCrawler class, we leverage the set_extra_driver_options() method to extend

the default driver options used by Selenium:

 def set_extra_driver_options(self, options) -> None:

 options.add_argument(r"--profile-directory=Profile 2")

The extract() method implements the core functionality, first checking whether the article

exists in the database to prevent duplicate entries.

Data Engineering78

If the article is new, the method proceeds to navigate to the article’s link and scroll through the

page to ensure all content is loaded:

 def extract(self, link: str, **kwargs) -> None:

 old_model = self.model.find(link=link)

 if old_model is not None:

 logger.info(f"Article already exists in the database: {link}")

 return

 logger.info(f"Starting scrapping Medium article: {link}")

 self.driver.get(link)

 self.scroll_page()

After fully loading the page, the method uses BeautifulSoup to parse the HTML content and

extract the article’s title, subtitle, and full text. BeautifulSoup is a popular Python library for

web scraping and parsing HTML or XML documents. Thus, we used it to extract all the HTML

elements we needed from the HTML accessed with Selenium. Finally, we aggregate everything

into a dictionary:

 soup = BeautifulSoup(self.driver.page_source, "html.parser")

 title = soup.find_all("h1", class_="pw-post-title")

 subtitle = soup.find_all("h2", class_="pw-subtitle-paragraph")

 data = {

 "Title": title[0].string if title else None,

 "Subtitle": subtitle[0].string if subtitle else None,

 "Content": soup.get_text(),

 }

Finally, the method closes the WebDriver to free up resources. It then creates a new ArticleDocument

instance, populates it with the extracted content and user information provided via kwargs, and

saves it to the database:

 self.driver.close()

 user = kwargs["user"]

 instance = self.model(

Chapter 3 79

 platform="medium",

 content=data,

 link=link,

 author_id=user.id,

 author_full_name=user.full_name,

)

 instance.save()

 logger.info(f"Successfully scraped and saved article: {link}")

With that, we conclude the MediumCrawler implementation. The LinkedIn crawler follows a

similar pattern to the Medium one, where it uses Selenium to log in and access the feed of a

user’s latest posts. Then, it extracts the posts and scrolls through the feed to load the next page

until a limit is hit. You can check the full implementation in our repository at https://github.
com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/

crawlers/linkedin.py.

With the rise of LLMs, collecting data from the internet has become a critical step in many re-

al-world AI applications. Hence, more high-level tools have appeared in the Python ecosystem,

such as Scrapy (https://github.com/scrapy/scrapy), which crawls websites and extracts struc-

tured data from their pages, and Crawl4AI (https://github.com/unclecode/crawl4ai), which

is highly specialized in crawling data for LLMs and AI applications.

In this section, we’ve looked at implementing three types of crawlers: one that leverages the

git executable in a subprocess to clone GitHub repositories, one that uses LangChain utilities

to extract the HTML of a single web page, and one that leverages Selenium for more complex

scenarios where we have to navigate through the login page, scroll the article to load the entire

HTML, and extract it into text format. The last step is understanding how the document classes

we’ve used across the chapter, such as the ArticleDocument, work.

The NoSQL data warehouse documents
We had to implement three document classes to structure our data categories. These classes

define the specific attributes we require for a document, such as the content, author, and source

link. It is best practice to structure your data in classes instead of dictionaries, as the attributes we

expect for each item are more verbose, reducing run errors. For example, when accessing a value

from a Python dictionary, we can never be sure it is present or its type is current. By wrapping

our data items with classes, we can ensure each attribute is as expected.

https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/crawlers/linkedin.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/crawlers/linkedin.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/crawlers/linkedin.py
https://github.com/scrapy/scrapy
https://github.com/unclecode/crawl4ai

Data Engineering80

By leveraging Python packages such as Pydantic, we have out-of-the-box type validation, which

ensures consistency in our datasets. Thus, we modeled the data categories as the following doc-

ument classes, which we already used in the code up until point:

• ArticleDocument class

• PostDocument class

• RepositoryDocument class

These are not simple Python data classes or Pydantic models. They support read and write oper-

ations on top of the MongoDB data warehouse. To inject the read-and-write functionality into

all the document classes without repeating any code, we used the Object-Document Mapping

(ODM) software pattern, which is based on the object-relational mapping (ORM) pattern. Thus,

let’s first explore ORM, then move to ODM, and, finally, dig into our custom ODM implementation

and document classes.

The ORM and ODM software patterns
Before we talk about software patterns, let’s see what ORM is. It’s a technique that lets you query

and manipulate data from a database using an object-oriented paradigm. Instead of writing SQL

or API-specific queries, you encapsulate all the complexity under an ORM class that knows how

to handle all the database operations, most commonly CRUD operations. Thus, working with

ORM removes the need to handle the database operations manually and reduces the need to write

boilerplate code manually. An ORM interacts with a SQL database, such as PostgreSQL or MySQL.

Most modern Python applications use ORMs when interacting with the database. Even though

SQL is still a popular choice in the data world, you rarely see raw SQL queries in Python backend

components. The most popular Python ORM is SQLAlchemy (https://www.sqlalchemy.org/).

Also, with the rise of FastAPI, SQLModel is (https://github.com/fastapi/sqlmodel) a common

choice, which is a wrapper over SQLAlchemy that makes the integration easier with FastAPI.

For example, using SQLAlchemy, we defined a User ORM with the ID and name fields. The User

ORM is mapped to the users table within the SQL database. Thus, when we create a new user

and commit it to the database, it is automatically saved to the users table. The same applies to

all the CRUD operations on top of the User class.

from sqlalchemy import Column, Integer, String, create_engine

from sqlalchemy.orm import declarative_base, sessionmaker

 Base = declarative_base()

https://www.sqlalchemy.org/
https://github.com/fastapi/sqlmodel

Chapter 3 81

Define a class that maps to the users table.

 class User(Base):

 __tablename__ = "users"

 id = Column(Integer, primary_key=True)

 name = Column(String)

Using the User ORM, we can quickly insert or query users directly from Python without writing a

line of SQL. Note that an ORM usually supports all CRUD operations. Here is a code snippet that

shows how to save an instance of the User ORM to a SQLite database:

engine = create_engine("sqlite:///:memory:")

Base.metadata.create_all(engine)

Create a session used to interact with the database.

Session = sessionmaker(bind=engine)

session = Session()

Add a new user.

new_user = User(name="Alice")

session.add(new_user)

session.commit()

Also, this is how we can query a user from the users SQLite table:

user = session.query(User).first()

if user:

print(f"User ID: {user.id}")

print(f"User name: {user.name}")

The ODM pattern is extremely similar to ORM, but instead of working with SQL databases and

tables, it works with NoSQL databases (such as MongoDB) and unstructured collections. As we

work with NoSQL databases, the data structure is centered on collections, which store JSON-like

documents rather than rows in tables.

Find the entire script and how to run it in the GitHub repository at code_snippets/03_

orm.py.

Data Engineering82

To conclude, ODM simplifies working with document-based NoSQL databases and maps ob-

ject-oriented code to JSON-like documents. We will implement a light ODM module on top of

MongoDB to fully understand how ODM works.

Implementing the ODM class
This section will explore how to implement an ODM class from scratch. This is an excellent ex-

ercise to learn how ODM works and sharpen our skills in writing modular and reusable Python

classes. Hence, we will implement a base ODM class called NoSQLBaseDocument, from which all

the other documents will inherit to interact with the MongoDB data warehouse.

The code starts by importing essential modules and setting up the database connection. Through

the _database variable, we establish a connection to the database specified in the settings, which

is by default called twin:

import uuid

from abc import ABC

from typing import Generic, Type, TypeVar

from loguru import logger

from pydantic import UUID4, BaseModel, Field

from pymongo import errors

from llm_engineering.domain.exceptions import ImproperlyConfigured

from llm_engineering.infrastructure.db.mongo import connection

from llm_engineering.settings import settings

_database = connection.get_database(settings.DATABASE_NAME)

Next, we define a type variable T bound to the NoSQLBaseDocument class. The variable leverages

Python’s generic module, allowing us to generalize the class’s types. For example, when we im-

plement the ArticleDocument class, which will inherit from the NoSQLBaseDocument class, all the

instances where T was used will be replaced with the ArticleDocument type when analyzing the

signature of functions (more on Python generics: https://realpython.com/python312-typing).

The class can be found in our repository at llm_engineering/domain/base/nosql.

py.

https://realpython.com/python312-typing

Chapter 3 83

The NoSQLBaseDocument class is then declared as an abstract base class inheriting from Pydan-

tic’s BaseModel, Python’s Generic (which provides the functionality described earlier), and ABC

(making the class abstract) classes. This class serves as the foundational ODM class:

T = TypeVar("T", bound="NoSQLBaseDocument")

class NoSQLBaseDocument(BaseModel, Generic[T], ABC):

Within the NoSQLBaseDocument class, an id field is defined as a UUID4, with a default factory

generating a unique UUID. The class also implements the __eq__ and __hash__ methods to allow

instances to be compared and used in hashed collections like sets or as dictionary keys based on

their unique id attribute:

id: UUID4 = Field(default_factory=uuid.uuid4)

def __eq__(self, value: object) -> bool:

 if not isinstance(value, self.__class__):

 return False

 return self.id == value.id

def __hash__(self) -> int:

 return hash(self.id)

The class provides methods for converting between MongoDB documents and class instances. The

from_mongo() class method transforms a dictionary retrieved from MongoDB into an instance of

the class. The to_mongo() instance method converts the model instance into a dictionary suitable

for MongoDB insertion:

@classmethod

def from_mongo(cls: Type[T], data: dict) -> T:

 if not data:

 raise ValueError("Data is empty.")

 id = data.pop("_id")

 return cls(**dict(data, id=id))

def to_mongo(self: T, **kwargs) -> dict:

Data Engineering84

 exclude_unset = kwargs.pop("exclude_unset", False)

 by_alias = kwargs.pop("by_alias", True)

 parsed = self.model_dump(exclude_unset=exclude_unset, by_alias=by_
alias, **kwargs)

 if "_id" not in parsed and "id" in parsed:

 parsed["_id"] = str(parsed.pop("id"))

 for key, value in parsed.items():

 if isinstance(value, uuid.UUID):

 parsed[key] = str(value)

 return parsed

The save() method allows an instance of the model to be inserted into a MongoDB collection. It

retrieves the appropriate collection, converts the instance into a MongoDB-compatible document

leveraging the to_mongo() method described above, and attempts to insert it into the database,

handling any write errors that may occur:

def save(self: T, **kwargs) -> T | None:

 collection = _database[self.get_collection_name()]

 try:

 collection.insert_one(self.to_mongo(**kwargs))

 return self

 except errors.WriteError:

 logger.exception("Failed to insert document.")

 return None

The get_or_create() class method attempts to find a document in the database matching the

provided filter options. If a matching document is found, it is converted into an instance of the class.

If not, a new instance is created with the filter options as its initial data and saved to the database:

@classmethod

def get_or_create(cls: Type[T], **filter_options) -> T:

 collection = _database[cls.get_collection_name()]

 try:

Chapter 3 85

 instance = collection.find_one(filter_options)

 if instance:

 return cls.from_mongo(instance)

 new_instance = cls(**filter_options)

 new_instance = new_instance.save()

 return new_instance

 except errors.OperationFailure:

 logger.exception(f"Failed to retrieve document with filter
options: {filter_options}")

 raise

The bulk_insert() class method allows multiple documents to be inserted into the database

at once:

@classmethod

def bulk_insert(cls: Type[T], documents: list[T], **kwargs) -> bool:

 collection = _database[cls.get_collection_name()]

 try:

 collection.insert_many([doc.to_mongo(**kwargs) for doc in
documents])

 return True

 except (errors.WriteError, errors.BulkWriteError):

logger.error(f"Failed to insert documents of type {cls.__name__}")

 return False

The find() class method searches for a single document in the database that matches the given

filter options:

@classmethod

def find(cls: Type[T], **filter_options) -> T | None:

 collection = _database[cls.get_collection_name()]

 try:

 instance = collection.find_one(filter_options)

Data Engineering86

 if instance:

 return cls.from_mongo(instance)

 return None

 except errors.OperationFailure:

 logger.error("Failed to retrieve document.")

 return None

Similarly, the bulk_find() class method retrieves multiple documents matching the filter options.

It converts each retrieved MongoDB document into a model instance, collecting them into a list:

@classmethod

def bulk_find(cls: Type[T], **filter_options) -> list[T]:

 collection = _database[cls.get_collection_name()]

 try:

 instances = collection.find(filter_options)

 return [document for instance in instances if (document := cls.
from_mongo(instance)) is not None]

 except errors.OperationFailure:

 logger.error("Failed to retrieve document.")

 return []

Finally, the get_collection_name() class method determines the name of the MongoDB collec-

tion associated with the class. It expects the class to have a nested Settings class with a name at-

tribute specifying the collection name. If this configuration is missing, an ImproperlyConfigured

exception will be raised specifying that the subclass should define a nested Settings class:

@classmethod

def get_collection_name(cls: Type[T]) -> str:

 if not hasattr(cls, "Settings") or not hasattr(cls.Settings, "name"):

 raise ImproperlyConfigured(

 "Document should define an Settings configuration class with
the name of the collection."

)

 return cls.Settings.name

Chapter 3 87

We can configure each subclass using the nested Settings class, such as defining the collection

name, or anything else specific to that subclass. Within the Python ecosystem, there is an ODM

implementation on top of MongoDB, called mongoengine, which you can find on GitHub. It follows

a pattern similar to ours but more comprehensive. We implemented it by ourselves, as it was an

excellent exercise to practice writing modular and generic code following best OOP principles,

which are essential for implementing production-level code.

Data categories and user document classes
The last piece of the puzzle is to see the implementation of the subclasses that inherit from the

NoSQLBaseDocument base class. These are the concrete classes that define our data categories.

You’ve seen these classes used across the chapter when working with articles, repositories, and

posts within the crawler classes.

We begin by importing the essential Python modules and the ODM base class:

from abc import ABC

from typing import Optional

from pydantic import UUID4, Field

from .base import NoSQLBaseDocument

from .types import DataCategory

We define an enum class, where we centralize all our data category types. These variables will act

as constants in configuring all our ODM classes throughout the book.

from enum import StrEnum

class DataCategory(StrEnum):

 PROMPT = "prompt"

 QUERIES = "queries"

 INSTRUCT_DATASET_SAMPLES = "instruct_dataset_samples"

The class can be found in the repository at llm_engineering/domain/types.py.

Data Engineering88

 INSTRUCT_DATASET = "instruct_dataset"

 PREFERENCE_DATASET_SAMPLES = "preference_dataset_samples"

 PREFERENCE_DATASET = "preference_dataset"

 POSTS = "posts"

 ARTICLES = "articles"

 REPOSITORIES = "repositories"

The Document class is introduced as an abstract base model for other documents on top of the

NoSQLBaseDocument ODM class. It includes common attributes like content, platform, and author

details, providing a standardized structure for documents that will inherit from it:

class Document(NoSQLBaseDocument, ABC):

 content: dict

 platform: str

 author_id: UUID4 = Field(alias="author_id")

 author_full_name: str = Field(alias="author_full_name")

Finally, specific document types are defined by extending the Document class. The

RepositoryDocument, PostDocument, and ArticleDocument classes represent different catego-

ries of data, each with unique fields and settings that specify their respective collection names

in the database:

class RepositoryDocument(Document):

 name: str

 link: str

 class Settings:

 name = DataCategory.REPOSITORIES

class PostDocument(Document):

 image: Optional[str] = None

 link: str | None = None

 class Settings:

 name = DataCategory.POSTS

Chapter 3 89

class ArticleDocument(Document):

 link: str

 class Settings:

 name = DataCategory.ARTICLES

Finally, we define the UserDocument class, which is used to store and query all the users from the

LLM Twin project:

class UserDocument(NoSQLBaseDocument):

 first_name: str

 last_name: str

 class Settings:

 name = "users"

 @property

 def full_name(self):

 return f"{self.first_name} {self.last_name}"

By implementing the NoSQLBaseDocument ODM class, we had to focus solely on the fields and

specific functionality of each document or domain entity. All the CRUD functionality is delegated

to the parent class. Also, by leveraging Pydantic to define the fields, we have out-of-the-box type

validation. For example, when creating an instance of the ArticleDocument class, if the provided

link is None or not a string, it will throw an error signaling that the data is invalid.

With that, we’ve finished implementing our data collection pipeline, starting with the ZenML

components. Then, we looked into the implementation of the crawlers and, finally, wrapped it

up with the ODM class and data category documents. The last step is to run the data collection

pipeline and ingest raw data into the MongoDB data warehouse.

Gathering raw data into the data warehouse
ZenML orchestrates the data collection pipeline. Thus, leveraging ZenML, the data collection

pipeline can be run manually, scheduled, or triggered by specific events. Here, we will show you

how to run it manually, while we will discuss the other scenarios in Chapter 11 when digging

deeper into MLOps.

Data Engineering90

We configured a different pipeline run for each author. We provided a ZenML configuration file for

Paul Iusztin’s or Maxime Labonne’s data. To call the data collection pipeline to collect Maxime’s

data, for example, you can run the following CLI command:

poetry poe run-digital-data-etl-maxime

That will call the pipeline with the following ZenML YAML configuration file:

parameters:

 user_full_name: Maxime Labonne # [First Name(s)] [Last Name]

 links:

 # Personal Blog

 - https://mlabonne.github.io/blog/posts/2024-07-29_Finetune_Llama31.
html

 - https://mlabonne.github.io/blog/posts/2024-07-15_The_Rise_of_
Agentic_Data_Generation.html

 # Substack

 - https://maximelabonne.substack.com/p/uncensor-any-llm-with-
abliteration-d30148b7d43e

 - https://maximelabonne.substack.com/p/create-mixtures-of-experts-
with-mergekit-11b318c99562

 - https://maximelabonne.substack.com/p/merge-large-language-models-
with-mergekit-2118fb392b54

 … # More Substack links

In Figure 3.3 earlier, we saw the pipeline’s run DAG and details in ZenML’s dashboard. Meanwhile,

Figure 3.5 shows the user output artifact generated by this data collection pipeline. You can in-

spect the query user_full_name and the retrieved user from the MongoDB database, for which

we collected the links in this specific run.

Chapter 3 91

Figure 3.5: Example of the user output artifact after running the data collection pipeline using
Maxime’s configuration file

Also, in Figure 3.6, you can observe the crawled_links output artifact, which lists all the domains

from which we collected data, the total number of links crawled for each domain, and the number

of successfully collected links.

Data Engineering92

We want to highlight again the power of these artifacts, as they trace each pipeline’s results and

metadata, making it extremely easy to monitor and debug each pipeline run individually.

Figure 3.6: Example of the crawled_links output artifact after running the data collection
pipeline using Maxime’s configuration file

Now, we can download the crawled_links artifact anywhere in our code by running the following

code, where the ID of the artifact can be found in ZenML and is unique for every artifact version:

from zenml.client import Client

artifact = Client().get_artifact_version('8349ce09-0693-4e28-8fa2-
20f82c76ddec')

loaded_artifact = artifact.load()

Chapter 3 93

For example, we can easily run the same data collection pipeline but with Paul Iusztin’s YAML

configuration, listed below:

parameters:

 user_full_name: Paul Iusztin # [First Name(s)] [Last Name]

 links:

 # Medium

 - https://medium.com/decodingml/an-end-to-end-framework-for-
production-ready-llm-systems-by-building-your-llm-twin-2cc6bb01141f

 - https://medium.com/decodingml/a-real-time-retrieval-system-for-rag-
on-social-media-data-9cc01d50a2a0

 - https://medium.com/decodingml/sota-python-streaming-pipelines-for-
fine-tuning-llms-and-rag-in-real-time-82eb07795b87

 … # More Medium links

 # Substack

 - https://decodingml.substack.com/p/real-time-feature-pipelines-
with?r=1ttoeh

 - https://decodingml.substack.com/p/building-ml-systems-the-right-
way?r=1ttoeh

 - https://decodingml.substack.com/p/reduce-your-pytorchs-code-
latency?r=1ttoeh

 … # More Substack links

To run the pipeline using Paul’s configuration, we call the following poe command:

poetry poe run-digital-data-etl-paul

That, under the hood, calls the following CLI command that references Paul’s config file:

poetry run python -m tools.run --run-etl --no-cache --etl-config-filename
digital_data_etl_paul_iusztin.yaml

You can find all the configs in the repository in the configs/ directory. Also, using poe, we con-

figured a command that calls the data collection pipeline for all the supported authors:

poetry poe run-digital-data-etl

We can easily query the MongoDB data warehouse using our ODM classes. For example, let’s

query all the articles collected for Paul Iusztin:

from llm_engineering.domain.documents import ArticleDocument, UserDocument

Data Engineering94

user = UserDocument.get_or_create(first_name="Paul", last_name="Iusztin")

articles = ArticleDocument.bulk_find(author_id=str(user.id))

print(f"User ID: {user.id}")

print(f"User name: {user.first_name} {user.last_name}")

print(f"Number of articles: {len(articles)}")

print("First article link:", articles[0].link)

The output of the code from above is:

User ID: 900fec95-d621-4315-84c6-52e5229e0b96

User name: Paul Iusztin

Number of articles: 50

First article link: https://medium.com/decodingml/an-end-to-end-framework-
for-production-ready-llm-systems-by-building-your-llm-twin-2cc6bb01141f

With only two lines of code, we can query and filter our MongoDB data warehouse using any

ODM defined within our project.

Also, to ensure that your data collection pipeline works as expected, you can search your MongoDB

collections using your IDE’s MongoDB plugin, which you must install separately. For example,

you can use this plugin for VSCode: https://www.mongodb.com/products/tools/vs-code. For

other IDEs, you can use similar plugins or external NoSQL visualization tools. After connecting

to the MongoDB visualization tool, you can connect to our local database using the following

URI: mongodb://llm_engineering:llm_engineering@127.0.0.1:27017. For a cloud MongoDB

cluster, you must change the URI, which we will explore in Chapter 11.

And just like that, you’ve learned how to run the data collection pipeline with different ZenML

configs and how to visualize the output artifacts of each run. We also looked at how to query the

data warehouse for a particular data category and author. Thus, we’ve finalized our data engi-

neering chapter and can move to the conclusion.

Troubleshooting
The raw data stored in the MongoDB database is central to all future steps. Thus, if you haven’t

successfully run the code from this chapter due to any issues with the crawlers, this section pro-

vides solutions for fixing potential issues to allow you to move forward.

https://www.mongodb.com/products/tools/vs-code

Chapter 3 95

Selenium issues
It is a well-known issue that running Selenium can cause problems due to issues with the

browser driver, such as the ChromeDriver. Thus, if the crawlers that use Selenium, such as the

MediumCrawler, fail due to problems with your ChromeDriver, you can easily bypass this by

commenting out the Medium links added to the data collection YAML configs. To do so, go to

the configs/ directory and find all the YAML files that start with digital_data_etl_*, such as

digital_data_etl_maxime_labonne.yaml. Open them and comment on all the Medium-related

URLs, as illustrated in Figure 3.7. You can leave out the Substack or personal blog URLs as these

use the CustomArticleCrawler, which is not dependent on Selenium.

Figure 3.7: Fix Selenium issues when crawling raw data

Import our backed-up data
If nothing works, there is the possibility of populating the MongoDB database with your backed-

up data saved under the data/data_warehouse_raw_data directory. This will allow you to

proceed to the fine-tuning and inference sections without running the data collection ETL code.

To import all the data within this directory, run:

poetry poe run-import-data-warehouse-from-json

Data Engineering96

After running the CLI command from above, you will have a one-to-one replica of the dataset

we used while developing the code. To ensure the import is completed successfully, you should

have 88 articles and 3 users in your MongoDB database.

Summary
In this chapter, we’ve learned how to design and build the data collection pipeline for the LLM

Twin use case. Instead of relying on static datasets, we collected our custom data to mimic re-

al-world situations, preparing us for real-world challenges in building AI systems.

First, we examined the architecture of LLM Twin’s data collection pipeline, which functions

as an ETL process. Next, we started digging into the pipeline implementation. We began by

understanding how we can orchestrate the pipeline using ZenML. Then, we looked into the

crawler implementation. We learned how to crawl data in three ways: using CLI commands in

subprocesses or using utility functions from LangChain or Selenium to build custom logic that

programmatically manipulates the browser. Finally, we looked into how to build our own ODM

class, which we used to define our document class hierarchy, which contains entities such as

articles, posts, and repositories.

At the end of the chapter, we learned how to run ZenML pipelines with different YAML configura-

tion files and explore the results in the dashboard. We also saw how to interact with the MongoDB

data warehouse through the ODM classes.

In the next chapter, we will cover the key steps of the RAG feature pipeline, including chunking

and embedding documents, ingesting these documents into a vector DB, and applying pre-re-

trieval optimizations to improve performance. We will also set up the necessary infrastructure

programmatically using Pulumi and conclude by deploying the RAG ingestion pipeline to AWS.

References
• Breuss, M. (2023, July 26). Beautiful Soup: Build a Web Scraper With Python. https://

realpython.com/beautiful-soup-web-scraper-python/

• David, D. (2024, July 8). Guide to Web Scraping with Selenium in 2024. Bright Data. https://

brightdata.com/blog/how-tos/using-selenium-for-web-scraping

• Hjelle, G. A. (2023, October 21). Python 3.12 Preview: Static Typing Improvements. https://

realpython.com/python312-typing/

• ORM Quick Start — SQLAlchemy 2.0 documentation. (n.d.). https://docs.sqlalchemy.
org/en/20/orm/quickstart.html

https://realpython.com/beautiful-soup-web-scraper-python/
https://realpython.com/beautiful-soup-web-scraper-python/
https://brightdata.com/blog/how-tos/using-selenium-for-web-scraping
https://brightdata.com/blog/how-tos/using-selenium-for-web-scraping
https://realpython.com/python312-typing/
https://realpython.com/python312-typing/
https://docs.sqlalchemy.org/en/20/orm/quickstart.html

https://docs.sqlalchemy.org/en/20/orm/quickstart.html

Chapter 3 97

• Ramos, L. P. (2023, August 4). Python and MongoDB: Connecting to NoSQL Databases.

https://realpython.com/introduction-to-mongodb-and-python/

• Refactoring.Guru. (2024, January 1). Builder. https://refactoring.guru/design-

patterns/builder

• What is ETL? A complete guide. (n.d.). Qlik. https://www.qlik.com/us/etl

Join our book’s Discord space
Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/llmeng

https://realpython.com/introduction-to-mongodb-and-python/
https://refactoring.guru/design-patterns/builder
https://refactoring.guru/design-patterns/builder
https://www.qlik.com/us/etl

https://www.qlik.com/us/etl

https://packt.link/llmeng

4
RAG Feature Pipeline

Retrieval-augmented generation (RAG) is fundamental in most generative AI applications. RAG’s

core responsibility is to inject custom data into the large language model (LLM) to perform a

given action (e.g., summarize, reformulate, and extract the injected data). You often want to use

the LLM on data it wasn’t trained on (e.g., private or new data). As fine-tuning an LLM is a highly

costly operation, RAG is a compelling strategy that bypasses the need for constant fine-tuning

to access that new data.

We will start this chapter with a theoretical part that focuses on the fundamentals of RAG and

how it works. We will then walk you through all the components of a naïve RAG system: chunk-

ing, embedding, and vector DBs. Ultimately, we will present various optimizations used for an

advanced RAG system. Then, we will continue exploring LLM Twin’s RAG feature pipeline archi-

tecture. At this step, we will apply all the theoretical aspects we discussed at the beginning of the

chapter. Finally, we will go through a practical example by implementing the LLM Twin’s RAG

feature pipeline based on the system design described throughout the book.

The main sections of this chapter are:

• Understanding RAG

• An overview of advanced RAG

• Exploring the LLM Twin’s RAG feature pipeline architecture

• Implementing the LLM Twin’s RAG feature pipeline

By the end of this chapter, you will have a clear and comprehensive understanding of what RAG

is and how it is applied to our LLM Twin use case.

RAG Feature Pipeline100

Understanding RAG
RAG enhances the accuracy and reliability of generative AI models with information fetched from

external sources. It is a technique complementary to the internal knowledge of the LLMs. Before

going into the details, let’s understand what RAG stands for:

• Retrieval: Search for relevant data

• Augmented: Add the data as context to the prompt

• Generation: Use the augmented prompt with an LLM for generation

Any LLM is bound to understand the data it was trained on, sometimes called parameterized

knowledge. Thus, even if the LLM can perfectly answer what happened in the past, it won’t have

access to the newest data or any other external sources on which it wasn’t trained.

Let’s take the most powerful model from OpenAI as an example, which, in the summer of 2024, is

GPT-4o. The model is trained on data up to October 2023. Thus, if we ask what happened during

the 2020 pandemic, it can be answered perfectly due to its parametrized knowledge. However,

it will not know the answer if we ask about the 2024 European Football Championship results

due to its bounded parametrized knowledge. Another scenario is that it will start confidently

hallucinating and provide a faulty answer.

RAG overcomes these two limitations of LLMs. It provides access to external or latest data and

prevents hallucinations, enhancing generative AI models’ accuracy and reliability.

Why use RAG?
We briefly explained the importance of using RAG in generative AI applications earlier. Now, we

will dig deeper into the “why,” following which we will focus on what a naïve RAG framework

looks like.

For now, to get an intuition about RAG, you have to know that when using RAG, we inject the

necessary information into the prompt to answer the initial user question. After that, we pass

the augmented prompt to the LLM for the final answer. Now, the LLM will use the additional

context to answer the user question.

There are two fundamental problems that RAG solves:

• Hallucinations

• Old or private information

Chapter 4 101

Hallucinations
If a chatbot without RAG is asked a question about something it wasn’t trained on, there is a high

chance that it will give you a confident answer about something that isn’t true. Let’s take the 2024

European Football Championship as an example. If the model is trained up to October 2023 and

we ask it something about the tournament, it will most likely come up with a random answer

that is hard to differentiate between reality and truth. Even if the LLM doesn’t hallucinate all the

time, it raises concerns about the trustworthiness of its answers. Thus, we must ask ourselves:

“When can we trust the LLM’s answers?” and “How can we evaluate if the answers are correct?”.

By introducing RAG, we enforce the LLM to always answer solely based on the introduced con-

text. The LLM will act as the reasoning engine, while the additional information added through

RAG will act as the single source of truth for the generated answer. By doing so, we can quickly

evaluate if the LLM’s answer is based on the external data or not.

Old information
Any LLM is trained or fine-tuned on a subset of the total world knowledge dataset. This is due

to three main issues:

• Private data: You cannot train your model on data you don’t own or have the right to use.

• New data: New data is generated every second. Thus, you would have to constantly train

your LLM to keep up.

• Costs: Training or fine-tuning an LLM is an extremely costly operation. Hence, it is not

feasible to do it on an hourly or daily basis.

RAG solves these issues, as you no longer have to constantly fine-tune your LLM on new data (or

even private data). Directly injecting the necessary data to respond to user questions into the

prompts that are fed to the LLM is enough to generate correct and valuable answers.

To conclude, RAG is key for a robust and flexible generative AI system. But how do we inject the

right data into the prompt based on the user’s questions? We will dig into the technical aspects

of RAG in the next sections.

The vanilla RAG framework
Every RAG system is similar at its roots. We will first focus on understanding RAG in its simplest

form. Later, we will gradually introduce more advanced RAG techniques to improve the system’s

accuracy. Note that we will use vanilla and naive RAG interchangeably to avoid repetition.

RAG Feature Pipeline102

A RAG system is composed of three main modules independent of each other:

• Ingestion pipeline: A batch or streaming pipeline used to populate the vector DB

• Retrieval pipeline: A module that queries the vector DB and retrieves relevant entries to

the user’s input

• Generation pipeline: The layer that uses the retrieved data to augment the prompt and

an LLM to generate answers

As these three components are classes or services of their own, we will dig into each separately.

But for now, let’s try to answer the question “How are these three modules connected?”. Here is

a very simplistic overview:

1. On the backend side, the ingestion pipeline runs either on a schedule or constantly to

populate the vector DB with external data.

2. On the client side, the user asks a question.

3. The question is passed to the retrieval module, which preprocesses the user’s input and

queries the vector DB.

4. The generation pipelines use a prompt template, user input, and retrieved context to

create the prompt.

5. The prompt is passed to an LLM to generate the answer.

6. The answer is shown to the user.

Chapter 4 103

Figure 4.1: Vanilla RAG architecture

You must implement RAG in your generative AI application when you need access to any type of

external information. For example, when implementing a financial assistant, you most likely need

access to the latest news, reports, and prices before providing valuable answers. Or, if you build

a traveling recommender, you must retrieve and parse a list of potential attractions, restaurants,

and activities. At training time, LLMs don’t have access to your specific data, so you will often

have to implement a RAG strategy in your generative AI project. Now, let’s dig into the ingestion,

retrieval, and generation pipelines.

RAG Feature Pipeline104

Ingestion pipeline
The RAG ingestion pipeline extracts raw documents from various data sources (e.g., data ware-

house, data lake, web pages, etc.). Then, it cleans, chunks (splits into smaller sections), and em-

beds the documents. Ultimately, it loads the embedded chunks into a vector DB (or other similar

vector storage).

Thus, the RAG ingestion pipeline is split into the following:

• The data extraction module gathers all the necessary data from various sources such as

DBs, APIs, or web pages. This module is highly dependent on your data. It can be as easy

as querying your data warehouse or something more complex such as crawling Wikipedia.

• A cleaning layer standardizes and removes unwanted characters from the extracted data.

For example, you must remove all invalid characters from your input text, such as non-AS-

CII and bold and italic characters. Another popular cleaning strategy is to replace URLs

with placeholders. However, your cleaning strategy will vary depending on your data

source and embedding model.

• The chunking module splits the cleaned documents into smaller ones. As we want to

pass the document’s content to an embedding model, this is necessary to ensure it doesn’t

exceed the model’s input maximum size. Also, chunking is required to separate specific

regions that are semantically related. For example, when chunking a book’s chapter, the

most optimal way is to group similar paragraphs into the same section or chunk. By doing

so, at the retrieval time, you will add only the essential data to the prompt.

• The embedding component uses an embedding model to take the chunk’s content (text,

images, audio, etc.) and project it into a dense vector packed with semantic value—more

on embeddings in the What are embeddings? section below.

• The loading module takes the embedded chunks along with a metadata document. The

metadata will contain essential information such as the embedded content, the URL to

the source of the chunk, and when the content was published on the web. The embed-

ding is used as an index to query similar chunks, while the metadata is used to access the

information added to augment the prompt.

At this point, we have a RAG ingestion pipeline that takes raw documents as input, processes them,

and populates a vector DB. The next step is to retrieve relevant data from the vector store correctly.

Chapter 4 105

Retrieval pipeline
The retrieval components take the user’s input (text, image, audio, etc.), embed it, and query the

vector DB for similar vectors to the user’s input.

The primary function of the retrieval step is to project the user’s input into the same vector space

as the embeddings used as an index in the vector DB. This allows us to find the top K’s most sim-

ilar entries by comparing the embeddings from the vector storage with the user’s input vector.

These entries then serve as content to augment the prompt that is passed to the LLM to generate

the answer.

You must use a distance metric to compare two vectors, such as the Euclidean or Manhattan

distance. But the most popular one is the cosine distance, which is equal to 1 minus the cosine of

the angle between two vectors, as follows:𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶 𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶 𝐶𝐶𝐶 𝐶 𝐶 𝐴𝐴𝐴
It ranges from -1 to 1, with a value of -1 when vectors A and B are in opposite directions, 0 if they

are orthogonal, and 1 if they point in the same direction.

Most of the time, the cosine distance works well in non-linear complex vector spaces. However,

it is essential to notice that choosing the proper distance between two vectors depends on your

data and the embedding model you use.

One critical factor to highlight is that the user’s input and embeddings must be in the same vec-

tor space. Otherwise, you cannot compute the distance between them. To do so, it is essential to

preprocess the user input in the same way you processed the raw documents in the RAG ingestion

pipeline. This means you must clean, chunk (if necessary), and embed the user’s input using the

same functions, models, and hyperparameters. This is similar to how you have to preprocess the

data into features in the same way between training and inference; otherwise, the inference will

yield inaccurate results—a phenomenon also known as the training-serving skew.

Generation pipeline
The last step of the RAG system is to take the user’s input, retrieve data, pass it to an LLM, and

generate a valuable answer.

RAG Feature Pipeline106

The final prompt results from a system and prompt template populated with the user’s query and

retrieved context. You might have a single prompt template or multiple prompt templates, depend-

ing on your application. Usually, all the prompt engineering is done at the prompt template level.

Below, you can see a dummy example of what a generic system and prompt template look like

and how they are used together with the retrieval logic and the LLM to generate the final answer:

system_template = """

You are a helpful assistant who answers all the user's questions politely.

"""

prompt_template = """

Answer the user's question using only the provided context. If you cannot
answer using the context, respond with "I don't know."

Context: {context}

User question: {user_question}

"""

user_question = "<your_question>"

retrieved_context = retrieve(user_question)

prompt = f"{system_template}\n"

prompt += prompt_template.format(context=retrieved_context, user_
question=user_question)

answer = llm(prompt)

As the prompt templates evolve, each change should be tracked and versioned using machine

learning operations (MLOps) best practices. Thus, during training or inference time, you always

know that a given answer was generated by a specific version of the LLM and prompt template(s).

You can do this through Git, store the prompt templates in a DB, or use specific prompt manage-

ment tools such as LangFuse.

As we’ve seen in the retrieval pipeline, some critical aspects that directly impact the accuracy of

your RAG system are the embeddings of the external data, usually stored in vector DBs, the em-

bedding of the user’s query, and how we can find similarities between the two using functions

such as the cosine distance. To better understand this part of the RAG algorithm, let’s zoom in

on what embeddings are and how they are computed.

Chapter 4 107

What are embeddings?
Imagine you’re trying to teach a computer to understand the world. Embeddings are like a par-

ticular translator that turns these things into a numerical code. This code isn’t random, though,

because similar words or items end up with codes that are close to each other. It’s like a map

where words with similar meanings are clustered together.

With that in mind, a more theoretical definition is that embeddings are dense numerical repre-

sentations of objects encoded as vectors in a continuous vector space, such as words, images, or

items in a recommendation system. This transformation helps capture the semantic meaning

and relationships between the objects. For instance, in natural language processing (NLP), em-

beddings translate words into vectors where semantically similar words are positioned closely

together in the vector space.

Figure 4.2: What are embeddings?

A popular method is visualizing the embeddings to understand and evaluate their geometrical

relationship. As the embeddings often have more than 2 or 3 dimensions, usually between 64

and 2048, you must project them again to 2D or 3D.

RAG Feature Pipeline108

For example, you can use UMAP (https://umap-learn.readthedocs.io/en/latest/index.

html), a dimensionality reduction method well known for keeping the geometrical properties

between the points when projecting the embeddings to 2D or 3D. Another popular algorithm for

dimensionality reduction when visualizing vectors is t-SNE (https://scikit-learn.org/stable/

modules/generated/sklearn.manifold.TSNE.html). However, compared to UMAP, it is more

stochastic and doesn’t preserve the topological relationships between the points.

Figure 4.3: Visualize embeddings using UMAP (Source: UMAP’s documentation)

 A dimensionality reduction algorithm, such as PCA, UMAP, and t-SNE, is a mathe-

matical technique used to reduce the number of input variables or features in a data-

set while preserving the data’s essential patterns, structure, and relationships. The

goal is to transform high-dimensional data into a lower-dimensional form, making

it easier to visualize, interpret, and process while minimizing the loss of important

information. These methods help to address the “curse of dimensionality,” improve

computational efficiency, and often enhance the performance of ML algorithms.

https://umap-learn.readthedocs.io/en/latest/index.html
https://umap-learn.readthedocs.io/en/latest/index.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html

Chapter 4 109

Why embeddings are so powerful
Firstly, ML models work only with numerical values. This is not a problem when working with

tabular data, as the data is often in numerical form or can easily be processed into numbers.

Embeddings come in handy when we want to feed words, images, or audio data into models.

For instance, when working with transformer models, you tokenize all your text input, where

each token has an embedding associated with it. The beauty of this process lies in its simplicity;

the input to the transformer is a sequence of embeddings, which can be easily and confidently

interpreted by the dense layers of the neural network.

Based on this example, you can use embeddings to encode any categorical variable and feed it to

an ML model. But why not use other simple methods, such as one-hot encoding? When working

with categorical variables with high cardinality, such as language vocabularies, you will suffer

from the curse of dimensionality when using other classical methods. For example, if your vocab-

ulary has 10,000 tokens, then only one token will have a length of 10,000 after applying one-hot

encoding. If the input sequence has N tokens, that will become N * 10,000 input parameters. If

N >= 100, often, when inputting text, the input is too large to be usable. Another issue with other

classical methods that don’t suffer from the curse of dimensionality, such as hashing, is that you

lose the semantic relationships between the vectors.

RAG Feature Pipeline110

Secondly, embedding your input reduces the size of its dimension and condenses all of its se-

mantic meaning into a dense vector. This is an extremely popular technique when working with

images, where a CNN encoder module maps the high-dimensional meaning into an embedding,

which is later processed by a CNN decoder that performs the classification or regression steps.

The following image shows a typical CNN layout. Imagine tiny squares within each layer. Those

are the “receptive fields.” Each square feeds information to a single neuron in the previous layer.

As you move through the network, two key things are happening:

• Shrinking the picture: Special “subsampling” operations make the layers smaller, fo-

cusing on essential details.

• Learning features: “Convolution” operations, on the other hand, actually increase the

layer size as the network learns more complex features from the image.

One-hot encoding is a technique that converts categorical variables into a binary

matrix representation. Each category is represented as a unique binary vector. For

each categorical variable, a binary vector is created with a length equal to the number

of unique categories, where all values are zero except for the index corresponding to

the specific category, which is set to one. The method preserves all information about

the categories. It is simple and interpretable. However, a significant disadvantage is

that it can lead to a high-dimensional feature space if the categorical variable has

many unique values, making the method impractical.

Feature hashing, also known as hashing encoding or the “hash trick,” is a technique

used to convert categorical variables into numerical features by applying a hash

function to the category values. Compared to one-hot encoding, the method is not

bound to the number of unique categories, but it reduces the dimensionality of the

feature space by mapping categories into a fixed number of bins or buckets. Thus, it

reduces the dimensionality of the feature space, which is particularly useful when

dealing with high-cardinality categorical variables. This makes it efficient in terms of

memory usage and computational time. However, there is a risk of collisions, where

different categories might map to the same bin, leading to a loss of information. The

mapping makes the method uninterpretable. Also, it is difficult to understand the

relationship between the original categories and the hashed features.

Embeddings help us encode categorical variables while controlling the output vec-

tor’s dimension. They also use ingenious ways to condense information into a lower

dimension space than naive hashing tricks.

Chapter 4 111

Finally, a fully connected layer at the end takes all this processed information and transforms it

into the final vector embedding, a numerical image representation.

Figure 4.4: Creating embeddings from an image using a CNN (Image source)

How are embeddings created?
Embeddings are created by deep learning models that understand the context and semantics of

your input and project it into a continuous vector space.

Various deep learning models can be used to create embeddings, varying by the data input type.

Thus, it is fundamental to understand your data and what you need from it before picking an

embedding model.

For example, when working with text data, one of the early methods used to create embeddings

for your vocabulary is Word2Vec and GloVe. These are still popular methods used today for sim-

pler applications.

Another popular method is to use encoder-only transformers, such as BERT, or other methods

from its family, such as RoBERTa. These models leverage the encoder of the transformer architec-

ture to smartly project your input into a dense vector space that can later be used as embeddings.

To quickly compute the embeddings in Python, you can conveniently leverage the Sentence

Transformers Python package (also available in Hugging Face’s transformer package). This tool

provides a user-friendly interface, making the embedding process straightforward and efficient.

The preceding image is sourced from Wikimedia Commons (https://commons.

wikimedia.org/wiki/File:Typical_cnn.png) and licensed under the Creative

Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0: https://

creativecommons.org/licenses/by-sa/4.0/deed.en).

https://commons.wikimedia.org/wiki/File:Typical_cnn.png
https://commons.wikimedia.org/wiki/File:Typical_cnn.png
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

RAG Feature Pipeline112

In the code snippet below, you can see how we loaded a model from SentenceTransformer, comput-

ed the embeddings for three sentences, and, ultimately, computed the cosine similarity between

them. The similarity between one sentence and itself is always 1. Also, the similarity between

the first and second sentences is approximately 0, as the sentences have nothing in common. In

contrast, the value between the first and third one is higher as there is some overlapping context:

from sentence_transformers import SentenceTransformer

model = SentenceTransformer("all-MiniLM-L6-v2")

sentences = [

"The dog sits outside waiting for a treat.",

"I am going swimming.",

"The dog is swimming."

]

embeddings = model.encode(sentences)

print(embeddings.shape)

Output: [3, 384]

similarities = model.similarity(embeddings, embeddings)

print(similarities)

Output:

tensor([[1.0000, -0.0389, 0.2692],

[-0.0389, 1.0000, 0.3837],

[0.2692, 0.3837, 1.0000]])

#

similarities[0, 0] = The similarity between the first sentence and
itself.

similarities[0, 1] = The similarity between the first and second
sentence.

similarities[2, 1] = The similarity between the third and second
sentence.

The source code for the preceding snippet can be found at https://github.com/PacktPublishing/

LLM-Engineering/blob/main/code_snippets/08_text_embeddings.py.

https://github.com/PacktPublishing/LLM-Engineering/blob/main/code_snippets/08_text_embeddings.py
https://github.com/PacktPublishing/LLM-Engineering/blob/main/code_snippets/08_text_embeddings.py

Chapter 4 113

The best-performing embedding model can change with time and your specific use case. You can

find particular models on the Massive Text Embedding Benchmark (MTEB) on Hugging Face.

Depending on your needs, you can consider the best-performing model, the one with the best

accuracy, or the one with the smallest memory footprint. This decision is solely based on your

requirements (e.g., accuracy and hardware). However, Hugging Face and SentenceTransformer

make switching between different models straightforward. Thus, you can always experiment

with various options.

When working with images, you can embed them using convolutional neural networks (CNNs).

Popular CNN networks are based on the ResNet architecture. However, we can’t directly use im-

age embedding techniques for audio recordings. Instead, we can create a visual representation

of the audio, such as a spectrogram, and then apply image embedding models to those visuals.

This allows us to capture the essence of images and sounds in a way computers can understand.

By leveraging models like CLIP, you can practically embed a piece of text and an image in the

same vector space. This allows you to find similar images using a sentence as input, or the other

way around, demonstrating the practicality of CLIP.

In the following code snippet, we use CLIP to encode a crazy cat image and three sentences.

Ultimately, we use cosine similarity to compute the resemblance between the picture and the

sentences:

from io import BytesIO

import requests

from PIL import Image

from sentence_transformers import SentenceTransformer

response = requests.get(

"https://github.com/PacktPublishing/LLM-Engineering/blob/main/images/
crazy_cat.jpg?raw=true"

)

The examples in the embeddings section can be run within the virtual environment

used across the book, as it contains all the required dependencies.

RAG Feature Pipeline114

image = Image.open(BytesIO(response.content))

model = SentenceTransformer("clip-ViT-B-32")

img_emb = model.encode(image)

text_emb = model.encode(

["A crazy cat smiling.",

"A white and brown cat with a yellow bandana.",

"A man eating in the garden."]

)

print(text_emb.shape) # noqa

Output: (3, 512)

similarity_scores = model.similarity(img_emb, text_emb)

print(similarity_scores) # noqa

Output: tensor([[0.3068, 0.3300, 0.1719]])

The source code can be found at https://github.com/PacktPublishing/LLM-Engineering/

blob/main/code_snippets/08_text_image_embeddings.py.

Here, we provided a small introduction to how embeddings can be computed. The realm of specific

implementations is vast, but what is important to know is that embeddings can be computed for

most digital data categories, such as words, sentences, documents, images, videos, and graphs.

It’s crucial to grasp that you must use specialized models when you need to compute the distance

between two different data categories, such as the distance between the vector of a sentence and

of an image. These models are designed to project both data types into the same vector space,

such as CLIP, ensuring accurate distance computation.

Applications of embeddings
Due to the generative AI revolution, which uses RAG, embeddings have become extremely popu-

lar in information retrieval tasks, such as semantic search for text, code, images, and audio, and

long-term memory of agents. But before generative AI, embeddings were already heavily used in:

• Representing categorical variables (e.g., vocabulary tokens) that are fed to an ML model

• Recommender systems by encoding the users and items and finding their relationship

• Clustering and outlier detection

• Data visualization by using algorithms such as UMAP

https://github.com/PacktPublishing/LLM-Engineering/blob/main/code_snippets/08_text_image_embeddings.py
https://github.com/PacktPublishing/LLM-Engineering/blob/main/code_snippets/08_text_image_embeddings.py

Chapter 4 115

• Classification by using the embeddings as features

• Zero-shot classification by comparing the embedding of each class and picking the most

similar one

The last step to fully understanding how RAG works is to examine vector DBs and how they

leverage embeddings to retrieve data.

More on vector DBs
Vector DBs are specialized DBs designed to efficiently store, index, and retrieve vector embed-

dings. Traditional scalar-based DBs struggle with the complexity of vector data, making vector

DBs crucial for tasks like real-time semantic search.

While standalone vector indices like FAISS are effective for similarity search, they lack vector DBs’

comprehensive data management capabilities. Vector DBs support CRUD operations, metadata

filtering, scalability, real-time updates, backups, ecosystem integration, and robust data security,

making them more suited for production environments than standalone indices.

How does a vector DB work?
Think of how you usually search a DB. You type in something specific, and the system spits out

the exact match. That’s how traditional DBs work. Vector DBs are different. Instead of perfect

matches, we look for the closest neighbors of the query vector. Under the hood, a vector DB uses

approximate nearest neighbor (ANN) algorithms to find these close neighbors.

While ANN algorithms don’t return the top matches for a given search, standard nearest neigh-

bor algorithms are too slow to work in practice. Also, it is shown empirically that using only ap-

proximations of the top matches for a given input query works well enough. Thus, the trade-off

between accuracy and latency ultimately favors ANN algorithms.

This is a typical workflow of a vector DB:

1. Indexing vectors: Vectors are indexed using data structures optimized for high-dimen-

sional data. Common indexing techniques include hierarchical navigable small world

(HNSW), random projection, product quantization (PQ), and locality-sensitive hashing

(LSH).

2. Querying for similarity: During a search, the DB queries the indexed vectors to find those

most similar to the input vector. This process involves comparing vectors based on sim-

ilarity measures such as cosine similarity, Euclidean distance, or dot product. Each has

unique advantages and is suitable for different use cases.

RAG Feature Pipeline116

3. Post-processing results: After identifying potential matches, the results undergo post-pro-

cessing to refine accuracy. This step ensures that the most relevant vectors are returned

to the user.

Vector DBs can filter results based on metadata before or after the vector search. Both approaches

have trade-offs in terms of performance and accuracy. The query also depends on the metadata

(along with the vector index), so it contains a metadata index user for filtering operations.

Algorithms for creating the vector index
Vector DBs use various algorithms to create the vector index and manage searching data efficiently:

• Random projection: Random projection reduces the dimensionality of vectors by project-

ing them into a lower-dimensional space using a random matrix. This technique preserves

the relative distances between vectors, facilitating faster searches.

• PQ: PQ compresses vectors by dividing them into smaller sub-vectors and then quantizing

these sub-vectors into representative codes. This reduces memory usage and speeds up

similarity searches.

• LSH: LSH maps similar vectors into buckets. This method enables fast approximate near-

est neighbor searches by focusing on a subset of the data, reducing the computational

complexity.

• HNSW: HNSW constructs a multi-layer graph where each node represents a set of vectors.

Similar nodes are connected, allowing the algorithm to navigate the graph and find the

nearest neighbors efficiently.

These algorithms enable vector DBs to efficiently handle complex and large-scale data, making

them a perfect fit for a variety of AI and ML applications.

DB operations
Vector DBs also share common characteristics with standard DBs to ensure high performance,

fault tolerance, and ease of management in production environments. Key operations include:

• Sharding and replication: Data is partitioned (sharded) across multiple nodes to ensure

scalability and high availability. Data replication across nodes helps maintain data integ-

rity and availability in case of node failures.

Chapter 4 117

• Monitoring: Continuous monitoring of DB performance, including query latency and re-

source usage (RAM, CPU, disk), helps maintain optimal operations and identify potential

issues before they impact the system.

• Access control: Implementing robust access control mechanisms ensures that only au-

thorized users can access and modify data. This includes role-based access controls and

other security protocols to protect sensitive information.

• Backups: Regular DB backups are critical for disaster recovery. Automated backup pro-

cesses ensure that data can be restored to a previous state in case of corruption or loss.

An overview of advanced RAG
The vanilla RAG framework we just presented doesn’t address many fundamental aspects that

impact the quality of the retrieval and answer generation, such as:

• Are the retrieved documents relevant to the user’s question?

• Is the retrieved context enough to answer the user’s question?

• Is there any redundant information that only adds noise to the augmented prompt?

• Does the latency of the retrieval step match our requirements?

• What do we do if we can’t generate a valid answer using the retrieved information?

From the questions above, we can draw two conclusions. The first one is that we need a robust

evaluation module for our RAG system that can quantify and measure the quality of the retrieved

data and generate answers relative to the user’s question. We will discuss this topic in more detail

in Chapter 9. The second conclusion is that we must improve our RAG framework to address the

retrieval limitations directly in the algorithm. These improvements are known as advanced RAG.

The vanilla RAG design can be optimized at three different stages:

• Pre-retrieval: This stage focuses on how to structure and preprocess your data for data

indexing optimizations as well as query optimizations.

• Retrieval: This stage revolves around improving the embedding models and metadata

filtering to improve the vector search step.

RAG Feature Pipeline118

• Post-retrieval: This stage mainly targets different ways to filter out noise from the retrieved

documents and compress the prompt before feeding it to an LLM for answer generation.

Figure 4.5: The three stages of advanced RAG

This section is not meant to be an exhaustive list of all the advanced RAG methods available. The

goal is to build an intuition about what can be optimized. We will use only examples based on

text data, but the principles of advanced RAG remain the same regardless of the data category.

Now, let’s zoom in on all three components.

Chapter 4 119

Pre-retrieval
The pre-retrieval steps are performed in two different ways:

• Data indexing: It is part of the RAG ingestion pipeline. It is mainly implemented within

the cleaning or chunking modules to preprocess the data for better indexing.

• Query optimization: The algorithm is performed directly on the user’s query before em-

bedding it and retrieving the chunks from the vector DB.

As we index our data using embeddings that semantically represent the content of a chunked

document, most of the data indexing techniques focus on better preprocessing and structuring

the data to improve retrieval efficiency, such as:

• Sliding window: The sliding window technique introduces overlap between text chunks,

ensuring that important context near chunk boundaries is retained, which enhances re-

trieval accuracy. This is particularly beneficial in domains like legal documents, scientific

papers, customer support logs, and medical records, where critical information often spans

multiple sections. The embedding is computed on the chunk along with the overlapping

portion. Hence, the sliding window improves the system’s ability to retrieve relevant and

coherent information by maintaining context across boundaries.

• Enhancing data granularity: This involves data cleaning techniques like removing irrel-

evant details, verifying factual accuracy, and updating outdated information. A clean and

accurate dataset allows for sharper retrieval.

• Metadata: Adding metadata tags like dates, URLs, external IDs, or chapter markers helps

filter results efficiently during retrieval.

• Optimizing index structures: It is based on different data index methods, such as various

chunk sizes and multi-indexing strategies.

• Small-to-big: The algorithm decouples the chunks used for retrieval and the context used

in the prompt for the final answer generation. The algorithm uses a small sequence of

text to compute the embedding while preserving the sequence itself and a wider window

around it in the metadata. Thus, using smaller chunks enhances the retrieval’s accuracy,

while the larger context adds more contextual information to the LLM.

RAG Feature Pipeline120

The intuition behind this is that if we use the whole text for computing the embedding, we

might introduce too much noise, or the text could contain multiple topics, which results

in a poor overall semantic representation of the embedding.

Figure 4.6: Query routing

On the query optimization side, we can leverage techniques such as query routing, query rewriting,

and query expansion to refine the retrieved information for the LLM further:

• Query routing: Based on the user’s input, we might have to interact with different cate-

gories of data and query each category differently. Query rooting is used to decide what

action to take based on the user’s input, similar to if/else statements. Still, the decisions

are made solely using natural language instead of logical statements.

Chapter 4 121

As illustrated in Figure 4.6, let’s assume that, based on the user’s input, to do RAG, we

can retrieve additional context from a vector DB using vector search queries, a standard

SQL DB by translating the user query to an SQL command, or the internet by leveraging

REST API calls. The query router can also detect whether a context is required, helping us

avoid making redundant calls to external data storage. Also, a query router can be used to

pick the best prompt template for a given input. For example, in the LLM Twin use case,

depending on whether the user wants an article paragraph, a post, or a code snippet, you

need different prompt templates to optimize the creation process. The routing usually

uses an LLM to decide what route to take or embeddings by picking the path with the

most similar vectors. To summarize, query routing is identical to an if/else statement but

much more versatile as it works directly with natural language.

• Query rewriting: Sometimes, the user’s initial query might not perfectly align with the

way your data is structured. Query rewriting tackles this by reformulating the question

to match the indexed information better. This can involve techniques like:

• Paraphrasing: Rephrasing the user’s query while preserving its meaning (e.g.,

“What are the causes of climate change?” could be rewritten as “Factors contrib-

uting to global warming”).

• Synonym substitution: Replacing less common words with synonyms to broaden

the search scope (e.g., “ joyful” could be rewritten as “happy”).

• Sub-queries: For longer queries, we can break them down into multiple shorter

and more focused sub-queries. This can help the retrieval stage identify relevant

documents more precisely.

• Hypothetical document embeddings (HyDE): This technique involves having an LLM

create a hypothetical response to the query. Then, both the original query and the LLM’s

response are fed into the retrieval stage.

• Query expansion: This approach aims to enrich the user’s question by adding additional

terms or concepts, resulting in different perspectives of the same initial question. For

example, when searching for “disease,” you can leverage synonyms and related terms

associated with the original query words and also include “illnesses” or “ailments.”

• Self-query: The core idea is to map unstructured queries into structured ones. An LLM

identifies key entities, events, and relationships within the input text. These identities are

used as filtering parameters to reduce the vector search space (e.g., identify cities within

the query, for example, “Paris,” and add it to your filter to reduce your vector search space).

RAG Feature Pipeline122

Both data indexing and query optimization pre-retrieval optimization techniques depend highly

on your data type, structure, and source. Thus, as with any data processing pipeline, no method

always works, as every use case has its own particularities and gotchas. Optimizing your pre-re-

trieval RAG layer is experimental. Thus, what is essential is to try multiple methods (such as the

ones enumerated in this section), reiterate, and observe what works best.

Retrieval
The retrieval step can be optimized in two fundamental ways:

• Improving the embedding models used in the RAG ingestion pipeline to encode the

chunked documents and, at inference time, transform the user’s input.

• Leveraging the DB’s filter and search features. This step will be used solely at inference

time when you have to retrieve the most similar chunks based on user input.

Both strategies are aligned with our ultimate goal: to enhance the vector search step by leveraging

the semantic similarity between the query and the indexed data.

When improving the embedding models, you usually have to fine-tune the pre-trained embedding

models to tailor them to specific jargon and nuances of your domain, especially for areas with

evolving terminology or rare terms.

Instead of fine-tuning the embedding model, you can leverage instructor models (https://

huggingface.co/hkunlp/instructor-xl) to guide the embedding generation process with an

instruction/prompt aimed at your domain. Tailoring your embedding network to your data us-

ing such a model can be a good option, as fine-tuning a model consumes more computing and

human resources.

In the code snippet below, you can see an example of an Instructor model that embeds article

titles about AI:

from InstructorEmbedding import INSTRUCTOR

model = INSTRUCTOR("hkunlp/instructor-base")

sentence = "RAG Fundamentals First"

instruction = "Represent the title of an article about AI:"

https://huggingface.co/hkunlp/instructor-xl
https://huggingface.co/hkunlp/instructor-xl

Chapter 4 123

embeddings = model.encode([[instruction, sentence]])

print(embeddings.shape) # noqa

Output: (1, 768)

The source code can be found at https://github.com/PacktPublishing/LLM-Engineering/

blob/main/code_snippets/08_instructor_embeddings.py.

python3 -m venv instructor_venv && source instructor_venv/bin/activate

pip install sentence-transformers==2.2.2 InstructorEmbedding==1.0.1

On the other side of the spectrum, here is how you can improve your retrieval by leveraging classic

filter and search DB features:

• Hybrid search: This is a vector and keyword-based search blend. Keyword-based search

excels at identifying documents containing specific keywords. When your task demands

pinpoint accuracy and the retrieved information must include exact keyword matches,

hybrid search shines. Vector search, while powerful, can sometimes struggle with finding

exact matches, but it excels at finding more general semantic similarities. You leverage

both keyword matching and semantic similarities by combining the two methods. You

have a parameter, usually called alpha, that controls the weight between the two methods.

The algorithm has two independent searches, which are later normalized and unified.

• Filtered vector search: This type of search leverages the metadata index to filter for specific

keywords within the metadata. It differs from a hybrid search in that you retrieve the data

once using only the vector index and perform the filtering step before or after the vector

search to reduce your search space.

To run the instructor code, you have to create a different virtual environment and

activate it:

And install the required Python dependencies:

https://github.com/PacktPublishing/LLM-Engineering/blob/main/code_snippets/08_instructor_embeddings.py
https://github.com/PacktPublishing/LLM-Engineering/blob/main/code_snippets/08_instructor_embeddings.py

RAG Feature Pipeline124

In practice, on the retrieval side, you usually start with filtered vector search or hybrid search, as

they are fairly quick to implement. This approach gives you the flexibility to adjust your strategy

based on performance. If the results are not as expected, you can always fine-tune your embed-

ding model.

Post-retrieval
The post-retrieval optimizations are solely performed on the retrieved data to ensure that the

LLM’s performance is not compromised by issues such as limited context windows or noisy data.

This is because the retrieved context can sometimes be too large or contain irrelevant information,

both of which can distract the LLM.

Two popular methods performed at the post-retrieval step are:

• Prompt compression: Eliminate unnecessary details while keeping the essence of the data.

• Re-ranking: Use a cross-encoder ML model to give a matching score between the user’s

input and every retrieved chunk. The retrieved items are sorted based on this score. Only

the top N results are kept as the most relevant. As you can see in Figure 4.7, this works

because the re-ranking model can find more complex relationships between the user input

and some content than a simple similarity search. However, we can’t apply this model at

the initial retrieval step because it is costly. That is why a popular strategy is to retrieve

the data using a similarity distance between the embeddings and refine the retrieved

information using a re-raking model, as illustrated in Figure 4.8.

Chapter 4 125

Figure 4.7: Bi-encoder (the standard embedding model) versus cross-encoder

The abovementioned techniques are far from an exhaustive list of all potential solutions. We

used them as examples to get an intuition on what you can (and should) optimize at each step

in your RAG workflow. The truth is that these techniques can vary tremendously by the type of

data you work with.

RAG Feature Pipeline126

For example, if you work with multi-modal data such as text and images, most of the techniques

from earlier won’t work as they are designed for text only.

Figure 4.8: The re-ranking algorithm

To summarize, the primary goal of these optimizations is to enhance the RAG algorithm at three key

stages: pre-retrieval, retrieval, and post-retrieval. This involves preprocessing data for improved

vector indexing, adjusting user queries for more accurate searches, enhancing the embedding

model, utilizing classic filtering DB operations, and removing noisy data. By keeping these goals

in mind, you can effectively optimize your RAG workflow for data processing and retrieval

Chapter 4 127

Exploring the LLM Twin’s RAG feature pipeline
architecture
Now that you have a strong intuition and understanding of RAG and its workings, we will con-

tinue exploring our particular LLM Twin use case. The goal is to provide a hands-on end-to-end

example to solidify the theory presented in this chapter.

Any RAG system is split into two independent components:

• The ingestion pipeline takes in raw data, cleans, chunks, embeds, and loads it into a

vector DB.

• The inference pipeline queries the vector DB for relevant context and ultimately generates

an answer by levering an LLM.

In this chapter, we will focus on implementing the RAG ingestion pipeline, and in Chapter 9, we

will continue developing the inference pipeline.

With that in mind, let’s have a quick refresher on the problem we are trying to solve and where

we get our raw data. Remember that we are building an end-to-end ML system. Thus, all the

components talk to each other through an interface (or a contract), and each pipeline has a sin-

gle responsibility. In our case, we ingest raw documents, preprocess them, and load them into

a vector DB.

The problem we are solving
As presented in the previous chapter, this book aims to show you how to build a production-ready

LLM Twin backed by an end-to-end ML system. In this chapter specifically, we want to design a

RAG feature pipeline that takes raw social media data (e.g., articles, code repositories, and posts)

from our MongoDB data warehouse. The text of the raw documents will be cleaned, chunked,

embedded, and ultimately loaded to a feature store. As discussed in Chapter 1, we will implement

a logical feature store using ZenML artifacts and a Qdrant vector DB.

As we want to build a fully automated feature pipeline, we want to sync the data warehouse and

logical feature store. Remember that, at inference time, the context used to generate the answer

is retrieved from the vector DB. Thus, the speed of synchronization between the data warehouse

and the feature store will directly impact the accuracy of our RAG algorithm.

Another key consideration is how to automate the feature pipeline and integrate it with the rest

of our ML system. Our goal is to minimize any desynchronization between the two data storages,

as this could potentially compromise the integrity of our system.

RAG Feature Pipeline128

To conclude, we must design a feature pipeline that constantly syncs the data warehouse and

logical feature store while processing the data accordingly. Having the data in a feature store

is critical for a production-ready ML system. The LLM Twin inference pipeline will query it for

RAG, while the training pipeline will consume tracked and versioned fine-tuning datasets from it.

The feature store
The feature store will be the central access point for all the features used within the training and

inference pipelines. The training pipeline will use the cleaned data from the feature store (stored

as artifacts) to fine-tune LLMs. The inference pipeline will query the vector DB for chunked doc-

uments for RAG. That is why we are designing a feature pipeline and not only a RAG ingestion

pipeline. In practice, the feature pipeline contains multiple subcomponents, one of which is the

RAG logic.

Remember that the feature pipeline is mainly used as a mind map to navigate the complexity of

ML systems. It clearly states that it takes raw data as input and then outputs features and optional

labels, which are stored in the feature store. Thus, a good intuition is to consider that all the logic

between the data warehouse and the feature store goes into the feature pipeline namespace, con-

sisting of one or more sub-pipelines. For example, we will implement another pipeline that takes

in cleaned data, processes it into instruct datasets, and stores it in artifacts; this also sits under

the feature pipeline umbrella as the artifacts are part of the logical feature store. Another example

would be implementing a data validation pipeline on top of the raw data or computed features.

Another important observation to make is that text data stored as strings are not considered

features if you follow the standard conventions. A feature is something that is fed directly into

the model. For example, we would have to tokenize the instruct datasets or chunked documents

to be considered features. Why? Because the tokens are fed directly to the model and not the

sentences as strings. Unfortunately, this makes the system more complex and unflexible. Thus,

we will do the tokenization at runtime. But this observation is important to understand as it’s

a clear example that you don’t have to be too rigid about the feature/training/inference (FTI)

architecture. You have to take it and adapt it to your own use case.

Where does the raw data come from?
As a quick reminder, all the raw documents are stored in a MongoDB data warehouse. The data

warehouse is populated by the data collection ETL pipeline presented in Chapter 3. The ETL pipe-

line crawls various platforms such as Medium and Substack, standardizes the data, and loads it

into MongoDB. Check out Chapter 3 for more details on this topic.

Chapter 4 129

Designing the architecture of the RAG feature pipeline
The last step is to architect and go through the design of the RAG feature pipeline of the LLM

Twin application. We will use a batch design scheduled to poll data from the MongoDB data

warehouse, process it, and load it to a Qdrant vector DB. The first question to ask ourselves is,

“Why a batch pipeline?”

But before answering that, let’s quickly understand how a batch architecture works and behaves

relative to a streaming design.

Figure 4.9: The architecture of the LLM Twin’s RAG feature pipeline

RAG Feature Pipeline130

Batch pipelines
A batch pipeline in data systems refers to a data processing method where data is collected, pro-

cessed, and stored in predefined intervals and larger volumes, also known as “batches”. This ap-

proach differs from real-time or streaming data processing, where data is processed continuously

as it arrives. This is what happens in a batch pipeline:

1. Data collection: Data is collected from various sources and stored until sufficient amounts

are accumulated for processing. This can include data from DBs, logs, files, and other

sources.

2. Scheduled processing: Data processing is scheduled at regular intervals, for example,

hourly or daily. During this time, the collected data is processed in bulk. This can involve

data cleansing, transformation, aggregation, and other operations.

3. Data loading: After processing, the data is loaded into the target system, such as a DB, data

warehouse, data lake, or feature store. This processed data is then available for analysis,

querying, or further processing.

Batch pipelines are particularly useful when dealing with large volumes of data that do not require

immediate processing. They offer several advantages, including:

• Efficiency: Batch processing can handle large volumes of data more efficiently than re-

al-time processing, allowing for optimized resource allocation and parallel processing.

• Complex processing: Batch pipelines can perform complex data transformations and

aggregations that might be too resource-intensive for real-time processing.

• Simplicity: Batch processing systems’ architectures are often simpler than those of re-

al-time systems, making them easier to implement and maintain.

Batch versus streaming pipelines
When implementing feature pipelines, you have two main design choices: batch and streaming.

Thus, it is worthwhile to see the difference between the two and understand why we chose a

batch architecture over a streaming one for our LLM Twin use case.

You can effortlessly write a dedicated chapter on streaming pipelines, which suggests its com-

plexity over a batch design. However, as streaming architectures become increasingly popular,

one must have an intuition of how they work to choose the best option for your application.

Chapter 4 131

The core elements of streaming applications are a distributed event streaming platform such as

Apache Kafka or Redpanda to store events from multiple clients and a streaming engine such as

Apache Flink or Bytewax to process the events. To simplify your architecture, you can swap your

event streaming platform with queues, such as RabbitMQ, to store the events until processed.

Table 4.1 compares batch and streaming pipelines based on multiple criteria such as processing

schedule and complexity:

Aspect Batch pipeline Streaming pipeline

Processing schedule Processes data at regular
intervals (e.g., every
minute, hourly, daily).

Processes data
continuously, with
minimal latency.

Efficiency Handles large volumes of
data more efficiently,
optimizing resource
allocation and parallel
processing.

Handles single data
points, providing
immediate insights
and updates, allowing
for rapid response to
changes.

Processing complexity Capable of performing
complex data transformations
and aggregations.

Designed to handle
high-velocity data
streams with low
latency.

Use cases Suitable for scenarios where
immediate data processing
is not critical. Commonly
used in data warehousing,
reporting, ETL processes,
and feature pipelines.

Ideal for applications
requiring real-time
analytics, features,
monitoring, and event-
driven architectures.

System complexity Compared to streaming
pipelines, systems are
generally simpler to
implement and maintain.

More complex to
implement and maintain
due to the need for
low-latency processing,
fault tolerance, and
scalability. The
tooling is also
more advanced and
complicated.

Table 4.1: Batch versus streaming pipelines

More complex to implement and maintain due to the need for low-latency processing, fault tolerance, and scalability. The tooling is also more advanced and complicated.
More complex to implement and maintain due to the need for low-latency processing, fault tolerance, and scalability. The tooling is also more advanced and complicated.
More complex to implement and maintain due to the need for low-latency processing, fault tolerance, and scalability. The tooling is also more advanced and complicated.
More complex to implement and maintain due to the need for low-latency processing, fault tolerance, and scalability. The tooling is also more advanced and complicated.
More complex to implement and maintain due to the need for low-latency processing, fault tolerance, and scalability. The tooling is also more advanced and complicated.
More complex to implement and maintain due to the need for low-latency processing, fault tolerance, and scalability. The tooling is also more advanced and complicated.
More complex to implement and maintain due to the need for low-latency processing, fault tolerance, and scalability. The tooling is also more advanced and complicated.
More complex to implement and maintain due to the need for low-latency processing, fault tolerance, and scalability. The tooling is also more advanced and complicated.
More complex to implement and maintain due to the need for low-latency processing, fault tolerance, and scalability. The tooling is also more advanced and complicated.

RAG Feature Pipeline132

For example, streaming pipelines are extremely powerful in social media recommender systems

like TikTok. When using social media, user behavior changes frequently. A typical scenario is

that you want to relax at a certain point in time and mostly look at videos of puppies. Still, after

15 minutes, you get bored and want something more serious, such as educative content or news.

This means the recommender system has to capture these behavior changes without delay to keep

you engaged. As the transition between interests is cyclical and not predictable, you can’t use a

batch pipeline that runs every 30 minutes or every hour to generate more content. You can run

it every minute to create new content, but, at the same time, it will result in unnecessary costs,

as most predictions will not be consumed. By implementing a streaming pipeline, you update

the features of specific users in real time, which are then passed to a chain of models that predict

the new recommendations.

Streaming architectures are also the backbone of real-time fraud detection algorithms, such as

those used at Stripe or PayPal. In this context, it’s critical to identify potentially fraudulent trans-

actions as they occur, not after a few minutes or hours as a batch pipeline would process them.

The same urgency applies to high-frequency trading platforms that make stock predictions based

on the constant influx of market data, enabling traders to make decisions within milliseconds.

On the other hand, you can use a batch architecture for an offline recommender system. For ex-

ample, when implementing one for an e-commerce or streaming platform, you don’t need the

system to be so reactive, as the user’s behavior rarely changes. Thus, updating the recommen-

dations periodically, such as every night, based on historical user behavior data using a batch

pipeline is easier to implement and cheaper.

Another popular example of batch pipelines is the ETL design used to extract, transform, and load

data for different use cases. The ETL design is widespread in data pipelines used to move data

from one DB to another. Some practical use cases include aggregating data for analytics, where

you have to extract data from multiple sources, aggregate it, and load it to a data warehouse

connected to a dashboard. The analytics domains can be widespread, from e-commerce and

marketing to finance and research.

Chapter 4 133

The data collection pipeline used in the LLM Twin use case is another example of an ETL pipeline

that extracts data from the internet, structures it, and loads it into a data warehouse for future

processing.

Along with prediction or feature freshness, another disadvantage of batch pipelines over streaming

ones is that you usually make redundant predictions. Let’s take the example of a recommender

system for a streaming platform like Netflix. Every night, you make the predictions for all users.

There is a significant chance that a large chunk of users won’t log in that day. Also, users usually

don’t browse all the recommendations but stick to the first ones. Thus, only a portion of predic-

tions are used, wasting computing power on all the others.

That’s why a popular strategy is to start with a batch architecture, as it’s faster and easier to im-

plement. After the product is in place, you gradually move to a streaming design to reduce costs

and improve the user experience.

To conclude, we have used a batch architecture (and not a streaming one) to implement the LLM

Twin’s feature pipeline for the following reasons:

• Does not require immediate data processing: Even if syncing the data warehouse and

feature store is critical for an accurate RAG system, a delay of a few minutes is acceptable.

Thus, we can schedule the batch pipeline to run every minute, constantly syncing the two

data storages. This technique works because the data volume is small. The whole data

warehouse will have only thousands of records, not millions or billions. Hence, we can

quickly iterate through them and sync the two DBs.

• Simplicity: As stated earlier, implementing a streaming pipeline is two times more com-

plex. In the real world, you want to keep your system as simple as possible, making it

easier to understand, debug, and maintain. Also, simplicity usually translates to lower

infrastructure and development costs.

RAG Feature Pipeline134

In Figure 8.10, we compare what tools you can use based on your architecture (streaming versus

batch) and the quantity of data you have to process (small versus big data). In our use case, we

are in the smaller data and batch quadrant, where we picked a combination of vanilla Python and

generative AI tools such as LangChain, Sentence Transformers, and Unstructured.

Figure 4.10: Tools on the streaming versus batch and smaller versus bigger data spectrum

In the Change data capture: syncing the data warehouse and feature store section later in this chapter,

we will discuss when switching from a batch architecture to a streaming one makes sense.

Core steps
Most of the RAG feature pipelines are composed of five core steps. The one implemented in the

LLM Twin architecture makes no exception. Thus, you can quickly adapt this pattern for other

RAG applications, but here is what the LLM Twin’s RAG feature pipeline looks like:

1. Data extraction: Extract the latest articles, code repositories, and posts from the Mon-

goDB data warehouse. At the extraction step, you usually aggregate all the data you need

for processing.

Chapter 4 135

2. Cleaning: The data from the data warehouse is standardized and partially clean, but we

have to ensure that the text contains only useful information, is not duplicated, and can

be interpreted by the embedding model. For example, we must clean and normalize all

non-ASCII characters before passing the text to the embedding model. Also, to keep the

information semantically dense, we decided to replace all the URLs with placeholders

and remove all emojis. The cleaning step is more art than science. Hence, after you have

the first iteration with an evaluation mechanism in place, you will probably reiterate and

improve it.

3. Chunking: You must adopt various chunking strategies based on each data category

and embedding model. For example, when working with code repositories, you want

the chunks broader, whereas when working with articles, you want them narrower or

scoped at the paragraph level. Depending on your data, you must decide if you split your

document based on the chapter, section, paragraph, sentence, or just a fixed window size.

Also, you have to ensure that the chunk size doesn’t exceed the maximum input size of

the embedding model. That is why you usually chunk a document based on your data

structure and the maximum input size of the model.

4. Embedding: You pass each chunk individually to an embedding model of your choice.

Implementation-wise, this step is usually the simplest, as tools such as SentenceTrans-

former and Hugging Face provide high-level interfaces for most embedding models. As

explained in the What are embeddings? section of this chapter, at this step, the most critical

decisions are to decide what model to use and whether to fine-tune it or not. For example,

we used an "all-mpnet-base-v2" embedding model from SentenceTransformer, which

is relatively tiny and runs on most machines. However, we provide a configuration file

where you can quickly configure the embedding model with something more powerful

based on the state of the art when reading this book. You can quickly find other options

on the MTEB on Hugging Face (https://huggingface.co/spaces/mteb/leaderboard).

5. Data loading: The final step combines the embedding of a chunked document and its

metadata, such as the author and the document ID, content, URL, platform, and creation

date. Ultimately, we wrap the vector and the metadata into a structure compatible with

Qdrant and push it to the vector DB. As we want to use Qdrant as the single source of truth

for the features, we also push the cleaned documents (before chunking) to Qdrant. We can

push data without vectors, as the metadata index of Qdrant behaves like a NoSQL DB. Thus,

pushing metadata without a vector attached to it is like using a standard NoSQL engine.

https://huggingface.co/spaces/mteb/leaderboard

RAG Feature Pipeline136

Change data capture: syncing the data warehouse and feature
store
As highlighted a few times in this chapter, data is constantly changing, which can result in DBs,

data lakes, data warehouses, and feature stores getting out of sync. Change data capture (CDC)

is a strategy that allows you to optimally keep two or more data storage types in sync without

computing and I/O overhead. It captures any CRUD operation done on the source DB and repli-

cates it on a target DB. Optionally, you can add preprocessing steps in between the replication.

The syncing issues also apply when building a feature pipeline. One key design choice concerns

how to sync the data warehouse with the feature store to have data fresh enough for your par-

ticular use case.

In our LLM Twin use case, we chose a naïve approach out of simplicity. We implemented a batch

pipeline that is triggered periodically or manually. It reads all the raw data from the data ware-

house, processes it in batches, and inserts new records or updates old ones from the Qdrant

vector DB. This works fine when you are working with a small number of records, at the order of

thousands or tens of thousands. But our naïve approach raises the following questions:

• What happens if the data suddenly grows to millions of records (or higher)?

• What happens if a record is deleted from the data warehouse? How is this reflected in

the feature store?

• What if we want to process only the new or updated items from the data warehouse and

not all of them?

Fortunately, the CDC pattern can solve all of these issues. When implementing CDC, you can

take multiple approaches, but all of them use either a push or pull strategy:

• Push: The source DB is the primary driver in the push approach. It actively identifies

and transmits data modifications to target systems for processing. This method ensures

near-instantaneous updates at the target, but data loss can occur if target systems are

inaccessible. To mitigate this, a messaging system is typically employed as a buffer.

• Pull: The pull method assigns a more passive role to the source DB, which only records

data changes. Target systems periodically request these changes and handle updates

accordingly. While this approach lightens the load on the source, it introduces a delay

in data propagation. A messaging system is again essential to prevent data loss during

periods of target system unavailability.

Chapter 4 137

In summary, the push method is ideal for applications demanding immediate data access, where-

as the pull method is better suited for large-scale data transfers where real-time updates aren’t

critical. With that in mind, there are different methods to detect changes in data. Thus, let’s list

the main CDC patterns that are used in the industry:

• Timestamp-based: The approach involves adding a modification time column to DB

tables, usually called LAST_MODIFIED or LAST_UPDATED. Downstream systems can query

this column to identify records that have been updated since their last check. While sim-

ple to implement, this method is limited to tracking changes, not deletions, and imposes

performance overhead due to the need to scan entire tables.

• Trigger-based: The trigger-based approach utilizes DB triggers to automatically record

data modifications in a separate table upon INSERT, UPDATE, or DELETE operations, often

known as the event table. This method provides comprehensive change tracking but can

impact the DB performance due to the additional write operations involved for each event.

• Log-based: DBs maintain transaction logs to record all data modifications, including

timestamps. Primarily used for recovery, these logs can also be leveraged to propagate

changes to target systems in real time. This approach minimizes the performance impact

on the source DB. As a huge advantage, it avoids additional processing overhead on the

source DB, captures all data changes, and requires no schema modification. But on the op-

posite side, it lacks standardized log formats, leading to vendor-specific implementations.

With these CDC techniques in mind, we could quickly implement a pull timestamp-based strategy

in our RAG feature pipeline to sync the data warehouse and feature store more optimally when

the data grows. Our implementation is still pull-based but doesn’t check any last updated field

in the source DB; it just pulls everything from the data warehouse.

However, the most popular and optimal technique in the industry is the log-based one. It doesn’t

add any I/O overhead to the source DB, has low latency, and supports all CRUD operations. The

biggest downside is its development complexity, which requires a queue to capture all the CRUD

events and a streaming pipeline to process them.

For more details on CDC, I recommend What is Change Data Capture? from Conflu-

ent’s blog: https://www.confluent.io/en-gb/learn/change-data-capture/.

https://www.confluent.io/en-gb/learn/change-data-capture/

RAG Feature Pipeline138

As this is an LLM book and not a data engineering one, we wanted to keep things simple, but it’s

important to know that these techniques exist, and you can always upgrade your current imple-

mentation when it doesn’t fit your application requirements anymore.

Why is the data stored in two snapshots?
We store two snapshots of our data in the logical feature store:

• After the data is cleaned: For fine-tuning LLMs

• After the documents are chunked and embedded: For RAG

Why did we design it this way? Remember that the features should be accessed solely from the feature

store for training and inference. Thus, this adds consistency to our design and makes it cleaner.

Also, storing the data cleaned specifically for our fine-tuning and embedding use case in the Mon-

goDB data warehouse would have been an antipattern. The data from the warehouse is shared

all across the company. Thus, processing it for a specific use case is not good practice. Imagine

another summarization use case where we must clean and preprocess the data differently. We

must create a new “Cleaned Data” table prefixed with the use case name. We have to repeat that

for every new use case. Therefore, to avoid having a spaghetti data warehouse, the data from the

data warehouse is generic and is modeled to specific applications only in downstream compo-

nents, which, in our case, is the feature store.

Ultimately, as we mentioned in the Core steps section, you can leverage the metadata index of a

vector DB as a NoSQL DB. Based on these factors, we decided to keep the cleaned data in Qdrant,

along with the chunked and embedded versions of the documents.

As a quick reminder, when operationalizing our LLM Twin system, the create instruct dataset

pipeline, explained in Chapter 5, will read the cleaned documents from Qdrant, process them,

and save them under a versioned ZenML artifact. The training pipeline requires a dataset and not

plain documents. This is a reminder that our logical feature store comprises the Qdrant vector

DB for online serving and ZenML artifacts for offline training.

Orchestration
ZenML will orchestrate the batch RAG feature pipeline. Using ZenML, we can schedule it to run

on a schedule, for example, every hour, or quickly manually trigger it. Another option is to trigger

it after the ETL data collection pipeline finishes.

By orchestrating the feature pipeline and integrating it into ZenML (or any other orchestration

tool), we can operationalize the feature pipeline with the end goal of continuous training (CT).

Chapter 4 139

We will go into all the details of orchestration, scheduling, and CT in Chapter 11.

Implementing the LLM Twin’s RAG feature pipeline
The last step is to review the LLM Twin’s RAG feature pipeline code to see how we applied every-

thing we discussed in this chapter. We will walk you through the following:

• ZenML code

• Pydantic domain objects

• A custom object-vector mapping (OVM) implementation

• The cleaning, chunking, and embedding logic for all our data categories

We will take a top-down approach. Thus, let’s start with the Settings class and ZenML pipeline.

Settings
We use Pydantic Settings (https://docs.pydantic.dev/latest/concepts/pydantic_settings/)

to define a global Settings class that loads sensitive or non-sensitive variables from a .env file.

This approach also gives us all the benefits of Pydantic, such as type validation. For example, if

we provide a string for the QDRANT_DATABASE_PORT variable instead of an integer, the program

will crash. This behavior makes the whole application more deterministic and reliable.

Here is what the Settings class looks like with all the variables necessary to build the RAG fea-

ture pipeline:

from pydantic import BaseSettings

class Settings(BaseSettings):

 class Config:

 env_file = ".env"

 env_file_encoding = "utf-8"

 … # Some other settings…

 # RAG

 TEXT_EMBEDDING_MODEL_ID: str = "sentence-transformers/all-MiniLM-
L6-v2"

 RERANKING_CROSS_ENCODER_MODEL_ID: str = "cross-encoder/ms-marco-
MiniLM-L-4-v2"

 RAG_MODEL_DEVICE: str = "cpu"

https://docs.pydantic.dev/latest/concepts/pydantic_settings/

RAG Feature Pipeline140

 # QdrantDB Vector DB

 USE_QDRANT_CLOUD: bool = False

 QDRANT_DATABASE_HOST: str = "localhost"

 QDRANT_DATABASE_PORT: int = 6333

 QDRANT_CLOUD_URL: str = "str"

 QDRANT_APIKEY: str | None = None

 … # More settings…

settings = Settings()

As stated in the internal Config class, all the variables have default values or can be overridden

by providing a .env file.

ZenML pipeline and steps
The ZenML pipeline is the entry point for the RAG feature engineering pipeline. It reflects the

five core phases of RAG ingestion code: extracting raw documents, cleaning, chunking, embed-

ding, and loading them to the logical feature store. The calls within the feature_engineering()

function are ZenML steps, representing a single execution unit performing the five phases of RAG.

The code is available in the GitHub repository at https://github.com/PacktPublishing/LLM-

Engineers-Handbook/blob/main/pipelines/feature_engineering.py:

from zenml import pipeline

from llm_engineering.interfaces.orchestrator.steps import feature_
engineering as fe_steps

@pipeline

def feature_engineering(author_full_names: list[str]) -> None:

 raw_documents = fe_steps.query_data_warehouse(author_full_names)

 cleaned_documents = fe_steps.clean_documents(raw_documents)

 last_step_1 = fe_steps.load_to_vector_db(cleaned_documents)

 embedded_documents = fe_steps.chunk_and_embed(cleaned_documents)

 last_step_2 = fe_steps.load_to_vector_db(embedded_documents)

 return [last_step_1.invocation_id, last_step_2.invocation_id]

https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/pipelines/feature_engineering.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/pipelines/feature_engineering.py

Chapter 4 141

Figure 4.11 shows how multiple feature engineering pipeline runs look in ZenML’s dashboard.

Figure 4.11: Feature pipeline runs in the ZenML dashboard

Figure 8.12 shows the DAG of the RAG feature pipeline, where you can follow all the pipeline steps

and their output artifacts. Remember that whatever is returned from a ZenML step is automati-

cally saved as an artifact, stored in ZenML’s artifact registry, versioned, and shareable across the

application.

Figure 4.12: Feature pipeline DAG in the ZenML dashboard

RAG Feature Pipeline142

The final puzzle piece is understanding how to configure the RAG feature pipeline dynamically.

All its available settings are exposed as function parameters. Here, we need only a list of au-

thor’s names, as seen in the function’s signature: feature_engineering(author_full_names:

list[str]). We inject a YAML configuration file at runtime that contains all the necessary values

based on different use cases. For example, the following configuration includes a list of all the

authors of this book as we want to populate the feature store with data from all of us (available

in the GitHub repository at configs/feature_engineering.yaml):

parameters:

 author_full_names:

 - Alex Vesa

 - Maxime Labonne

 - Paul Iusztin

The beauty of this approach is that you don’t have to modify the code to configure the feature

pipeline with different input values. You have to provide a different configuration file when run-

ning it, as follows:

feature_engineering.with_options(config_path="…/feature_engineering.yaml")
()

You can either hardcode the path to the config file or provide the config_path from the CLI, which

allows you to modify the pipeline’s configuration between different runs. Out of simplicity, we

hard-coded the configuration file. Thus, we can call the feature engineering pipeline calling the

run.py script as follows:

python -m tools.run --no-cache --run-feature-engineering

However, you can easily add another CLI argument to pass the config_path variable. Also, you

can run the feature pipeline using the following poe command:

poetry poe run-feature-engineering-pipeline

Let’s move forward to the ZenML steps and sequentially zoom in on all of them. The source code for

all the feature engineering pipeline steps is available on GitHub at "steps/feature_engineering".

We will begin with the first step, which involves querying the data warehouse for new content

to process into features.

Chapter 4 143

Querying the data warehouse
The first thing to notice is that a step is a Python function decorated with @step, similar to how

a ZenML pipeline works. The function below takes as input a list of authors’ full names and per-

forms the following core steps:

• It attempts to get or create a UserDocument instance using the first and last names, ap-

pending this instance to the authors list. If the user doesn’t exist, it throws an error.

• It fetches all the raw data for the user from the data warehouse and extends the documents

list to include these user documents.

• Ultimately, it computes a descriptive metadata dictionary logged and tracked in ZenML.

… # other imports

from zenml import get_step_context, step

@step

def query_data_warehouse(

 author_full_names: list[str],

) -> Annotated[list, "raw_documents"]:

 documents = []

 authors = []

 for author_full_name in author_full_names:

 logger.info(f"Querying data warehouse for user: {author_full_
name}")

 first_name, last_name = utils.split_user_full_name(author_full_
name)

 logger.info(f"First name: {first_name}, Last name: {last_name}")

 user = UserDocument.get_or_create(first_name=first_name, last_
name=last_name)

 authors.append(user)

 results = fetch_all_data(user)

 user_documents = [doc for query_result in results.values() for doc
in query_result]

 documents.extend(user_documents)

 step_context = get_step_context()

RAG Feature Pipeline144

 step_context.add_output_metadata(output_name="raw_documents",
metadata=_get_metadata(documents))

 return documents

The fetch function leverages a thread pool that runs each query on a different thread. As we have

multiple data categories, we have to make a different query for the articles, posts, and reposi-

tories, as they are stored in different collections. Each query calls the data warehouse, which is

bounded by the network I/O and data warehouse latency, not by the machine’s CPU. Thus, by

moving each query to a different thread, we can parallelize them. Ultimately, instead of adding

the latency of each query as the total timing, the time to run this fetch function will be the max

between all the calls.

Using threads to parallelize I/O-bounded calls is good practice in Python, as they are not locked

by the Python Global Interpreter Lock (GIL). In contrast, adding each call to a different process

would add too much overhead, as a process takes longer to spin off than a thread.

In Python, you want to parallelize things with processes only when the operations are CPU or

memory-bound because the GIL affects them. Each process has a different GIL. Thus, paralleliz-

ing your computing logic, such as processing a batch of documents or images already loaded in

memory, isn’t affected by Python’s GIL limitations.

def fetch_all_data(user: UserDocument) -> dict[str,
list[NoSQLBaseDocument]]:

 user_id = str(user.id)

 with ThreadPoolExecutor() as executor:

 future_to_query = {

 executor.submit(__fetch_articles, user_id): "articles",

 executor.submit(__fetch_posts, user_id): "posts",

 executor.submit(__fetch_repositories, user_id):
"repositories",

 }

 results = {}

 for future in as_completed(future_to_query):

 query_name = future_to_query[future]

 try:

 results[query_name] = future.result()

 except Exception:

Chapter 4 145

 logger.exception(f"'{query_name}' request failed.")

 results[query_name] = []

 return results

The _get_metadata() function takes the list of queried documents and authors and counts the

number of them relative to each data category:

def _get_metadata(documents: list[Document]) -> dict:

 metadata = {

 "num_documents": len(documents),

 }

 for document in documents:

 collection = document.get_collection_name()

 if collection not in metadata:

 metadata[collection] = {}

 if "authors" not in metadata[collection]:

 metadata[collection]["authors"] = list()

 metadata[collection]["num_documents"] = metadata[collection].
get("num_documents", 0) + 1

 metadata[collection]["authors"].append(document.author_full_name)

 for value in metadata.values():

 if isinstance(value, dict) and "authors" in value:

 value["authors"] = list(set(value["authors"]))

 return metadata

We will expose this metadata in the ZenML dashboard to quickly see some statistics on the loaded

data. For example, in Figure 4.13, we accessed the metadata tab of the query_data_warehouse()

step, where you can see that, within that particular run of the feature pipeline, we loaded 76

documents from three authors. This is extremely powerful for monitoring and debugging batch

pipelines.

RAG Feature Pipeline146

You can always extend it with anything that makes sense for your use case.

Figure 4.13: Metadata of the “query the data warehouse” ZenML step

Cleaning the documents
In the cleaning step, we iterate through all the documents and delegate all the logic to a

CleaningDispatcher who knows what cleaning logic to apply based on the data category. Re-

member that we want to apply, or have the ability to apply in the future, different cleaning tech-

niques on articles, posts, and code repositories.

@step

def clean_documents(

 documents: Annotated[list, "raw_documents"],

) -> Annotated[list, "cleaned_documents"]:

 cleaned_documents = []

 for document in documents:

Chapter 4 147

 cleaned_document = CleaningDispatcher.dispatch(document)

 cleaned_documents.append(cleaned_document)

 step_context = get_step_context()

 step_context.add_output_metadata(output_name="cleaned_documents",
metadata=_get_metadata(cleaned_documents))

 return cleaned_documents

The computed metadata is similar to what we logged in the query_data_warehouse() step. Thus,

let’s move on to chunking and embedding.

Chunk and embed the cleaned documents
Similar to how we cleaned the documents, we delegate the chunking and embedding logic to

a dispatcher who knows how to handle each data category. Note that the chunking dispatcher

returns a list instead of a single object, which makes sense as the document is split into multiple

chunks. We will dig into the dispatcher in the “The dispatcher layer” section of this chapter.

@step

def chunk_and_embed(

 cleaned_documents: Annotated[list, "cleaned_documents"],

) -> Annotated[list, "embedded_documents"]:

 metadata = {"chunking": {}, "embedding": {}, "num_documents":
len(cleaned_documents)}

 embedded_chunks = []

 for document in cleaned_documents:

 chunks = ChunkingDispatcher.dispatch(document)

 metadata["chunking"] = _add_chunks_metadata(chunks,
metadata["chunking"])

 for batched_chunks in utils.misc.batch(chunks, 10):

 batched_embedded_chunks = EmbeddingDispatcher.
dispatch(batched_chunks)

 embedded_chunks.extend(batched_embedded_chunks)

 metadata["embedding"] = _add_embeddings_metadata(embedded_chunks,
metadata["embedding"])

 metadata["num_chunks"] = len(embedded_chunks)

RAG Feature Pipeline148

 metadata["num_embedded_chunks"] = len(embedded_chunks)

 step_context = get_step_context()

 step_context.add_output_metadata(output_name="embedded_documents",
metadata=metadata)

 return embedded_chunks

In Figure 4.14, you can see the metadata of the chunking and embedding ZenML step. For exam-

ple, you can quickly understand that we transformed 76 documents into 2,373 chunks, or the

properties we used for chunking articles, such as a chunk_size of 500 and a chunk_overlap of 50.

Figure 4.14: Metadata of the embedding and chunking ZenML step, detailing the uncategorized
and chunking dropdowns

Chapter 4 149

In Figure 4.15, the rest of the ZenML metadata from the embedding and chunking step details

the embedding model and its properties used to compute the vectors.

Figure 4.15: Metadata of the embedding and chunking ZenML step, detailing the embedding
dropdown

RAG Feature Pipeline150

As ML systems can break at any time while in production due to drifts or untreated use cases, le-

veraging the metadata section to monitor the ingested data can be a powerful tool that will save

debugging days, translating to tens of thousands of dollars or more for your business.

Loading the documents to the vector DB
As each article, post, or code repository sits in a different collection inside the vector DB, we have

to group all the documents based on their data category. Then, we load each group in bulk in the

Qdrant vector DB:

@step

def load_to_vector_db(

 documents: Annotated[list, "documents"],

) -> None:

 logger.info(f"Loading {len(documents)} documents into the vector
database.")

 grouped_documents = VectorBaseDocument.group_by_class(documents)

 for document_class, documents in grouped_documents.items():

 logger.info(f"Loading documents into {document_class.get_
collection_name()}")

 for documents_batch in utils.misc.batch(documents, size=4):

 try:

 document_class.bulk_insert(documents_batch)

 except Exception:

 return False

 return True

Pydantic domain entities
Before investigating the dispatchers, we must understand the domain objects we work with. To

some extent, in implementing the LLM Twin, we are following the domain-driven design (DDD)

principles, which state that domain entities are the core of your application. Thus, before pro-

ceeding, it’s important to understand the hierarchy of the domain classes we are working with.

The code for the domain entities is available on GitHub at https://github.com/

PacktPublishing/LLM-Engineering/tree/main/llm_engineering/domain.

https://github.com/PacktPublishing/LLM-Engineering/tree/main/llm_engineering/domain
https://github.com/PacktPublishing/LLM-Engineering/tree/main/llm_engineering/domain

Chapter 4 151

We used Pydantic to model all our domain entities. When we wrote the book, choosing Pydantic

was a no-brainer, as it is the go-to Python package for writing data structures with out-of-the-box

type validation. As Python is a dynamically typed language, using Pydantic for type validation at

runtime makes your system order of times more robust, as you can be sure that you are always

working with the right type of data.

The domain of our LLM Twin application is split into two dimensions:

• The data category: Post, article, and repository

• The state of the data: Cleaned, chunked, and embedded

We decided to create a base class for each state of the document, resulting in having the following

base abstract classes:

• class CleanedDocument(VectorBaseDocument, ABC)

• class Chunk(VectorBaseDocument, ABC)

• class EmbeddedChunk(VectorBaseDocument, ABC)

Note that all of them inherit the VectorBaseDocument class, which is our custom OVM implemen-

tation, which we will explain in the next section of this chapter. Also, it inherits from ABC, which

makes the class abstract. Thus, you cannot initialize an object out of these classes; you may only

inherit from them. That is why base classes are always marked as abstract.

Each base abstract class from above (which models the state) will have a subclass that adds

the data category dimension. For example, the CleanedDocument class will have the following

subclasses:

• class CleanedPostDocument(CleanedDocument)

• class CleanedArticleDocument(CleanedDocument)

• class CleanedRepositoryDocument(CleanedDocument)

As we can see in Figure 8.16, we will repeat the same logic for the Chunk and EmbeddedChunk base

abstract classes. We will implement a specific document class for each data category and state com-

bination, resulting in nine types of domain entities. For example, when ingesting a raw document,

the cleaning step will yield a CleanedArticleDocument instance, the chunking step will return a

list of ArticleChunk objects, and the embedding operation will return EmbeddedArticleChunk in-

stances that encapsulate the embedding and all the necessary metadata to ingest in the vector DB.

RAG Feature Pipeline152

The same will happen for the posts and repositories.

Figure 4.16: Domain entities class hierarchy and their interaction

We chose this design because the list of states will rarely change, and we want to extend the list

of data categories. Thus, structuring the classes after the state allows us to plug another data

category by inheriting these base abstract classes.

Let’s see the complete code for the hierarchy of the cleaned document. All the attributes of a

cleaned document will be saved within the metadata of the vector DB. For example, the metadata

of a cleaned article document will always contain the content, platform, author ID, author full

name, and link of the article.

Another fundamental aspect is the Config internal class, which defines the name of the collection

within the vector DB, the data category of the entity, and whether to leverage the vector index

when creating the collection:

class CleanedDocument(VectorBaseDocument, ABC):

 content: str

 platform: str

 author_id: UUID4

 author_full_name: str

Chapter 4 153

class CleanedPostDocument(CleanedDocument):

 image: Optional[str] = None

 class Config:

 name = "cleaned_posts"

 category = DataCategory.POSTS

 use_vector_index = False

class CleanedArticleDocument(CleanedDocument):

 link: str

 class Config:

 name = "cleaned_articles"

 category = DataCategory.ARTICLES

 use_vector_index = False

class CleanedRepositoryDocument(CleanedDocument):

 name: str

 link: str

 class Config:

 name = "cleaned_repositories"

 category = DataCategory.REPOSITORIES

 use_vector_index = False

To conclude this section, let’s also take a look at the base abstract class of the chunk and embed-

ded chunk:

class Chunk(VectorBaseDocument, ABC):

 content: str

 platform: str

 document_id: UUID4

 author_id: UUID4

 author_full_name: str

 metadata: dict = Field(default_factory=dict)

… # PostChunk, ArticleChunk, RepositoryChunk

RAG Feature Pipeline154

class EmbeddedChunk(VectorBaseDocument, ABC):

 content: str

 embedding: list[float] | None

 platform: str

 document_id: UUID4

 author_id: UUID4

 author_full_name: str

 metadata: dict = Field(default_factory=dict)

… # EmbeddedPostChunk, EmbeddedArticleChunk, EmbeddedRepositoryChunk

We also defined an enum that aggregates all our data categories in a single structure of constants:

class DataCategory(StrEnum):

 POSTS = "posts"

 ARTICLES = "articles"

 REPOSITORIES = "repositories"

The last step to fully understand how the domain objects work is to zoom into the

VectorBaseDocument OVM class.

OVM
The term OVM is inspired by the object-relational mapping (ORM) pattern we discussed in Chap-

ter 3. We called it OVM because we work with embedding and vector DBs instead of structured

data and SQL tables. Otherwise, it follows the same principles as an ORM pattern.

Similar to what we did in Chapter 3, we will implement our own OVM version. Even if our custom

example is simple, it’s a powerful example of how to write modular and extendable classes by

leveraging OOP best practices and principles.

Our OVM base class is called VectorBaseDocument. It will support CRUD operations on top of

Qdrant. Based on our application’s demands, we limited it only to create and read operations, but

it can easily be extended to update and delete functions.

The full implementation of the VectorBaseDocument class is available on GitHub

at https://github.com/PacktPublishing/LLM-Engineering/blob/main/llm_

engineering/domain/base/vector.py.

https://github.com/PacktPublishing/LLM-Engineering/blob/main/llm_engineering/domain/base/vector.py
https://github.com/PacktPublishing/LLM-Engineering/blob/main/llm_engineering/domain/base/vector.py

Chapter 4 155

Let’s take a look at the definition of the VectorBaseDocument class:

from pydantic import UUID4, BaseModel

from typing import Generic

from llm_engineering.infrastructure.db.qdrant import connection

T = TypeVar("T", bound="VectorBaseDocument")

class VectorBaseDocument(BaseModel, Generic[T], ABC):

 id: UUID4 = Field(default_factory=uuid.uuid4)

 @classmethod

 def from_record(cls: Type[T], point: Record) -> T:

 _id = UUID(point.id, version=4)

 payload = point.payload or {}

 attributes = {

 "id": _id,

 **payload,

 }

 if cls._has_class_attribute("embedding"):

 payload["embedding"] = point.vector or None

 return cls(**attributes)

 def to_point(self: T, **kwargs) -> PointStruct:

 exclude_unset = kwargs.pop("exclude_unset", False)

 by_alias = kwargs.pop("by_alias", True)

 payload = self.dict(exclude_unset=exclude_unset, by_alias=by_
alias, **kwargs)

 _id = str(payload.pop("id"))

 vector = payload.pop("embedding", {})

 if vector and isinstance(vector, np.ndarray):

RAG Feature Pipeline156

 vector = vector.tolist()

 return PointStruct(id=_id, vector=vector, payload=payload)

• The VectorBaseDocument class inherits from Pydantic’s BaseModel and helps us structure

a single record’s attributes from the vector DB. Every OVM will be initialized by default

with UUID4 as its unique identifier. Using generics—more precisely, by inheriting from

Generic[T]—the signatures of all the subclasses of the VectorBaseDocument class will

adapt to that given class. For example, the from_record() method of the Chunk() class,

which inherits VectorBaseDocument, will return the Chunk type, which drastically helps

the static analyzer and type checkers such as mypy (https://mypy.readthedocs.io/en/

stable/).

The from_record() method adapts a data point from Qdrant’s format to our internal structure

based on Pydantic. On the other hand, the to_point() method takes the attributes of the current

instance and adapts them to Qdrant’s PointStruct() format. We will leverage these two methods

for our create and read operations.

Ultimately, all operations made to Qdrant will be done through the connection instance, which

is instantiated in the application’s infrastructure layer.

The bulk_insert() method maps each document to a point. Then, it uses the Qdrant connection

instance to load all the points to a given collection in Qdrant. If the insertion fails once, it tries

to create the collection and do the insertion again. Often, it is good practice to split your logic

into two functions. One private function contains the logic, in our case _bulk_insert(), and one

public function handles all the errors and failure scenarios.

class VectorBaseDocument(BaseModel, Generic[T], ABC):

 … # Rest of the class

 @classmethod

 def bulk_insert(cls: Type[T], documents: list["VectorBaseDocument"])
-> bool:

 try:

 cls._bulk_insert(documents)

 except exceptions.UnexpectedResponse:

 logger.info(

 f"Collection '{cls.get_collection_name()}' does not exist.
Trying to create the collection and reinsert the documents."

https://mypy.readthedocs.io/en/stable/
https://mypy.readthedocs.io/en/stable/

Chapter 4 157

)

 cls.create_collection()

 try:

 cls._bulk_insert(documents)

 except exceptions.UnexpectedResponse:

 logger.error(f"Failed to insert documents in '{cls.get_
collection_name()}'.")

 return False

 return True

 @classmethod

 def _bulk_insert(cls: Type[T], documents: list["VectorBaseDocument"])
-> None:

 points = [doc.to_point() for doc in documents]

 connection.upsert(collection_name=cls.get_collection_name(),
points=points)

The collection name is inferred from the Config class defined in the subclasses inheriting the OVM:

class VectorBaseDocument(BaseModel, Generic[T], ABC):

 … # Rest of the class

 @classmethod

 def get_collection_name(cls: Type[T]) -> str:

 if not hasattr(cls, "Config") or not hasattr(cls.Config, "name"):

 raise ImproperlyConfigured(

 "The class should define a Config class with" "the 'name'
property that reflects the collection's name."

)

 return cls.Config.name

RAG Feature Pipeline158

Now, we must define a method that lets us read all the records from the vector DB (without using

vector similarity search logic). The bulk_find() method enables us to scroll (or list) all the records

from a collection. The function below scrolls the Qdrant vector DB, which returns a list of data

points, which are ultimately mapped to our internal structure using the from_record() method.

The limit parameters control how many items we return at once, and the offset signals the ID of

the point from which Qdrant starts returning records.

class VectorBaseDocument(BaseModel, Generic[T], ABC):

 … # Rest of the class

 @classmethod

 def bulk_find(cls: Type[T], limit: int = 10, **kwargs) ->
tuple[list[T], UUID | None]:

 try:

 documents, next_offset = cls._bulk_find(limit=limit, **kwargs)

 except exceptions.UnexpectedResponse:

 logger.error(f"Failed to search documents in '{cls.get_
collection_name()}'.")

 documents, next_offset = [], None

 return documents, next_offset

 @classmethod

 def _bulk_find(cls: Type[T], limit: int = 10, **kwargs) ->
tuple[list[T], UUID | None]:

 collection_name = cls.get_collection_name()

 offset = kwargs.pop("offset", None)

 offset = str(offset) if offset else None

 records, next_offset = connection.scroll(

 collection_name=collection_name,

 limit=limit,

 with_payload=kwargs.pop("with_payload", True),

 with_vectors=kwargs.pop("with_vectors", False),

 offset=offset,

Chapter 4 159

 **kwargs,

)

 documents = [cls.from_record(record) for record in records]

 if next_offset is not None:

 next_offset = UUID(next_offset, version=4)

 return documents, next_offset

The last piece of the puzzle is to define a method that performs a vector similarity search on a

provided query embedding. Like before, we defined a public search() and private _search()

method. The search is performed by Qdrant when calling the connection.search() function.

class VectorBaseDocument(BaseModel, Generic[T], ABC):

 … # Rest of the class

 @classmethod

 def search(cls: Type[T], query_vector: list, limit: int = 10,
**kwargs) -> list[T]:

 try:

 documents = cls._search(query_vector=query_vector,
limit=limit, **kwargs)

 except exceptions.UnexpectedResponse:

 logger.error(f"Failed to search documents in '{cls.get_
collection_name()}'.")

 documents = []

 return documents

 @classmethod

 def _search(cls: Type[T], query_vector: list, limit: int = 10,
**kwargs) -> list[T]:

 collection_name = cls.get_collection_name()

 records = connection.search(

 collection_name=collection_name,

 query_vector=query_vector,

 limit=limit,

 with_payload=kwargs.pop("with_payload", True),

 with_vectors=kwargs.pop("with_vectors", False),

RAG Feature Pipeline160

 **kwargs,

)

 documents = [cls.from_record(record) for record in records]

 return documents

Now that we understand what our domain entities look like and how the OVM works, let’s move

on to the dispatchers who clean, chunk, and embed the documents.

The dispatcher layer
A dispatcher inputs a document and applies dedicated handlers based on its data category (article,

post, or repository). A handler can either clean, chunk, or embed a document.

Let’s start by zooming in on the CleaningDispatcher. It mainly implements a dispatch() method

that inputs a raw document. Based on its data category, it instantiates and calls a handler that

applies the cleaning logic specific to that data point:

class CleaningDispatcher:

 cleaning_factory = CleaningHandlerFactory()

 @classmethod

 def dispatch(cls, data_model: NoSQLBaseDocument) ->
VectorBaseDocument:

 data_category = DataCategory(data_model.get_collection_name())

 handler = cls.cleaning_factory.create_handler(data_category)

 clean_model = handler.clean(data_model)

 logger.info(

 "Data cleaned successfully.",

 data_category=data_category,

 cleaned_content_len=len(clean_model.content),

)

 return clean_model

The key in the dispatcher logic is the CleaningHandlerFactory(), which instantiates a different

cleaning handler based on the document’s data category:

class CleaningHandlerFactory:

 @staticmethod

Chapter 4 161

 def create_handler(data_category: DataCategory) ->
CleaningDataHandler:

 if data_category == DataCategory.POSTS:

 return PostCleaningHandler()

 elif data_category == DataCategory.ARTICLES:

 return ArticleCleaningHandler()

 elif data_category == DataCategory.REPOSITORIES:

 return RepositoryCleaningHandler()

 else:

 raise ValueError("Unsupported data type")

The Dispatcher or Factory classes are nothing fancy, but they offer an intuitive and simple interface

for applying various operations to your documents. When manipulating documents, instead of

worrying about their data category and polluting your business logic with if-else statements, you

have a class dedicated to handling that. You have a single class that cleans any document, which

respects the DRY (don’t repeat yourself) principles from software engineering. By respecting DRY,

you have a single point of failure, and the code can easily be extended. For example, if we add

an extra type, we must extend only the Factory class instead of multiple occurrences in the code.

The ChunkingDispatcher and EmbeddingDispatcher follow the same pattern. They use a

ChunkingHandlerFactory and, respectively, an EmbeddingHandlerFactory that initializes the

correct handler based on the data category of the input document. Afterward, they call the han-

dler and return the result.

The Factory class leverages theabstract factory creational pattern (https://refactoring.guru/

design-patterns/abstract-factory), which instantiates a family of classes implementing the

same interface. In our case, these handlers implement the clean() method regardless of the

handler type.

Also, the Handler class family leverages the strategy behavioral pattern (https://refactoring.

guru/design-patterns/strategy) used to instantiate when you want to use different variants of

an algorithm within an object and be able to switch from one algorithm to another during runtime.

The source code of all the dispatchers and factories can be found on GitHub at
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/
llm_engineering/application/preprocessing/dispatchers.py

https://refactoring.guru/design-patterns/abstract-factory
https://refactoring.guru/design-patterns/abstract-factory
https://refactoring.guru/design-patterns/strategy
https://refactoring.guru/design-patterns/strategy
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/preprocessing/dispatchers.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/preprocessing/dispatchers.py

RAG Feature Pipeline162

Intuitively, in our dispatcher layer, the combination of the factory and strategy patterns works

as follows:

1. Initially, we knew we wanted to clean the data, but as we knew the data category only at

runtime, we couldn’t decide on what strategy to apply.

2. We can write the whole code around the cleaning code and abstract away the logic under

a Handler() interface, which will represent our strategy.

3. When we get a data point, we apply the abstract factory pattern and create the correct

cleaning handler for its data type.

4. Ultimately, the dispatcher layer uses the handler and executes the right strategy.

By doing so, we:

• Isolate the logic for a given data category.

• Leverage polymorphism to avoid filling up the code with hundreds of if-else statements.

• Make the code modular and extendable. When a new data category arrives, we must

implement a new handler and modify the Factory class without touching any other part

of the code.

The last component of the RAG feature pipeline is the implementation of the cleaning, chunking,

and embedding handlers.

The handlers
The handler has a one-on-one structure with our domain, meaning that every entity has its own

handler, as shown in Figure 8.17. In total, we will have nine Handler classes that follow the next

base interfaces:

• class CleaningDataHandler()

• class ChunkingDataHandler()

• class EmbeddingDataHandler()

Until now, we have just modeled our entities and how the data flows in our appli-

cation. We haven’t written a single piece of cleaning, chunking, or embedding code.

That is one big difference between a quick demo and a production-ready application.

In a demo, you don’t care about software engineering best practices and structuring

your code to make it future-proof. However, writing clean, modular, and scalable

code is critical for its longevity when building a real-world application.

Chapter 4 163

Figure 4.17: Handler class hierarchy and their interaction

Let’s examine each handler family and see how it is implemented.

The cleaning handlers
The CleaningDataHandler() strategy interface looks as follows:

… # Other imports.

from typing import Generic, TypeVar

DocumentT = TypeVar("DocumentT", bound=Document)

CleanedDocumentT = TypeVar("CleanedDocumentT", bound=CleanedDocument)

class CleaningDataHandler(ABC, Generic[DocumentT, CleanedDocumentT]):

The code for all the handlers is available on GitHub at https://github.com/
PacktPublishing/LLM-Engineering/tree/main/llm_engineering/

application/preprocessing.

https://github.com/PacktPublishing/LLM-Engineering/tree/main/llm_engineering/
application/preprocessing
https://github.com/PacktPublishing/LLM-Engineering/tree/main/llm_engineering/
application/preprocessing
https://github.com/PacktPublishing/LLM-Engineering/tree/main/llm_engineering/
application/preprocessing

RAG Feature Pipeline164

 @abstractmethod

 def clean(self, data_model: DocumentT) -> CleanedDocumentT:

 pass

Now, for every post, article and repository, we have to implement a different handler, as follows:

class PostCleaningHandler(CleaningDataHandler):

 def clean(self, data_model: PostDocument) -> CleanedPostDocument:

 return CleanedPostDocument(

 id=data_model.id,

 content=clean_text(" #### ".join(data_model.content.
values())),

 … # Copy the rest of the parameters from the data_model
object.

)

class ArticleCleaningHandler(CleaningDataHandler):

 def clean(self, data_model: ArticleDocument) ->
CleanedArticleDocument:

 valid_content = [content for content in data_model.content.
values() if content]

 return CleanedArticleDocument(

 id=data_model.id,

 content=clean_text(" #### ".join(valid_content)),

 platform=data_model.platform,

 link=data_model.link,

 author_id=data_model.author_id,

 author_full_name=data_model.author_full_name,

)

class RepositoryCleaningHandler(CleaningDataHandler):

 def clean(self, data_model: RepositoryDocument) ->
CleanedRepositoryDocument:

 return CleanedRepositoryDocument(

 id=data_model.id,

Chapter 4 165

 content=clean_text(" #### ".join(data_model.content.
values())),

 … # Copy the rest of the parameters from the data_model
object.

)

The handlers input a raw document domain entity, clean the content, and return a cleaned docu-

ment. All the handlers use the clean_text() function to clean the text. Out of simplicity, we used

the same cleaning technique for all the data categories. Still, in a real-world setup, we would have

to further optimize and create a different cleaning function for each data category. The strategy

pattern makes this a breeze, as we swap the cleaning function in the handlers, and that’s it.

The cleaning steps applied in the clean_text() function are the same ones discussed in Chapter 5

in the Creating an instruction dataset section. We don’t want to repeat ourselves. Thus, for a re-

fresher, check out that chapter. At this point, we mostly care about automating and integrating

the whole logic into the RAG feature pipeline. Thus, after operationalizing the ML system, all the

cleaned data used for fine-tuning will be accessed from the logical feature store, making it the

single source of truth for accessing data.

The chunking handlers
First, let’s examine the ChunkingDataHandler() strategy handler. We exposed the metadata dic-

tionary as a property to aggregate all the necessary properties required for chunking in a single

structure. By structuring it like this, we can easily log everything to ZenML to track and debug our

chunking logic. The handler takes cleaned documents as input and returns chunk entities. All the

handlers can be found on GitHub at https://github.com/PacktPublishing/LLM-Engineering/

tree/main/llm_engineering/application/preprocessing.

… # Other imports.

from typing import Generic, TypeVar

CleanedDocumentT = TypeVar("CleanedDocumentT", bound=CleanedDocument)

ChunkT = TypeVar("ChunkT", bound=Chunk)

class ChunkingDataHandler(ABC, Generic[CleanedDocumentT, ChunkT]):

 @property

 def metadata(self) -> dict:

 return {

https://github.com/PacktPublishing/LLM-Engineering/tree/main/llm_engineering/application/preprocessing
https://github.com/PacktPublishing/LLM-Engineering/tree/main/llm_engineering/application/preprocessing

RAG Feature Pipeline166

 "chunk_size": 500,

 "chunk_overlap": 50,

 }

 @abstractmethod

 def chunk(self, data_model: CleanedDocumentT) -> list[ChunkT]:

 pass

Let’s understand how the ArticleChunkingHandler() class is implemented. The first step is to

override the metadata property and customize the type of properties the chunking logic requires.

For example, when working with articles, we are interested in the chunk’s minimum and max-

imum length.

The handler’s chunk() method inputs cleaned article documents and returns a list of article chunk

entities. It uses the chunk_text() function to split the cleaned content into chunks. The chunking

function is customized based on the min_length and max_length metadata fields. The chunk_id

is computed as the MD5 hash of the chunk’s content. Thus, if the two chunks have precisely the

same content, they will have the same ID, and we can easily deduplicate them. Lastly, we create

a list of chunk entities and return them.

class ArticleChunkingHandler(ChunkingDataHandler):

 @property

 def metadata(self) -> dict:

 return {

 "min_length": 1000,

 "max_length": 1000,

 }

 def chunk(self, data_model: CleanedArticleDocument) ->
list[ArticleChunk]:

 data_models_list = []

 cleaned_content = data_model.content

 chunks = chunk_article(

 cleaned_content, min_length=self.metadata["min_length"], max_
length=self.metadata["max_length"]

)

 for chunk in chunks:

Chapter 4 167

 chunk_id = hashlib.md5(chunk.encode()).hexdigest()

 model = ArticleChunk(

 id=UUID(chunk_id, version=4),

 content=chunk,

 platform=data_model.platform,

 link=data_model.link,

 document_id=data_model.id,

 author_id=data_model.author_id,

 author_full_name=data_model.author_full_name,

 metadata=self.metadata,

)

 data_models_list.append(model)

 return data_models_list

The last step is to dig into the chunk_article() function, which mainly does two things:

• It uses a regex to find all the sentences within the given text by looking for periods, ques-

tion marks, or exclamation points followed by a space. However, it avoids splitting into

cases where the punctuation is part of an abbreviation or initialism (like “e.g." or “Dr.")

• It groups sentences into a single chunk until the max_length limit is reached. When the

maximum size is reached, and the chunk size is bigger than the minimum allowed value,

it is added to the final list the function returns.

def chunk_article(text: str, min_length: int, max_length: int) ->
list[str]:

 sentences = re.split(r"(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?|\!)\s",
text)

 extracts = []

 current_chunk = ""

 for sentence in sentences:

 sentence = sentence.strip()

 if not sentence:

 continue

 if len(current_chunk) + len(sentence) <= max_length:

 current_chunk += sentence + " "

 else:

RAG Feature Pipeline168

 if len(current_chunk) >= min_length:

 extracts.append(current_chunk.strip())

 current_chunk = sentence + " "

 if len(current_chunk) >= min_length:

 extracts.append(current_chunk.strip())

 return extracts

The PostChunkingHandler and RepositoryChunkingHandler, available on GitHub at llm_

engineering/application/preprocessing/chunking_data_handlers.py, have a similar struc-

ture to the ArticleChunkingHandler. However, they use a more generic chunking function called

chunk_text(), worth looking into. The chunk_text() function is a two-step process that has

the following logic:

1. It uses a RecursiveCharacterTextSplitter() from LangChain to split the text based on

a given separator or chunk size. Using the separator, we first try to find paragraphs in the

given text, but if there are no paragraphs or they are too long, we cut it at a given chunk size.

2. Notice that we want to ensure that the chunk doesn’t exceed the maximum input length

of the embedding model. Thus, we pass all the chunks created above into a SenteceTrans

formersTokenTextSplitter(), which considers the maximum input length of the model.

At this point, we also apply the chunk_overlap logic, as we want to do it only after we

validate that the chunk is small enough.

… # Other imports.

from langchain.text_splitter import RecursiveCharacterTextSplitter,
SentenceTransformersTokenTextSplitter

from llm_engineering.application.networks import
EmbeddingModelSingleton

def chunk_text(text: str, chunk_size: int = 500, chunk_overlap: int
= 50) -> list[str]:

 character_splitter = RecursiveCharacterTextSplitter(separato
rs=["\n\n"], chunk_size=chunk_size, chunk_overlap=0)

 text_split_by_characters = character_splitter.split_text(text)

 token_splitter = SentenceTransformersTokenTextSplitter(

 chunk_overlap=chunk_overlap,

Chapter 4 169

 tokens_per_chunk=embedding_model.max_input_length,

 model_name=embedding_model.model_id,

)

 chunks_by_tokens = []

 for section in text_split_by_characters:

 chunks_by_tokens.extend(token_splitter.split_text(section))

 return chunks_by_tokens

To conclude, the function above returns a list of chunks that respect both the provided chunk

parameters and the embedding model’s max input length.

The embedding handlers
The embedding handlers differ slightly from the others as the EmbeddingDataHandler() interface

contains most of the logic. We took this approach because, when calling the embedding model,

we want to batch as many samples as possible to optimize the inference process. When running

the model on a GPU, the batched samples are processed independently and in parallel. Thus, by

batching the chunks, we can optimize the inference process by 10x or more, depending on the

batch size and hardware we use.

We implemented an embed() method, in case you want to run the inference on a single data point,

and an embed_batch() method. The embed_batch() method takes chunked documents as input,

gathers their content into a list, passes them to the embedding model, and maps the results to an

embedded chunk domain entity. The mapping is done through the map_model() abstract method,

which has to be customized for every data category.

… # Other imports.

from typing import Generic, TypeVar, cast

from llm_engineering.application.networks import EmbeddingModelSingleton

ChunkT = TypeVar("ChunkT", bound=Chunk)

EmbeddedChunkT = TypeVar("EmbeddedChunkT", bound=EmbeddedChunk)

embedding_model = EmbeddingModelSingleton()

class EmbeddingDataHandler(ABC, Generic[ChunkT, EmbeddedChunkT]):

 """

 Abstract class for all embedding data handlers.

RAG Feature Pipeline170

 All data transformations logic for the embedding step is done here

 """

 def embed(self, data_model: ChunkT) -> EmbeddedChunkT:

 return self.embed_batch([data_model])[0]

 def embed_batch(self, data_model: list[ChunkT]) ->
list[EmbeddedChunkT]:

 embedding_model_input = [data_model.content for data_model in
data_model]

 embeddings = embedding_model(embedding_model_input, to_list=True)

 embedded_chunk = [

 self.map_model(data_model, cast(list[float], embedding))

 for data_model, embedding in zip(data_model, embeddings,
strict=False)

]

 return embedded_chunk

 @abstractmethod

 def map_model(self, data_model: ChunkT, embedding: list[float]) ->
EmbeddedChunkT:

 pass

Let’s look only at the implementation of the ArticleEmbeddingHandler(), as the other handlers

are highly similar. As you can see, we only have to implement the map_model() method, which

takes a chunk of input and computes the embeddings in batch mode. Its scope is to map this

information to an EmbeddedArticleChunk Pydantic entity.

class ArticleEmbeddingHandler(EmbeddingDataHandler):

 def map_model(self, data_model: ArticleChunk, embedding: list[float])
-> EmbeddedArticleChunk:

 return EmbeddedArticleChunk(

 id=data_model.id,

 content=data_model.content,

 embedding=embedding,

 platform=data_model.platform,

 link=data_model.link,

Chapter 4 171

 document_id=data_model.document_id,

 author_id=data_model.author_id,

 author_full_name=data_model.author_full_name,

 metadata={

 "embedding_model_id": embedding_model.model_id,

 "embedding_size": embedding_model.embedding_size,

 "max_input_length": embedding_model.max_input_length,

 },

)

The last step is to understand how the EmbeddingModelSingleton() works. It is a wrapper over

the SentenceTransformer() class from Sentence Transformers that initializes the embedding

model. Writing a wrapper over external packages is often good practice. Thus, when you want

to change the third-party tool, you have to modify only the internal logic of the wrapper instead

of the whole code base.

The SentenceTransformer() class is initialized with the model_id defined in the Settings class,

allowing us to quickly test multiple embedding models just by changing the configuration file

and not the code. That is why I am not insisting at all on what embedding model to use. This

differs constantly based on your use case, data, hardware, and latency. But by writing a generic

class, which can quickly be configured, you can experiment with multiple embedding models

until you find the best one for you.

from sentence_transformers.SentenceTransformer import SentenceTransformer

from llm_engineering.settings import settings

from .base import SingletonMeta

class EmbeddingModelSingleton(metaclass=SingletonMeta):

 def __init__(

 self,

 model_id: str = settings.TEXT_EMBEDDING_MODEL_ID,

 device: str = settings.RAG_MODEL_DEVICE,

 cache_dir: Optional[Path] = None,

) -> None:

 self._model_id = model_id

 self._device = device

 self._model = SentenceTransformer(

RAG Feature Pipeline172

 self._model_id,

 device=self._device,

 cache_folder=str(cache_dir) if cache_dir else None,

)

 self._model.eval()

 @property

 def model_id(self) -> str:

 return self._model_id

 @cached_property

 def embedding_size(self) -> int:

 dummy_embedding = self._model.encode("")

 return dummy_embedding.shape[0]

 @property

 def max_input_length(self) -> int:

 return self._model.max_seq_length

 @property

 def tokenizer(self) -> AutoTokenizer:

 return self._model.tokenizer

 def __call__(

 self, input_text: str | list[str], to_list: bool = True

) -> NDArray[np.float32] | list[float] | list[list[float]]:

 try:

 embeddings = self._model.encode(input_text)

 except Exception:

 logger.error(f"Error generating embeddings for {self._model_
id=} and {input_text=}")

 return [] if to_list else np.array([])

 if to_list:

Chapter 4 173

 embeddings = embeddings.tolist()

 return embeddings

The embedding model class implements the singleton pattern (https://refactoring.guru/

design-patterns/singleton), a creational design pattern that ensures a class has only one instance

while providing a global access point to this instance. The EmbeddingModelSingleton() class inher-

its from the SingletonMeta class, which ensures that whenever an EmbeddingModelSingleton()

is instantiated, it returns the same instance. This works well with ML models, as you load them

once in memory through the singleton pattern, and afterward, you can use them anywhere in the

code base. Otherwise, you risk loading the model in memory every time you use it or loading it

multiple times, resulting in memory issues. Also, this makes it very convenient to access properties

such as embedding_size, where you have to make a dummy forward pass into the embedding

model to find the size of its output. As a singleton, you do this forward pass only once, and then

you have it accessible all the time during the program’s execution.

Summary
This chapter began with a soft introduction to RAG and why and when you should use it. We

also understood how embeddings and vector DBs work, representing the cornerstone of any

RAG system. Then, we looked into advanced RAG and why we need it in the first place. We built

a strong understanding of what parts of the RAG can be optimized and proposed some popular

advanced RAG techniques for working with textual data. Next, we applied everything we learned

about RAG to designing the architecture of LLM Twin’s RAG feature pipeline. We also understood

the difference between a batch and streaming pipeline and presented a short introduction to the

CDC pattern, which helps sync two DBs.

Ultimately, we went step-by-step into the implementation of the LLM Twin’s RAG feature pipeline,

where we saw how to integrate ZenML as an orchestrator, how to design the domain entities of

the application, and how to implement an OVM module. Also, we understood how to apply some

software engineering best practices, such as the abstract factory and strategy software patterns,

to implement a modular and extendable layer that applies different cleaning, chunking, and

embedding techniques based on the data category of each document.

This chapter focused only on implementing the ingestion pipeline, which is just one component

of a standard RAG application. In Chapter 9, we will conclude the RAG system by implementing

the retrieval and generation components and integrating them into the inference pipeline. But

first, in the next chapter, we will explore how to generate a custom dataset using the data we

collected and fine-tune an LLM with it.

https://refactoring.guru/design-patterns/singleton
https://refactoring.guru/design-patterns/singleton

RAG Feature Pipeline174

References
• Kenton, J.D.M.W.C. and Toutanova, L.K., 2019, June. Bert: Pre-training of deep bidirec-

tional transformers for language understanding. In Proceedings of naacL-HLT (Vol. 1, p. 2).

• Liu, Y., 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arX-

iv:1907.11692.

• Mikolov, T., 2013. Efficient estimation of word representations in vector space. arXiv pre-

print arXiv:1301.3781.

• Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe: Global Vec-

tors for Word Representation. In Proceedings of the 2014 Conference on Empirical Methods

in Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar. Association for

Computational Linguistics.

• He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

• Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A.,

Mishkin, P., Clark, J. and Krueger, G., 2021, July. Learning transferable visual models from

natural language supervision. In International conference on machine learning (pp. 8748-

8763). PMLR.

• What is Change Data Capture (CDC)? | Confluent. (n.d.). Confluent. https://www.confluent.
io/en-gb/learn/change-data-capture/

• Refactoring.Guru. (2024, January 1). Singleton. https://refactoring.guru/design-
patterns/singleton

• Refactoring.Guru. (2024b, January 1). Strategy. https://refactoring.guru/design-
patterns/strategy

• Refactoring.Guru. (2024a, January 1). Abstract Factory. https://refactoring.guru/
design-patterns/abstract-factory

• Schwaber-Cohen, R. (n.d.). What is a Vector Database & How Does it Work? Use Cases + Ex-

amples. Pinecone. https://www.pinecone.io/learn/vector-database/

• Monigatti, L. (2024, February 19). Advanced Retrieval-Augmented Generation: From Theory

to LlaMaIndex Implementation. Medium. https://towardsdatascience.com/advanced-
retrieval-augmented-generation-from-theory-to-llamaindex-implementation-
4de1464a9930

• Monigatti, L. (2023, December 6). A guide on 12 tuning Strategies for Production-Ready

RAG applications. Medium. https://towardsdatascience.com/a-guide-on-12-tuning-
strategies-for-production-ready-rag-applications-7ca646833439

https://www.confluent.io/en-gb/learn/change-data-capture/

https://www.confluent.io/en-gb/learn/change-data-capture/

https://refactoring.guru/design-patterns/singleton

https://refactoring.guru/design-patterns/singleton

https://refactoring.guru/design-patterns/strategy

https://refactoring.guru/design-patterns/strategy

https://refactoring.guru/design-patterns/abstract-factory

https://refactoring.guru/design-patterns/abstract-factory

https://www.pinecone.io/learn/vector-database/

https://towardsdatascience.com/advanced-retrieval-augmented-generation-from-theory-to-llamaindex-implementation-4de1464a9930

https://towardsdatascience.com/advanced-retrieval-augmented-generation-from-theory-to-llamaindex-implementation-4de1464a9930

https://towardsdatascience.com/advanced-retrieval-augmented-generation-from-theory-to-llamaindex-implementation-4de1464a9930

https://towardsdatascience.com/a-guide-on-12-tuning-strategies-for-production-ready-rag-applications-7ca646833439

https://towardsdatascience.com/a-guide-on-12-tuning-strategies-for-production-ready-rag-applications-7ca646833439

Chapter 4 175

• Monigatti, L. (2024b, February 19). Advanced Retrieval-Augmented Generation: From Theory

to LlaMaIndex Implementation. Medium. https://towardsdatascience.com/advanced-
retrieval-augmented-generation-from-theory-to-llamaindex-implementation-
4de1464a9930

• Maameri, S. (2024, May 10). Routing in RAG-Driven applications - towards data science.

Medium. https://towardsdatascience.com/routing-in-rag-driven-applications-
a685460a7220

Join our book’s Discord space
Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/llmeng

https://towardsdatascience.com/advanced-retrieval-augmented-generation-from-theory-to-llamaindex-implementation-4de1464a9930

https://towardsdatascience.com/advanced-retrieval-augmented-generation-from-theory-to-llamaindex-implementation-4de1464a9930

https://towardsdatascience.com/advanced-retrieval-augmented-generation-from-theory-to-llamaindex-implementation-4de1464a9930

https://towardsdatascience.com/routing-in-rag-driven-applications-a685460a7220

https://towardsdatascience.com/routing-in-rag-driven-applications-a685460a7220

https://towardsdatascience.com/routing-in-rag-driven-applications-a685460a7220

https://packt.link/llmeng

5
Supervised Fine-Tuning

Supervised Fine-Tuning (SFT) is a crucial step in preparing LLMs for real-world applications. Fol-

lowing the initial pre-training phase, where an LLM learns to predict the next token in a sequence,

SFT refines the model’s capabilities using carefully curated pairs of instructions and correspond-

ing answers. This process serves two primary purposes: it teaches the model to understand and

follow a specific chat format, effectively transforming it into a conversational agent, and it allows

the model to adapt its broad knowledge base to excel in targeted tasks or specialized domains.

The importance of SFT lies in its ability to bridge the gap between a model’s general language

understanding and its practical utility. By exposing the model to examples of desired input-output

patterns, SFT shapes the LLM’s behavior to align with specific goals, whether they involve task

completion (such as summarization or translation) or domain expertise (like medical or legal

knowledge). This tailored approach not only enhances the model’s performance in intended ar-

eas but also improves its ability to follow instructions and generate more relevant and coherent

responses.

In this chapter, we will cover the following topics:

• Creating a high-quality instruction dataset

• SFT techniques

• Implementing fine-tuning in practice

By the end of this chapter, you will be able to create your own instruction datasets and efficiently

fine-tune LLMs on them.

Supervised Fine-Tuning178

Creating an instruction dataset
In most use cases, creating an instruction dataset is the most difficult part of the fine-tuning

process. This is due to multiple factors. Most use cases can be connected to raw text, but it is rare

to find natural pairs of instructions and answers. This raw text needs to be transformed into a for-

mat that includes both instructions and answers. Moreover, the quality of the data is also crucial.

Because of this, a lot of time is invested in manually checking and verifying individual samples.

This careful review helps ensure that the dataset is accurate and useful for training the model.

Figure 5.1 – Overview of the post-training data pipeline covered in this chapter

In this section, we will introduce a general framework to create your own instruction datasets,

regardless of the final use case. We will then leverage the scraped data from Chapter 3 and trans-

form it into an instruction dataset. The different stages in our data generation pipeline are sum-

marized in Figure 5.1.

General framework
Instruction datasets are defined as pairs of instructions and answers. The instructions are the

inputs of the model, used as context during fine-tuning. The answers are the expected outputs of

the model. During fine-tuning, you can choose to train the model on the instructions and answers,

or on answers only. Pairs of instructions and answers follow a certain template. Some instruction

templates, such as Alpaca, introduce additional fields like inputs and system. Both of them can

be considered subfields of the instruction field. In this case, “inputs” contain the data the model

needs to complete the instruction, and “system” is a meta-prompt to steer the general behavior

of the model. Here is an example from the SlimOrca dataset, with “system” and “instruction”:

All the code examples from this chapter can be found on GitHub at https://github.

com/PacktPublishing/LLM-Engineering.

https://github.com/PacktPublishing/LLM-Engineering
https://github.com/PacktPublishing/LLM-Engineering

Chapter 5 179

System

You are a helpful assistant, who always provide explanation. Think like you are answering to a

five year old.

Instruction

Concepts: building, shop, town

Write a sentence that includes all these words.

Output

In our little town, there is a shop inside a big building where people go to buy their favorite toys

and candies.

Table 5.1 – Example of sample from the Open-Orca/SlimOrca dataset

This example illustrates how the “system” field is used to define specific behaviors for the model,

such as being helpful, always providing explanations, and tailoring responses as if speaking to

a five-year-old. The “instruction” field provides the necessary data (the concepts) and the task

(constructing a sentence). The output field shows the expected answer, which, while not the only

possible answer, represents a high-quality response.

To build an instruction dataset, we want to curate data that is representative of how the model will

be used. Once we have gathered enough samples, our goal is to filter them to only keep high-quality

data. In this context, high-quality data can be described through three main dimensions:

• Accuracy: It refers to the factual correctness and relevance of the samples. In the context

of instruction datasets, this means ensuring that responses are not only factually accu-

rate but also relevant to their corresponding instructions. High accuracy is essential for

training models that can provide reliable and trustworthy information.

• Diversity: A high-quality dataset should encompass a wide range of use cases, covering

the potential queries and tasks the deployed LLM might encounter. This diversity should

span topics, contexts, text lengths, and writing styles. By sampling data in a representative

manner, we allow models to develop robust instruction-following capabilities.

• Complexity: Trivial or overly simplistic samples do little to improve an LLM’s capabilities.

Instead, datasets should include complex, multi-step reasoning problems and challenging

tasks that push the boundaries of what the model is expected to handle. This complexity

helps in developing models capable of tackling complex real-world problems.

Supervised Fine-Tuning180

In the following sections, we will see techniques to filter and evaluate instruction samples ac-

cording to these dimensions.

Data quantity
The Hugging Face Hub contains numerous instruction datasets, which can be general-purpose or

designed for particular tasks or domains. When working on a new use case, it can be beneficial to

look for related open-source datasets to leverage for fine-tuning. This is particularly important

if your number of samples is too low (for example, fewer than 1,000), requiring you to augment

it with high-quality data.

Figure 5.2 – Screenshot of the most-liked datasets on the Hugging Face Hub

Calculating an ideal number of samples is a difficult task, as both the quality of the data and the

size of the model can have a dramatic impact. For large models (around 70 billion parameters,

for example), this number can be as low as 1,000 high-quality samples (see the LIMA paper in

the References section). This is not true for smaller models (around seven billion parameters, for

instance), as they need more samples to simply learn the correct chat template. In any case, the

quality of the data is a crucial factor, and a high number of samples is always desirable.

To provide additional numbers, we can look at the fine-tuned models developed by companies

and the open-source community. We can distinguish two types of finetunes: general-purpose,

aimed to reproduce the capabilities of models like GPT, and task- or domain-specific models,

designed to optimize their performance for a particular application.

Chapter 5 181

General-purpose models cover more topics, which requires additional samples. Among com-

panies, we observe a wide range of values. For instance, Yi models from 01-ai rely on less than

10,000 samples. At the opposite range of the spectrum, Meta reported using 10 million samples

for Llama 3 through the entire fine-tuning process (including preference alignment). In the open-

source community, models like OpenHermes and Dolphin use around one million samples. Based

on the quality of these finetunes, we recommend an instruction dataset of at least one million

samples to create a good general-purpose instruct model. On the other hand, models fine-tuned

for a specific purpose require fewer samples. Here, we differentiate task-specific models from

domain-specific ones.

Task-specific and domain-specific models represent two distinct approaches to fine-tuning LLMs.

Task-specific models are designed to excel at a particular function, such as translation, summari-

zation, or sentiment analysis. These models benefit from a focused training approach on a single

task, allowing for efficient performance even with smaller model sizes (typically less than 8 bil-

lion parameters). The data required for task-specific fine-tuning is generally more manageable,

ranging from 100 to 100,000 samples. This makes task-specific fine-tuning an attractive option

for many applications where resources may be limited.

Domain-specific models, on the other hand, aim to tweak the LLM with specialized knowledge

and familiarity with the vocabulary and linguistic patterns of a particular field. These models

are valuable in areas such as medicine, law, finance, e-commerce, engineering, and hospitality.

The data requirements for domain-specific fine-tuning can vary widely depending on the com-

plexity and breadth of the domain. Some fields, like medicine or law, may require as much data

as general-purpose fine-tuning due to their vast technical corpora. Others, such as e-commerce

or hospitality, might need fewer samples, more in line with task-specific fine-tuning.

The key factors determining the data needs for domain-specific models are the “size” of the

domain (i.e., the extent of its specialized knowledge and vocabulary) and the representation of

that domain in the model’s pre-training data. Domains that are well-represented in the original

training data may require less fine-tuning, while those that are more specialized or underrep-

resented may need more extensive datasets. Even with open-source LLMs, many pre-training

datasets are closed-source, which requires making educated guesses to determine their compo-

sition (e.g., 30% code or 20% math).

Supervised Fine-Tuning182

Data curation
When it comes to procuring data for fine-tuning, the approaches differ between task-specific and

domain-specific models. For task-specific models, data curation often involves collecting examples

of the desired task from existing datasets or creating new ones. This might involve gathering pairs

of original and summarized texts for a summarization model or collecting sentences in different

languages for a translation model.

Domain-specific data curation can be more challenging. It often requires collaboration with sub-

ject matter experts to gather and validate relevant texts, research papers, technical documents,

and other domain-specific content. In some cases, it may involve partnering with organizations

or institutions that have access to large repositories of specialized information. The quality and

relevance of this data is crucial, as it directly impacts the model’s ability to understand and gen-

erate content in the target domain.

It’s worth noting that few-shot prompting has emerged as an alternative strategy to fine-tuning,

especially for task-specific applications. This approach leverages the capabilities of large, pow-

erful models by providing a few examples of the desired task within the input prompt. While

not a replacement for fine-tuning in all scenarios (e.g., when you want to learn a new domain),

few-shot prompting can be an efficient way to adapt models to new tasks without the need for

extensive additional training.

In practice, the line between task-specific and domain-specific models can sometimes blur. For

instance, a model fine-tuned for medical diagnosis could be considered both task-specific (focused

on diagnosis) and domain-specific (specialized in medical knowledge). The key is to understand

the primary goal of the fine-tuning process and tailor the approach accordingly.

At this point in the process, we should have a collection of datasets suited for our use case. The

next step consists of refining the quality of the samples through rule-based filtering, data dupli-

cation, data decontamination, and data quality evaluation.

Rule-based filtering
Rule-based filtering is a systematic approach to data quality control that relies on explicit, pre-

defined rules to evaluate and filter data samples. These rules are typically designed to address

common quality issues and can range from simple checks to more complex logical operations. The

primary goal of rule-based filtering is to maintain a high standard of data quality by removing

samples that do not meet specific criteria.

Chapter 5 183

Length filtering is a straightforward yet effective rule-based filtering technique. This meth-

od involves setting thresholds for the acceptable length of responses in the dataset. Extremely

short responses often lack sufficient information to be meaningful, while excessively long ones

may contain irrelevant or redundant content. It’s important to note that the appropriate length

thresholds can vary significantly depending on the specific task and domain. For example, a

dataset for generating concise summaries might have a lower maximum threshold compared to

one for detailed explanations.

Keyword exclusion is another powerful rule-based filtering technique that focuses on the content

of the samples rather than their structure. This method involves creating a list of keywords or

phrases associated with low-quality or inappropriate content, and then filtering out any samples

that contain these terms. The keyword list can include obvious indicators of low quality, such

as profanities or spam-related terms, as well as domain-specific words that might indicate ir-

relevant or off-topic content. For instance, in a dataset for a professional writing assistant, you

might exclude samples containing slang terms or informal expressions that don’t align with the

intended tone and style.

Format checking is recommended for datasets that include structured data or follow specific

formatting requirements. This technique ensures that all samples adhere to the expected format,

maintaining consistency and facilitating processing downstream. Format checking can be par-

ticularly important for datasets containing code samples, JSON structures, or other formatted

text. For example, in a dataset of programming instructions and solutions, you might implement

rules to verify that code samples are syntactically correct and follow specified style guidelines.

Rule-based filtering offers significant advantages in preparing instruction datasets. Its speed

and efficiency allow for rapid application to large volumes of data, making it highly scalable. The

consistency of rule application ensures uniform treatment of data, reducing human error and bias.

Furthermore, the explicit definition of filtering criteria provides transparency and interpretability,

facilitating easy understanding, auditing, and adjustment. The ability to automate rule-based

filtering reduces the need for manual intervention and enables continuous data quality monitoring.

However, rule-based filtering also has limitations that must be considered. Predefined rules may

lack the nuance required to capture the full complexity of language and context, potentially lead-

ing to the removal of valid but unusual samples. The typically binary nature of rules (pass/fail)

may not always align with the nuanced nature of language and instruction quality. Additionally,

as data patterns and quality standards evolve, rules need regular review and updates to remain

effective. There’s also a risk that poorly designed rules could inadvertently introduce or amplify

biases in the dataset.

Supervised Fine-Tuning184

Data deduplication
Dataset diversity is fundamental to training models that can generalize well to new, unseen data.

When a dataset contains duplicates or near-duplicates, it can lead to several issues:

• Overfitting: Models may memorize specific examples rather than learning general patterns.

• Biased performance: Overrepresented data points may skew the model’s performance

towards certain types of inputs.

• Inefficient training: Redundant data can increase training time without providing addi-

tional valuable information.

• Inflated evaluation metrics: Duplicate data in test sets may lead to overly optimistic per-

formance estimates.

To deduplicate datasets, we distinguish between exact and fuzzy deduplication. Exact deduplica-

tion removes identical samples through a straightforward process involving data normalization,

hash generation, and duplicate removal. Data normalization standardizes the format of entries,

such as converting text to lowercase. Hash generation then creates unique hashes for each entry

using algorithms like MD5 or SHA-256. These hashes are compared to find matches, and dupli-

cates are removed, leaving only one instance of each. While effective for identical entries, exact

deduplication does not detect near-duplicates or semantically similar content, requiring more

advanced techniques for those cases.

The most popular approach to fuzzy deduplication is MinHash deduplication. Compared to

other fuzzy techniques, it maintains high accuracy while significantly reducing computational

complexity. MinHash operates by generating compact representations, or signatures, for each

data item. These signatures serve as fingerprints that capture the essence of the data while dras-

tically reducing its dimensionality. In practice, MinHash transforms data items (such as text

documents) into sets of shingles, applies multiple hash functions to these sets, and selects the

minimum hash values to form signature vectors. These signatures can then be compared using

similarity measures like Jaccard similarity to efficiently identify near-duplicates.

In addition to exact and fuzzy deduplication, semantic similarity takes a different approach by

focusing on the meaning of text for deduplication. This method involves converting words or

entire samples into vector representations using various natural language processing techniques.

Word embedding models such as Word2Vec, GloVe, and FastText transform individual words into

dense vectors, capturing semantic relationships.

Chapter 5 185

For more context-aware representations, language models like BERT, sentence transformers, or

cross-encoders can generate embeddings for entire sentences or documents. Once these vec-

tor representations are obtained, deduplication can be performed by comparing the similarity

between vectors. Common similarity measures include cosine similarity or Euclidean distance.

Samples with high similarity scores above a predefined threshold can be considered duplicates.

For large datasets, clustering techniques may be applied to group similar vectors. Methods like

K-means, DBSCAN, or hierarchical clustering can efficiently organize the vector space, allowing

for the identification of clusters that represent semantically similar content. Within each cluster,

a representative sample can be retained while others are marked as duplicates.

Data decontamination
Data decontamination is the process of ensuring that the training dataset does not contain samples

that are identical or highly similar to those in the evaluation or test sets. This step is important

for ensuring the quality of the model evaluation and preventing overfitting or memorization of

test data.

Data decontamination uses techniques from data deduplication. Exact matching can be used to

remove any training samples that are identical to those in the evaluation sets. This can be done

using hash functions or direct string comparisons. Next, we can also use near-duplicate detection

methods to identify and remove training samples that are very similar to evaluation samples,

even if they are not exactly the same. This often involves techniques like MinHash or computing

similarity scores based on n-grams or embeddings.

Another aspect of data decontamination is filtering out samples that may have been derived from

the same source as evaluation data. This can involve checking for overlapping phrases, similar

sentence structures, or common metadata. Practitioners may also use provenance tracking (source

the data they use) to identify and exclude data from specific sources that are known to be used

in evaluation sets.

A simple way to perform data decontamination is to add your evaluation set to the

instruction dataset during the data deduplication stage. In this case, we want to

ensure that we only remove samples from the instruction dataset, which can be

implemented in different ways (only filtering out the first duplicate, recording the

indexes of the evaluation samples, etc.). Ideally, you can automatically add your

evaluation sets in the data deduplication stage to fully automate this process. This

is particularly efficient if you iterate over several versions of custom benchmarks.

Supervised Fine-Tuning186

Data quality evaluation
Data quality evaluation is a critical aspect of machine learning, particularly for LLMs. The process

involves assessing various characteristics of datasets, including accuracy, diversity, and complexity.

While some aspects like mathematical accuracy can be easily verified using tools such as Python

interpreters, evaluating subjective or open-ended content remains challenging.

Traditional methods of data quality assessment include human annotation, which generally

provides high accuracy but is resource-intensive. To address scalability issues, machine learning

techniques have been developed to automate the evaluation process. These include using LLMs

as judges, reward models, and classifiers trained for quality prediction.

The LLM-as-a-judge strategy involves prompting LLMs to evaluate the quality of each sample.

This approach has become popular due to its flexibility and ease of use, though it does present

some challenges. Different LLMs have different levels of performance across tasks, and their

evaluations often align more closely with those of non-experts. With domain-specific datasets,

you might want to use domain-specific models instead of better, general-purpose LLMs. Com-

parative assessment methods (e.g., “Is answer A better than answer B?”) generally outperform

absolute scoring approaches (e.g., “Rate answer A between 1 and 4”), though both can be used

at scale with sufficient prompt engineering. We recommend iterating through different prompts

over a representative subset to manually verify the quality of the responses. Table 5.2 shows an

example of a custom prompt for a judge LLM.

Chapter 5 187

Instruction

You are a data quality evaluator. Your goal is to assess an instruction and its corresponding

answer, determining how effectively the answer addresses the given task.

In your evaluation, you will provide feedback detailing the strengths and weaknesses of the

answer, followed by a score on a scale of 1 to 4.

A score of 1 means that the answer is terrible and irrelevant to the instruction.

A score of 2 means that the answer is not helpful and misses important aspects of the

instruction.

A score of 3 means that the answer is helpful but could be improved in terms of relevance,

accuracy, and depth.

A score of 4 means that the answer is excellent and fully addresses the task.

Provide your evaluation as follows:

Feedback: (strengths and weaknesses you find relevant)

Score: (number between 1 and 4)

Table 5.2 – Example of LLM-as-a-judge prompt for data quality evaluation

LLM-as-a-judge is known to have several biases. First, it has a position bias in comparative scoring,

where the LLM judge favors the first answer. This can be addressed by randomizing the order of

answers A and B. In addition, like humans, LLM judges favor long answers. Length normaliza-

tion techniques can be applied to absolute scoring to mitigate this issue. Finally, LLM judges are

known to have intra-model favoritism, meaning that they prefer models from the same family

(GPT-4o with GPT-4 and GPT-4o mini, for example). This can be addressed by using several

models instead of a single one.

Supervised Fine-Tuning188

In general, to improve evaluation reliability, strategies such as using multiple LLMs as a jury

reduce bias and improve consistency. Leveraging a jury of smaller LLMs can also reduce costs

while increasing accuracy and mitigating intra-model favoritism. For specific applications like

chatbots, it’s advisable to aim for high agreement between LLM judges and human evaluators

(around 80%). Simple grading scales (with few-shot prompting) and task-specific benchmarks

are also recommended to ensure relevant and interpretable evaluations.

Reward models are another way to re-purpose LLMs for data quality evaluation. The term “reward

model” comes from Reinforcement Learning from Human Feedback (RLHF, see Chapter 6). They

can be broadly defined as models that take an instruction and answer pair and return a score as

output. Generally, reward models are created by adding a linear head on top of a decoder-only

architecture like Gemma or Llama. They are then trained for this specific purpose, using either

reinforcement learning or traditional fine-tuning. Figure 5.3 shows ArmoRM-Llama3-8B-v0.1’s

architecture, which adds regression and gating layers on top of a Llama 3 8B model. This model

outputs multiple scores to target specific dimensions, such as helpfulness, correctness, coherence,

complexity, and verbosity. This allows for a more fine-grained approach to data quality evaluation.

Figure 5.3 – Architecture of RLHFlow/ArmoRM-Llama3-8B-v0.1, based on Llama 3 (Source:
https://doi.org/10.48550/arXiv.2406.12845)

https://doi.org/10.48550/arXiv.2406.12845

Chapter 5 189

The Allen Institute for AI’s RewardBench leaderboard, hosted on Hugging Face (allenai/re-

ward-bench), is a good resource for comparing different reward models. It combines various

types of reward models (generative, classifiers, DPO, etc.) and evaluates them on a curated set

of chosen and rejected answers for each instruction. While this task is not directly related to in-

struction data quality, it is a good resource for finding models capable of differentiating between

good and bad answers.

Classifiers or encoder-only models can be trained to perform data quality evaluation. A good

example is HuggingFaceFW/fineweb-edu-classifier, a classifier designed to judge the educational

value of web pages. This model was designed as a quality filter for pretraining data but a similar

approach can be taken to evaluate instruction samples at scale. In practice, fineweb-edu-classifier

adds a classification head to an embedding model (Snowflake/snowflake-arctic-embed-m) and

trains it for 20 epochs on 450,000 samples that are annotated by Llama 3 70B Instruct.

This approach relies on encoder-only models, which are both smaller and better suited to classi-

fication tasks. Thanks to their low number of parameters, these models are faster to run and can

scale to millions of samples. However, they are not as accurate as bigger models, particularly for

complex reasoning tasks where they lack the ability to capture nuances. At smaller scale, encod-

er-only models are still valuable to filter out outliers or as part of an automated data pipeline,

which requires faster processing.

Data exploration
Data exploration is a continuous process that requires practitioners to become familiar with the

training data. It involves both manual inspection and automated analysis, each playing a crucial

role in understanding the dataset’s characteristics, strengths, and potential shortcomings.

Manual dataset exploration, though time-consuming, is an important step. It reveals errors and

inconsistencies that automated processes might miss, including formatting issues, data entry

mistakes, incoherent reasoning, and factual inaccuracies. This process provides qualitative insights

into the dataset’s content and style. To enhance efficiency, researchers can employ techniques

like stratified sampling (selecting diverse samples), systematic review (using a criteria checklist),

and collaborative review (involving multiple reviewers).

Supervised Fine-Tuning190

Figure 5.4 shows an example with Argilla, a collaborative platform for manual data quality eval-

uation and exploration.

Figure 5.4 – Argilla’s interface for collaborative data quality evaluation and exploration

Statistical analysis is a complementary technique that reveals vocabulary diversity, potential

biases, and concept representation. This process utilizes natural language processing libraries

like NLTK or spaCy for tokenization and analysis of large text volumes. Visualization tools such as

Matplotlib or Seaborn create histograms and word clouds, enabling intuitive pattern recognition.

These techniques provide insights into dataset composition, language breadth, and possible

cultural or contextual preferences, which can influence model outputs.

Topic clustering automatically groups similar documents or pieces of text together, revealing

underlying themes and patterns within the data. This process is especially important for under-

standing the content of large text corpora, identifying trends, and organizing information in a

meaningful way. It is often associated with data visualization, with figures that show clusters

of similar samples.

Let’s consider the task of building an instruction dataset about various programming languages.

You have collected a vast corpus of programming-related text from online forums, documentation,

and tutorials. First, topic clustering can help identify the distinct programming languages present

in the dataset (Python, JavaScript, etc.). Second, within each language cluster, you can further

identify sub-topics like error handling, data structures, and web frameworks. This allows a

balanced representation of each language and sub-topic in the corpus.

Chapter 5 191

This makes sure that each topic is correctly covered for each programming language.

Figure 5.5 – Representation of the historical TikTok dataset made with Nomic Atlas

Several tools are available for performing topic clustering, each with its own strengths and ap-

proaches. For example, Hugging Face’s text-clustering provides a simple pipeline with sentence

transformers for embedding text into vector space, UMAP for dimensionality reduction, and

DBSCAN for clustering. It also automatically labels clusters using an LLM and can output visu-

alizations. Nomic Atlas (see Figure 5.5), BunkaTopics, and Lilac are alternatives proposing similar

approaches with additional features.

Data generation
When the available instruction datasets are not sufficient, creating custom data becomes necessary.

This is particularly relevant for specialized applications where publicly available data is scarce.

Supervised Fine-Tuning192

Additionally, it serves as a method to augment underrepresented areas in a dataset, like insufficient

examples of JavaScript error-handling techniques in our previous example. While data can be

generated manually by individuals or through crowdsourcing, these approaches often incur sig-

nificant costs and time investments. Synthetic data generation using LLMs offers a more efficient

and scalable alternative. This method, when combined with well-designed prompt engineering,

can produce high-quality data at a much larger scale, effectively addressing the limitations of

manual data creation processes.

The process of synthetic data generation typically begins with the preparation of a set of carefully

designed prompts (sometimes called taxonomy). These serve as the foundation for generating

new, diverse examples. Five seed prompts used in the original Alpaca dataset can be seen in Table

5.3. The quality of synthetically generated data largely depends on the prompts and techniques

used in the generation process. Well-crafted prompts can guide the language model to produce

diverse, relevant, and high-quality instruction-response pairs. These prompts often include spe-

cific instructions, examples, and constraints to ensure the generated data aligns with the desired

format and content.

Seed instructions

• Is there anything I can eat for breakfast that doesn’t include eggs, yet includes protein,

and has roughly 700-1000 calories?

• What is the relation between the given pairs? Input: Night : Day :: Right : Left

• Generate a one-sentence description for each of the following people. Input: -Barack

Obama\n- Elon Musk\n- Taylor Swift

• Describe a situation in which the given stereotype can harm you. Input: All Asians are

smart!

• Generate an appropriate subjective title for the following email: Input: “Hi [person

name],\n\nI’m writing to ask you if you are happy to be a panelist in our workshop on

multimodality at CVPR. The workshop will be held on June 20, 2023. \n\nBest,\n[my

name]

Table 5.3 – Examples of seed prompts used in the original Alpaca dataset

Many synthetic data generation pipelines incorporate multiple steps to ensure data quality. This

may include generating an initial set of questions or instructions, followed by generating corre-

sponding answers or responses. Some systems also implement validation steps, where another

model or set of rules checks the generated pairs for accuracy, relevance, and adherence to spec-

ified criteria.

Chapter 5 193

An important aspect of synthetic data generation is the ability to control various attributes of the

generated data. This includes factors such as the complexity of the instructions, the length of the

responses, the tone or style of the language used, and the specific topics or domains covered. By

fine-tuning these parameters, it’s possible to create datasets that are tailored to specific training

objectives or that complement existing datasets in targeted ways. Structured generation using

libraries like Outlines can also be beneficial to adhere to specific formats.

Furthermore, synthetic data generation can be particularly useful for addressing biases and gaps

in existing datasets. By carefully designing the generation process, it’s possible to create more

balanced and inclusive datasets that represent a wider range of perspectives, topics, and language

styles. This can help in training LLMs that are more equitable and capable of serving diverse user

bases.

However, synthetic data generation also comes with challenges. One primary concern is the

potential for the generated data to inherit biases or errors from the underlying language model

used for generation. To mitigate this, many approaches incorporate human oversight, diverse

prompts, and additional filtering mechanisms to ensure the quality and appropriateness of the

generated data.

Another consideration is the need for the generated data to be sufficiently diverse and challeng-

ing. If the synthetic data is too simplistic or repetitive, it may not provide the level of complexity

required to train a robust LLM. Advanced techniques in synthetic data generation often focus on

creating varied and nuanced instruction-response pairs that can push the boundaries of what

the model can learn.

Data augmentation
In this context, data augmentation refers to the process of increasing both the quantity and

the quality of data samples. Unlike data generation, we use pre-existing instruction samples

as inputs in this stage. While it is possible to upsample pairs of instructions and answers, data

augmentation is mostly used to increase the quality of existing samples. In particular, it focuses

on two aspects: diversity and complexity.

A pioneering approach in this field is the Evol-Instruct method, which uses LLMs to evolve simple

instructions into more qualitative ones. The evolved instructions can then be used to generate

answers using powerful LLMs. This method employs two main strategies: in-depth and in-breadth

evolving.

Supervised Fine-Tuning194

In-depth evolving focuses on enhancing the complexity of existing instructions. It includes

several techniques:

• Constraints: It involves introducing additional requirements or limitations to the original

instruction, making it more challenging to fulfill.

• Deepening: Instead of shallow questions, it tries to find more deep questions, requiring

more comprehensive responses.

• Concretizing: It replaces general concepts with more specific ones, adding detail and

precision to the instruction.

• Increasing reasoning steps: It modifies instructions to explicitly request multiple-step

reasoning, promoting more complex problem-solving.

• Complicating input: This involves adding more complex data formats or structures to

the instruction, such as XML, JSON, or code snippets.

In-breadth evolving, on the other hand, aims to expand the diversity of the instruction dataset.

It generates entirely new instructions inspired by existing ones, focusing on creating more rare

or long-tailed examples within the same domain.

As an example of concrete implementation, in-depth evolving can be automated with the fol-

lowing prompt, from the AutoEvol paper. You simply need to provide the instruction you want

to evolve as input, and a powerful model like GPT-4o will return a more complex version of the

original instruction.

Chapter 5 195

You are an Instruction Rewriter that rewrites the given #Instruction# into a more complex

version. Please follow the steps below to rewrite the given “#Instruction#” into a more complex

version.

• Step 1: Please read the “#Instruction#” carefully and list all the possible methods

to make this instruction more complex (to make it a bit harder for well-known AI

assistants such as ChatGPT and GPT4 to handle). Please do not provide methods to

• change the language of the instruction!

• Step 2: Please create a comprehensive plan based on the #Methods List# generated

in Step 1 to make the #Instruction# more complex. The plan should include several

methods from the #Methods List#.

• Step 3: Please execute the plan step by step and provide the #Rewritten Instruction#.

#Rewritten Instruction# can only add 10 to 20 words into the “#Instruction#”.

• Step 4: Please carefully review the #Rewritten Instruction# and identify any

unreasonable parts. Ensure that the #Rewritten Instruction# is only a more complex

version of the #Instruction#. Just provide the #Finally Rewritten Instruction# without

anyexplanation.

Please reply strictly in the following format:

Step 1 #Methods List#:

Step 2 #Plan#:

Step 3 #Rewritten Instruction#:

Step 4 #Finally Rewritten Instruction#:

#Instruction#:

{Instruction}

Table 5.4 – Evol LLM prompt from the “Automatic Instruction Evolving for Large Language
Models” paper by Zeng et al. (2024)

The UltraFeedback method is another innovative approach, focused on answer quality instead

of instruction quality. It employs AI feedback to enhance the quality and diversity of model re-

sponses. Unlike Evol-Instruct, which evolves instructions, UltraFeedback uses a large pool of

diverse instructions and models to generate a wide range of responses.

Supervised Fine-Tuning196

It then leverages advanced language models like GPT-4 to provide detailed critiques and numerical

scores for these responses across multiple dimensions such as instruction-following, truthfulness,

honesty, and helpfulness.

Based on these ideas, you can create your own augmentation techniques to create a more challeng-

ing and diverse instruction dataset. By refining and evolving existing instructions and answers,

the resulting dataset can better train models to handle complex, multi-step tasks, and improve

their performance across a wider range of applications.

Creating our own instruction dataset
In this section, we will create our own instruction dataset based on the crawled data from Chapter

3. To create a high-quality instruction dataset, we need to address two main issues: the unstruc-

tured nature of our data and the limited number of articles we can crawl.

This unstructured nature comes from the fact that we are dealing with raw text (articles), instead

of pairs of instructions and answers. To address this issue, we will use an LLM to perform this

transformation. Specifically, we will employ a combination of backtranslation and rephrasing.

Backtranslation refers to the process of providing the expected answer as output and generat-

ing its corresponding instruction. However, using a chunk of text like a paragraph as an answer

might not always be appropriate. This is why we want to rephrase the raw text to ensure we’re

outputting properly formatted, high-quality answers. Additionally, we can ask the model to

follow the author’s writing style to stay close to the original paragraph. While this process in-

volves extensive prompt engineering, it can be automated and used at scale, as we will see in the

following implementation.

Our second issue regarding the limited number of samples is quite common in real-world use

cases. The number of articles we can retrieve is limited, which constrains the size of the instruction

dataset we are able to create. In this example, the more samples we have, the better the model

becomes at imitating the original authors. To address this problem, we will divide our articles

into chunks and generate three instruction-answer pairs for each chunk. This will multiply the

number of samples we create while maintaining diversity in the final dataset. For simplicity, we

will do it using OpenAI’s GPT-4o-mini model, but you can also use open-source models.

However, LLMs are not reliable when it comes to producing structured output. Even when given

specific templates or instructions, there’s no guarantee that the model will consistently adhere

to them. This inconsistency often necessitates additional string parsing to ensure the output

meets the desired format.

Chapter 5 197

To simplify this process and ensure properly structured results, we can employ structured gen-

eration techniques. Structured generation is an effective method to force an LLM to follow a

predefined template, such as JSON, pydantic classes, or regular expressions. In the following, we

will use OpenAI’s JSON mode feature, which provides a more robust way to return valid JSON

objects and reduce the need for extensive post-processing.

Based on this description, the following figure summarizes every step of the synthetic data pipe-

line we want to build.

Figure 5.6 – Synthetic data generation pipeline from raw text to instruction dataset

Let’s now implement it in Python. You can implement it as part of the LLMOps pipeline, or as a

standalone script:

1. We want to make sure that the following libraries are installed. The OpenAI library will

allow us to interact with a model to generate the instruction data, and datasets will format

it into a Hugging Face-compatible format. The tqdm library is installed to visualize the

progress during the data generation process.

openai==1.37.1

datasets==2.20.0

tqdm==4.66.4

Supervised Fine-Tuning198

2. We import all the required libraries as follows.

import concurrent.futures

import json

import random

import re

from concurrent.futures import ThreadPoolExecutor

from typing import List, Tuple

from datasets import Dataset

from openai import OpenAI

from pydantic import BaseModel, Field

from tqdm.auto import tqdm

3. The raw data we have is a JSON file. We create a Hugging Face dataset from this JSON file

by extracting specific fields from each article: id, content, platform, author_id, author

name, and link.

def load_articles_from_json(file_path: str) -> Dataset:

 with open(file_path, "r") as file:

 data = json.load(file)

 return Dataset.from_dict(

 {

 "id": [item["id"] for item in data["artifact_data"]],

 "content": [item["content"] for item in data["artifact_
data"]],

 "platform": [item["platform"] for item in
data["artifact_data"]],

 "author_id": [item["author_id"] for item in
data["artifact_data"]],

 "author_full_name": [item["author_full_name"] for item
in data["artifact_data"]],

 "link": [item["link"] for item in data["artifact_
data"]],

 }

)

Chapter 5 199

If we simply load our dataset as a pandas dataframe, it returns the following table.

id content platform author_id author_

full_

name

link

0 ab2f9e2e-

5459-4dd6-

97d6-

c291de4a7093

The Impor-

tance of Data

Pipelines in

the Era of...

medium e6b945ba-

6a9a-

4cde-b2bf-

0890af79732b

Alex Vesa https://medium.
com/decodingml/
t h e -
importance-o...

1 ccfe70f3-

d324-

40b6-ba38-

86e72786dcf4

Change Data

Capture:

Enabling

Event-Driven

Arc...

medium e6b945ba-

6a9a-

4cde-b2bf-

0890af79732b

Alex Vesa https://medium.
com/decodingml/
the-3nd-out-
of-1...

2 4c9f68ae-

ec8b-4534-

8ad5-

92372bf8bb37

The Role of

Feature Stores

in Fine-Tun-

ing LLMs...

medium e6b945ba-

6a9a-

4cde-b2bf-

0890af79732b

Alex Vesa https://medium.
com/decodingml/
the-role-of-
feat...

...

73 68795a4d-

26c2-43b7-

9900-

739a80b9b-

7dc

DML: 4 key

ideas you

must know to

train an LLM...

decod-

ingml.

substack.

com

1519b1d1-

1a5d-444c-

a880-926c9e-

b6539e

Paul

Iusztin

h t t p s : / /
d e c o d i n g m l .
substack.com/p/
dml-4-key-id...

74 d91b17c0-

05d8-

4838-bf61-

e2abc1573622

DML: How to

add real-time

monitoring &

metrics...

decod-

ingml.

substack.

com

1519b1d1-

1a5d-444c-

a880-926c9e-

b6539e

Paul

Iusztin

h t t p s : / /
d e c o d i n g m l .
substack.com/p/
dml-how-to-a...

75 dcf55b28-

2814-

4480-a18b-

a77d01d44f5f

DML: Top 6

ML Platform

Features You

Must Know ...

decod-

ingml.

substack.

com

1519b1d1-

1a5d-444c-

a880-926c9e-

b6539e

Paul

Iusztin

h t t p s : / /
d e c o d i n g m l .
substack.com/p/
dml-top-6-ml...

4. If we inspect the content of some articles a little further, we realize that some of them

have special characters and redundant whitespaces. We can clean this with a simple regex.

First, we use [^\w\s.,!?'] to remove non-alphanumeric characters except for apostro-

phes, periods, commas, exclamation marks, and question marks. Then, we use \s+ to

replace multiple consecutive whitespace characters with a single space.

https://medium.com/decodingml/the-importance-o...
https://medium.com/decodingml/the-importance-o...
https://medium.com/decodingml/the-importance-o...
https://medium.com/decodingml/the-importance-o...
https://medium.com/decodingml/the-3nd-out-of-1...
https://medium.com/decodingml/the-3nd-out-of-1...
https://medium.com/decodingml/the-3nd-out-of-1...
https://medium.com/decodingml/the-3nd-out-of-1...
https://medium.com/decodingml/the-role-of-feat...
https://medium.com/decodingml/the-role-of-feat...
https://medium.com/decodingml/the-role-of-feat...
https://medium.com/decodingml/the-role-of-feat...
https://decodingml.substack.com/p/dml-4-key-id...
https://decodingml.substack.com/p/dml-4-key-id...
https://decodingml.substack.com/p/dml-4-key-id...
https://decodingml.substack.com/p/dml-4-key-id...
https://decodingml.substack.com/p/dml-top-6-ml...
https://decodingml.substack.com/p/dml-top-6-ml...
https://decodingml.substack.com/p/dml-top-6-ml...
https://decodingml.substack.com/p/dml-top-6-ml...

Supervised Fine-Tuning200

Finally, we implement strip() to remove any leading or trailing whitespace.

def clean_text(text):

 text = re.sub(r"[^\w\s.,!?']", " ", text)

 text = re.sub(r"\s+", " ", text)

 return text.strip()

5. Now that we can load our articles, we need to chunk them before turning them into pairs

of instructions and answers. Ideally, you would want to use headlines or paragraphs to

produce semantically meaningful chunking.

However, in our example, like in the real world, raw data tends to be messy. Due to im-

proper formatting, we cannot extract paragraphs or headlines for every article in our raw

dataset. Instead, we will extract sentences using a regex to get chunks between 1,000

and 2,000 characters. This number can be optimized depending on the density of the

information contained in the text.

The extract_substrings function processes each article in the dataset by first cleaning the

text and then using a regex to split it into sentences. It then builds chunks of text by con-

catenating these sentences until each chunk is between 1,000 and 2,000 characters long.

def extract_substrings(dataset: Dataset, min_length: int = 1000,
max_length: int = 2000) -> List[str]:

 extracts = []

 sentence_pattern = r"(?<!\w\.\w.)(?<![A-Z][a-z]\.)
(?<=\.|\?|\!)\s"

 for article in dataset["content"]:

 cleaned_article = clean_text(article)

 sentences = re.split(sentence_pattern, cleaned_article)

 current_chunk = ""

 for sentence in sentences:

 sentence = sentence.strip()

 if not sentence:

 continue

 if len(current_chunk) + len(sentence) <= max_length:

 current_chunk += sentence + " "

 else:

Chapter 5 201

 if len(current_chunk) >= min_length:

 extracts.append(current_chunk.strip())

 current_chunk = sentence + " "

 if len(current_chunk) >= min_length:

 extracts.append(current_chunk.strip())

 return extracts

6. Next, we want to create instruction-answer pairs from the extracted chunks of text. To

manage these pairs effectively, we introduce the InstructionAnswerSet class. This class

allows us to create instances directly from JSON strings, which is useful when parsing the

output from the OpenAI API.

class InstructionAnswerSet:

 def __init__(self, pairs: List[Tuple[str, str]]):

 self.pairs = pairs

 @classmethod

 def from_json(cls, json_str: str) -> 'InstructionAnswerSet':

 data = json.loads(json_str)

 pairs = [(pair['instruction'], pair['answer'])

 for pair in data['instruction_answer_pairs']]

 return cls(pairs)

 def __iter__(self):

 return iter(self.pairs)

7. Now that we have a set of extracts from the articles with a reasonable length, we can use

an LLM to transform them into pairs of instructions and answers. Note that this step is

model-agnostic and can be implemented with any open-source or closed-source model.

Because this output is grounded in the context we provide, it doesn’t require complex

reasoning or high-performing models.

For convenience, we will use GPT-4o mini in this example. This choice is motivated by the

low cost and good performance of this model. Prompt engineering is the most important

aspect of this data transformation stage and requires several iterations to produce the

expected outputs. We recommend starting with simple prompts and adding complexity

when required to be more accurate, modify the style, or output multiple responses.

Supervised Fine-Tuning202

In our example, we want to create instructions like “Write a paragraph about X topic” and

corresponding answers that are factual and imitate the writer’s style. To implement this,

we need to provide an extract that will ground the model’s responses. For efficiency, we

also choose to generate five instruction-answer pairs for each extract. Here’s the beginning

of our function for instruction generation, including our prompt.

def generate_instruction_answer_pairs(

 extract: str, client: OpenAI

) -> List[Tuple[str, str]]:

 prompt = f"""Based on the following extract, generate five
instruction-answer pairs. Each instruction \

must ask to write about a specific topic contained in the context.
each answer \

must provide a relevant paragraph based on the information found in
the \

context. Only use concepts from the context to generate the
instructions. \

Instructions must never explicitly mention a context, a system, a
course, or an extract. \

Instructions must be self-contained and general. \

Answers must imitate the writing style of the context. \

Example instruction: Explain the concept of an LLM Twin. \

Example answer: An LLM Twin is essentially an AI character that
mimics your writing style, personality, and voice. \

It's designed to write just like you by incorporating these elements
into a language model. \

The idea is to create a digital replica of your writing habits using
advanced AI techniques. \

Provide your response in JSON format with the following structure:

{{

 "instruction_answer_pairs": [

 {{"instruction": "...", "answer": "..."}},

 ...

]

}}

Extract:

{extract}

"""

Chapter 5 203

8. In addition to the user prompt, we can also specify a system prompt to guide the mod-

el into generating the expected instructions. Here, we repeat our high-level task in the

system prompt.

The concatenation of the system and user prompts is fed to the OpenAI API, using the GPT-

4o mini model in JSON mode and a maximum of 1,200 tokens in the answer. We also use a

standard temperature of 0.7 to encourage diverse responses. The generated text is directly

parsed using the InstructionAnswerSet class to return pairs of instructions and answers.

 completion = client.chat.completions.create(

 model="gpt-4o-mini",

 messages=[

 {

 "role": "system", "content": "You are a helpful
assistant who \

 generates instruction-answer pairs based on the given
context. \

 Provide your response in JSON format.",

 },

 {"role": "user", "content": prompt},

],

 response_format={"type": "json_object"},

 max_tokens=1200,

 temperature=0.7,

)

 # Parse the structured output

 result = InstructionAnswerSet.from_json(completion.choices[0].
message.content)

 # Convert to list of tuples

 return result.pairs

9. Let’s create a main function to automate the process. It extracts substrings from the input

dataset, then uses concurrent processing via Python’s ThreadPoolExecutor to efficiently

generate instruction-answer pairs for each extract.

Supervised Fine-Tuning204

We use a default max_workers value of 4 because higher values tend to exceed OpenAI’s

rate limits, potentially causing API request failures or throttling.

def create_instruction_dataset(

 dataset: Dataset, client: OpenAI, num_workers: int = 4

) -> Dataset:

 extracts = extract_substrings(dataset)

 instruction_answer_pairs = []

 with concurrent.futures.ThreadPoolExecutor(max_workers=num_
workers) as executor:

 futures = [executor.submit(generate_instruction_answer_
pairs, extract, client)

 for extract in extracts

]

 for future in tqdm(concurrent.futures.as_completed(futures),
total=len(futures)

):

 instruction_answer_pairs.extend(future.result())

 instructions, answers = zip(*instruction_answer_pairs)

 return Dataset.from_dict(

 {"instruction": list(instructions), "output": list(answers)}

)

10. We can create our instruction dataset by calling this function. Running it over the raw

data with GPT-4o mini costs less than 0.5$.

11. We can now create a main function to orchestrate the entire pipeline. It loads the raw

data, creates the instruction dataset, splits it into training and testing sets, and pushes

the result to the Hugging Face Hub.

def main(dataset_id: str) -> Dataset:

 client = OpenAI()

 # 1. Load the raw data

 raw_dataset = load_articles_from_json("cleaned_documents.json")

 print("Raw dataset:")

 print(raw_dataset.to_pandas())

 # 2. Create instructiondataset

Chapter 5 205

instruction_dataset = create_instruction_dataset(raw_dataset,
client)

 print("Instruction dataset:")

 print(instruction_dataset.to_pandas())

 # 3. Train/test split and export

 filtered_dataset = instruction_dataset.train_test_split(test_
size=0.1)

 filtered_dataset.push_to_hub("mlabonne/llmtwin")

 return filtered_dataset

Dataset({

 features: ['instruction', 'output'],

 num_rows: 3335

})

We obtained 3,335 pairs with this process. You can find our version of the dataset at https://

huggingface.co/datasets/mlabonne/llmtwin. The Hugging Face Hub provides a convenient

dataset viewer (see Figure 5.7) to explore instructions and answers and make sure that there are

no obvious mistakes in these samples. Due to the small size of the dataset, there is no need for

comprehensive exploration and topic clustering.

Figure 5.7 – The mlabonne/llmtwin instruction dataset on the Hugging Face Hub

https://huggingface.co/datasets/mlabonne/llmtwin
https://huggingface.co/datasets/mlabonne/llmtwin

Supervised Fine-Tuning206

As seen in the previous section, we could refine this instruction dataset by increasing the diver-

sity and complexity of our samples. More advanced prompt engineering could also increase the

quality of the generated data by providing examples of the expected results, for instance. Finally,

quality evaluation could help filter out low-quality samples by reviewing them individually. For

conciseness and simplicity, we will keep a straightforward approach for this instruction dataset

and explore more advanced methods in Chapter 6 when we create a preference dataset.

In the next section, we will introduce SFT techniques, as well as related concepts.

Exploring SFT and its techniques
SFT consists of re-training pre-trained models on a smaller dataset composed of pairs of instruc-

tions and answers. The goal of SFT is to turn a base model, which can only perform next-token

prediction, into a useful assistant, capable of answering questions and following instructions.

SFT can also be used to improve the general performance of the base model (general-purpose

SFT), instill new knowledge (e.g., new languages, domains, etc.), focus on specific tasks, adopt

a particular voice, and so on.

In this section, we will discuss when to use fine-tuning and explore related concepts with storage

formats and chat templates. Finally, we will introduce three popular ways of implementing SFT:

full-finetuning, Low-Rank Adaptation (LoRA) and Quantization-aware Low-Rank Adaptation

(QLoRA).

When to fine-tune
In most scenarios, it is recommended to start with prompt engineering instead of directly fine-tun-

ing models. Prompt engineering can be used with either open-weight or closed-source models. By

using techniques like few-shot prompting or retrieval augmented generation (RAG), numerous

problems can efficiently be tackled without SFT. Prompt engineering also allows us to build a

robust evaluation pipeline, which measures metrics like accuracy, but also cost and latency. If

these results do not match the requirements, we can explore the possibility of creating an in-

struction dataset, as illustrated in the previous section. If enough data is available, fine-tuning

becomes an option.

Chapter 5 207

Figure 5.8 – Basic flowchart to determine when fine-tuning is an option on a technical level

Beyond these technical considerations, SFT answers common needs in terms of control (“know

your data”) and customizability (the fine-tuned model is unique). Instead of building applications

around a chatbot, fine-tuning allows developers to create more diverse interactions with LLMs,

like tool analytics, moderation, and additional context. Note that if we focus on open-weight

models in this book, several LLM providers offer automated fine-tuning services. While they don’t

offer the same level of control and customizability as managing your own fine-tuning pipeline, it

can be an interesting trade-off in specific scenarios (e.g., limited resources in terms of machine

learning engineering).

Despite these advantages, fine-tuning also has limitations. It is generally understood that SFT

leverages pre-existing knowledge in the base model’s weights and refocuses the parameters for

a specific purpose. This has several implications. First of all, knowledge that is too distant from

what has been learned in the pre-training set (such as an unknown or rare language) can be

difficult to learn effectively.

Even worse, a study showed that fine-tuning a model on new knowledge could result in more

frequent hallucinations. Depending on the SFT technique that is used, we’re also at risk of eras-

ing knowledge that was present in the base model (a common issue referred to as “catastrophic

forgetting”).

Supervised Fine-Tuning208

Instruction dataset formats
Instruction datasets are stored in a particular format to organize instructions and answers. Typi-

cally, each sample in the dataset can be represented as a Python dictionary, where keys are prompt

types like system, instruction, output, and values corresponding to the actual text. The three

most standard formats are Alpaca, ShareGPT, and OpenAI. The following table shows how these

data formats are generally organized.

Name JSONL format

Alpaca {“instruction”: “...”, “input”: “...”, “output”: “...”}

{“instruction”: “...”, “output”: “...”}

ShareGPT {“conversations”: [{“from”: “...”, “value”: “...”}, …]}

OpenAI {“conversations”: [{“role”: “...”, “content”: “...”}, …]}

OASST {“INSTRUCTION”: “...”, “RESPONSE”: “...”}

Raw text {“text”: “...”}

Table 5.5 – Examples of instruction data storage format

Note that for Alpaca, the “input" key is optional. The content of the “input" key is only appended

to the content of the “instruction" key when it exists. We also added the “raw text" data format

to show that SFT is not inherently different from pre-training. If you choose to re-train a model

on raw text, this is a type of fine-tuning generally called “continual pre-training.”

The dataset we created in the previous section has two columns (“instruction" and “output")

and corresponds to the Alpaca format. Alpaca is sufficient for single-turn instructions and an-

swers, which means it is limited to one instruction and one answer. When you want to process

conversations (multiple instructions and answers), formats like ShareGPT or OpenAI are a better

fit. By storing each message as a dictionary in a list, they can represent an arbitrarily long con-

versation in each sample.

The choice of single-turn and multi-turn conversations directly impacts the storage type and

depends on the end use case.

Chat templates
Once the instruction-answer pairs are parsed from the dataset format, we want to structure them

in a chat template. Chat templates offer a unified way to present the instructions and answers

to the model.

Chapter 5 209

In general, they also include special tokens to identify the beginning and the end of a message, or

who is the author of the message. Since base models are not designed to follow instructions, they

don’t have a chat template. This means that you can choose any template when you fine-tune

a based model. If you want to fine-tune an instruct model (not recommended), you need to use

the same template or it might degrade your performance.

Like instruction dataset formats, there are different chat templates: ChatML, Llama 3, Mistral, and

many others. In the open-source community, the ChatML template (originally from OpenAI) is a

popular option. It simply adds two special tokens (<|im_start|> and <|im_end|>) to indicate

who is speaking. To give you an example, here is what we obtain when we apply the ChatML

template to the instruction-answer pair shown in Table 5.1:

<|im_start|>system

You are a helpful assistant, who always provide explanation. Think like you
are answering to a five year old.<|im_end|>

<|im_start|>user

Concepts: building, shop, town

Write a sentence that includes all these words.<|im_end|>

<|im_start|>assistant

In our little town, there is a shop inside a big building where people go
to buy their favorite toys and candies.<|im_end|>

Table 5.6 – Sample from Table 5.1 with the ChatML chat template

As you can see, we still have three distinct parts: system, user, and assistant. Each part starts with

the <|im_start|> token and ends with <|im_end|>. The current speaker is identified by a string

(like “system") instead of a special token. This is the exact string that is tokenized and used as

input by the model during fine-tuning.

However, during inference, we can’t provide the expected answer. In this case, we provide the

system and user part as shown in Figure 5.6, and prompt the model to answer by adding <|im_

start|>assistant\n.

Because the model has been fine-tuned with this template, it understands that the next tokens

should be an answer relevant to the user instruction and guided by the system prompt. This is

how fine-tuned models acquire instruction-following capabilities.

Supervised Fine-Tuning210

A common issue with chat templates is that every single whitespace and line break is extremely

important. Adding or removing any character would result in a wrong tokenization, which neg-

atively impacts the performance of the model. For this reason, it is recommended to use reliable

templates like Jinja, as implemented in the Transformers library. Table 5.7 shows a few examples

of such templates, including Alpaca, which is both the name of an instruction dataset format

and a chat template.

Name Jinja template

Alpaca ### Instruction: What is the capital of France?

Response: The capital of France is Paris.<EOS>

ChatML <|im_start|>user

What is the capital of France?<|im_end|>

<|im_start|>assistant

The capital of France is Paris.<|im_end|>

Llama 3 <|begin_of_text|><|start_header_id|>user<|end_header_id|>

What is the capital of France?<|eot_id|><|start_header_
id|>assistant<|end_header_id|>

The capital of France is Paris.<|eot_id|>

Phi-3 <|user|>

What is the capital of France?<|end|>

<|assistant|>

The capital of France is Paris.<|end|>

Gemma <bos><start_of_turn>user

What is the capital of France?<end_of_turn>

<start_of_turn>model

The capital of France is Paris.<end_of_turn>

Table 5.7 – Example of common chat templates

Jinja implements loops and conditions, which allow the same template to be used for training

and inference (add_generation_prompt).

Chapter 5 211

Parameter-efficient fine-tuning techniques
While many techniques exist in the literature, SFT has converged on three main techniques: full

fine-tuning, LoRA, and QLoRA. We will introduce each technique individually, and weigh their

pros and cons depending on your use cases.

Figure 5.9 – Architectural differences of the three main SFT techniques at the module level

Full fine-tuning
Full fine-tuning refers to the most straightforward SFT technique, consisting of re-training every

parameter in the base model. Like pre-training, SFT uses next-token prediction as its training

objective. This means that the previously discussed structure of the dataset can be seen as the

main difference between continual pre-training and full fine-tuning.

This method often provides the best results but requires significant computational resources.

Memory usage depends on several factors, including model size, training techniques, and op-

timization methods. At its simplest, using a single-GPU setting, the memory required can be

estimated using the following formula:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

For a basic setup using 32-bit floating point (fp32) precision, we can estimate:

• Parameters: Learnable weights and biases within a neural network. In a large language

model, these are typically the weights in the attention mechanisms, feed-forward layers,

and embedding layers. Cost: 4 bytes/parameter (FP32) or 2 bytes/parameter (FP16/BF16).

• Gradients: Gradients are the partial derivatives of the loss function with respect to each

model parameter. They indicate how much each parameter should be adjusted to minimize

the loss. During training, gradients are computed for each parameter through backprop-

agation and are used to update the model parameters. Cost: 4 bytes/parameter.

Supervised Fine-Tuning212

• Optimizer states: Optimizer states are additional values maintained by optimization

algorithms like Adam or AdamW. These typically include running averages of past gra-

dients and past squared gradients for each parameter. They help in adapting the learning

rate for each parameter and navigating the loss landscape more effectively. For instance,

Adam maintains two additional values (momentum and variance) per parameter. Cost:

8 bytes/parameter (for Adam optimizer).

• Activations: Activations are the intermediate outputs of each layer in the neural network

during the forward pass. For transformer-based models, this includes the outputs of

attention mechanisms, feed-forward layers, and normalization layers. Activations need

to be kept in memory during the forward pass to compute gradients in the backward

pass, unless techniques like activation checkpointing are used. Cost: variable, but often

negligible for small batch sizes.

This gives us a baseline of 16 bytes per parameter. This translates into 112 GB of VRAM for a 7

B model and 1,120 GB for a 70 B model. However, this is often an underestimate, as it doesn’t

account for additional memory needed for activations, temporary buffers, and overhead from

various training techniques.

Several techniques can be employed to reduce memory usage during LLM fine-tuning. Model

parallelism spreads the workload across multiple GPUs, though it adds some overhead. Gradient

accumulation enables larger effective batch sizes without proportional memory increase. Mem-

ory-efficient optimizers like 8-bit Adam can reduce the footprint of optimizer states. Activation

checkpointing trades computation for memory by recalculating certain activations. When com-

bined, these techniques can significantly lower memory usage. For instance, using mixed precision

with model parallelism might reduce costs to around 14-15 bytes per parameter, compared to the

16-byte baseline. However, memory requirements remain substantial for large models even with

these optimizations.

In addition, full fine-tuning directly modifies the pre-training weights, which makes it destructive

by nature. If training doesn’t behave as expected, it might erase previous knowledge and skills – a

phenomenon referred to as “catastrophic forgetting.” The same phenomenon can happen with

continual pre-training, which generally makes these techniques more difficult to use. Due to this

additional complexity and its high computational requirements, parameter-efficient techniques

are often preferred to full fine-tuning to create task and domain-specific models.

Chapter 5 213

LoRA
LoRA is a parameter-efficient technique for fine-tuning LLMs. Developed to address the compu-

tational challenges associated with adapting massive neural networks, LoRA has quickly become

a cornerstone technique in LLM fine-tuning.

The primary purpose of LoRA is to enable the fine-tuning of LLMs with significantly reduced

computational resources. This is achieved by introducing trainable low-rank matrices that mod-

ify the behavior of the model without changing its original parameters. The key advantages of

LoRA include:

• Dramatically reduced memory usage during training

• Faster fine-tuning process

• Preservation of pre-trained model weights (non-destructive)

• Ability to switch between tasks efficiently by swapping LoRA weights

These benefits have made LoRA particularly attractive for researchers and developers working

with limited computational resources, effectively democratizing the process of LLM fine-tuning.

At its core, LoRA employs a low-rank decomposition technique to update model weights efficiently.

Instead of directly modifying the original weight matrix 𝑊𝑊 , LoRA introduces two smaller matrices, 𝐴𝐴 and 𝐵𝐵 , which together form a low-rank update to 𝑊𝑊 .

Figure 5.10 – LoRA adds the two trainable matrices 𝐴𝐴 and 𝐵𝐵 and keeps the pre-trained weights 𝑊𝑊 frozen

Supervised Fine-Tuning214

Mathematically, this can be represented as:𝑊𝑊𝑊 𝑊 𝑊𝑊 𝑊 𝐵𝐵𝐵𝐵

Here, 𝑊𝑊 is the original weight matrix, 𝐵𝐵 and 𝐴𝐴 are the LoRA matrices, and 𝑊𝑊𝑊 is the effective weight

matrix used during inference.

The dimensions of matrices A and B are chosen such that their product has the same shape as 𝑊𝑊 , but with a much lower rank. This rank, typically denoted as 𝑟𝑟 , is a crucial hyperparameter

in LoRA. During training, the original weights 𝑊𝑊 remain frozen, while only 𝐴𝐴 and 𝐵𝐵 are updated.

This approach significantly reduces the number of trainable parameters, leading to substantial

memory savings and faster training times.

To implement LoRA effectively, we need to select the correct hyperparameters and target modules.

LoRA comes with two hyperparameters:

• Rank (𝑟𝑟): Determines the size of the LoRA matrices. A common starting point is 𝑟𝑟 𝑟 𝑟 , but

values up to 256 have shown good results in some cases. Larger ranks may capture more

diverse tasks but could lead to overfitting.

• Alpha (𝛼𝛼): A scaling factor applied to the LoRA update. In practice, we update the frozen

weights 𝑊𝑊 by a factor of 𝛼𝛼𝛼𝛼𝛼 . This is why a common heuristic is to set 𝛼𝛼 to twice the

value of 𝑟𝑟 , effectively applying a scaling factor of 2 to the LoRA update. You can experiment

with different ratios in case of overfitting or underfitting.

In addition, it is possible to add a drop-out layer to prevent overfitting. The dropout rate is usually

set between 0 and 0.1 as an optional regularization factor, which slightly decreases training speed.

LoRA can be applied to various parts of the model architecture. Initially, LoRA was primarily fo-

cused on modifying the attention mechanism, specifically the query (Q) and value (V) matrices

in transformer layers. However, experiments have demonstrated significant benefits in extending

LoRA’s application to other key components of the model. These additional target modules include:

• Key (K) matrices in attention layers

• Output projection layers (often denoted as O) in attention mechanisms

• Feed-forward or Multi-Layer Perceptron (MLP) blocks between attention layers

• Linear output layers

However, it’s important to note that increasing the number of LoRA-adapted modules also in-

creases the number of trainable parameters and, consequently, the memory requirements.

Chapter 5 215

Using LoRA, it’s possible to fine-tune a 7B parameter model on a single GPU with as little as 14-

18 GB of VRAM, depending on the specific configuration. This is a dramatic reduction compared

to full fine-tuning, which would typically require multiple high-end GPUs. In terms of trainable

parameters, LoRA drastically reduces the number compared to full fine-tuning. For example, even

when targeting every module with a rank of 16, a Llama 3 8 B model only has 42 million trainable

LoRA parameters out of 8 billion parameters, which is 0.5196% of the model’s parameters.

In terms of quality, LoRA can also achieve comparable or sometimes better results than full-fine-

tuning. Multiple sets of LoRA weights can be combined for different tasks or domains, allowing

flexible deployment and task switching without retraining. Different projects are specialized

in multiple-LoRA serving, such as LoRAX. It’s also a feature supported by Hugging Face’s Text

Generation Inference (TGI) and Nvidia Inference Microservices (NIM).

QLoRA
Introduced by Dettmers et al., QLoRA is a method for fine-tuning LLMs that addresses the chal-

lenges of high computational costs. By combining quantization techniques with LoRA, QLoRA

allows developers to fine-tune models on relatively small, widely available GPUs.

The core of QLoRA’s approach involves quantizing the base model parameters to a custom 4-bit

NormalFloat (NF4) data type, which significantly reduces memory usage. Like LoRA, instead

of updating all model parameters during fine-tuning, QLoRA introduces small, trainable low-

rank matrices (adapters) to specific layers of the model. Only these adapters are updated during

training, while the original model weights remain unchanged. To further reduce memory usage,

QLoRA employs double quantization, which quantizes the quantization constants themselves.

Additionally, it uses paged optimizers to manage memory spikes during training by leveraging

Nvidia’s unified memory feature.

QLoRA provides significant memory savings compared to LoRA, reducing peak GPU memory

usage by up to 75%. For example, for a 7B model, QLoRA reduces peak memory usage from 14 GB

to 9.1 GB during initialization, a 35% reduction. During fine-tuning, the memory savings increase

to 40%, from 15.6 GB for LoRA to 9.3 GB for QLoRA. However, this memory efficiency comes at

the cost of increased training time, with QLoRA being about 30% slower than LoRA. In terms of

model performance, QLoRA shows only minor differences compared to LoRA.

In summary, QLoRA is particularly beneficial when memory constraints are the primary concern,

such as when working with very large models or on hardware with limited GPU memory. However,

if training speed is crucial and sufficient memory is available, LoRA might be the preferred choice.

Supervised Fine-Tuning216

The decision between QLoRA and LoRA should be based on the specific requirements of the

project, available hardware, and the need to balance memory usage, training speed, and model

performance.

Training parameters
When fine-tuning LLMs, several hyperparameters guide the training process and significantly

impact the model’s convergence, generalization, and overall effectiveness.

Learning rate and scheduler
The learning rate is the most important hyperparameter. It controls how much the model’s pa-

rameters are updated during training. It typically ranges from very small values like 1e-6 to larger

values like 1e-3. A common starting point for transformer models is often around 1e-5. If the

learning rate is too low, training progresses slowly and may get stuck in suboptimal solutions.

Conversely, if it’s too high, training can become unstable or diverge, leading to poor performance.

It’s often beneficial to experiment with different learning rates to find the optimal value for your

specific task and model.

The learning rate scheduler adjusts the learning rate throughout the training process. It typically

starts with a higher learning rate to enable rapid initial progress, then gradually decreases it in

later stages to fine-tune the model more precisely. The two most common types of schedulers are

linear and cosine. A linear scheduler decreases the learning rate steadily over time, while a cosine

scheduler follows a cosine curve, decreasing more slowly at first and then more rapidly toward

the end of training. For example, you might start with a learning rate of 3e-4 and decrease it to

1e-7 over the course of training. The specific values and decay schedule depend on your model

and dataset, but a common approach is to use a warmup period (e.g., 5% of total steps) where the

learning rate increases from 0 to the initial value, followed by a decay period for the remaining 95%

of steps. This approach helps stabilize early training and allows for more refined updates as the

model converges. In general, linear and cosine schedulers provide the same level of performance.

Batch size
The batch size determines the number of samples processed before the model’s weights are up-

dated. Typical batch sizes for LLM fine-tuning range from 1 to 32, with common values being 1, 2,

4, 8, or 16. Larger batch sizes generally lead to more stable gradient estimates and can improve

training speed, as they provide a better approximation of the true gradient of the entire dataset.

Chapter 5 217

However, they also require more memory, which can be a limiting factor on GPUs with less VRAM.

For instance, a batch size of 16 might work well on a high-end GPU with 24GB of memory, while

a smaller GPU with 8 GB might only handle a batch size of 2 or 4.

To overcome memory constraints while still benefiting from larger batch sizes, a technique called

gradient accumulation can be used. It works by performing multiple forward and backward passes

with smaller mini-batches, accumulating the gradients over these steps before applying a single

update to the model’s parameters. This approach is particularly useful when working with large

models or limited GPU memory. For example, if you want to achieve an effective batch size of 32

but your GPU can only handle 8 samples at a time, you can set the gradient accumulation steps

to 4. This means you’ll process 4 mini-batches of 8 samples each, accumulating the gradients,

and then update the model as if you had processed all 32 samples at once.

The number of gradient accumulation steps typically ranges from 1 (no accumulation) to 8 or

16, depending on the desired effective batch size and available computational resources. When

choosing the number of steps, consider the trade-off between training speed and memory usage.

More accumulation steps allow for larger effective batch sizes but increase the time required for

each update. Here’s a simple formula to determine the effective batch size:𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸 𝐸𝐸

For instance, if you’re using 2 GPUs, each processing a batch of 4 samples, with 4 gradient accu-

mulation steps, your effective batch size would be 4 * 2 * 4 = 32 samples.

Maximum length and packing
The maximum sequence length determines the longest input the model can process. It’s typically

set between 512 and 4,096 tokens but can go up to 128,000 or more, depending on the task and

available GPU memory. For example, a maximum length of 2,048 tokens is common for many

language generation tasks, while RAG applications might use up to 8,192 tokens or more. When

processing input data, sequences longer than this limit are truncated, meaning excess tokens

are removed. Truncation can occur at the beginning (left truncation) or end (right truncation) of

the sequence. For instance, with a maximum length of 1,024 tokens, a 1,500-token input would

have 476 tokens removed. This parameter directly impacts batch size and memory usage; a batch

size of 12 with a max length of 1,024 would contain 12,288 tokens (12 * 1,024), while the same

batch size with a max length of 512 would only contain 6,144 tokens. It’s important to balance

this parameter with your GPU capabilities and the nature of your training data to optimize per-

formance and resource utilization.

Supervised Fine-Tuning218

Packing maximizes the utilization of each training batch. Instead of assigning one sample per

batch, packing combines multiple smaller samples into a single batch, effectively increasing the

amount of data processed in each iteration. For example, if your maximum sequence length is

1,024 tokens, but many of your samples are only 200-300 tokens long, packing could allow you

to fit 3-4 samples into each batch slot. This approach can significantly improve training efficien-

cy, especially when dealing with datasets containing many short sequences. However, packing

requires careful implementation to ensure that model attention doesn’t cross between packed

samples. This is typically achieved by using attention masks that prevent the model from attend-

ing to tokens from different samples within the same packed sequence.

Number of epochs
The number of epochs is another important parameter, representing the number of complete

passes through the entire training dataset. For LLM fine-tuning, the typical range is 1 to 10 epochs,

with many successful runs using 2 to 5 epochs. The optimal number depends on factors such as

task complexity, dataset size, and model architecture. More epochs allow the model to refine its

learning, potentially improving performance. However, there’s a crucial trade-off: too few epochs

may lead to underfitting, while too many can cause overfitting. For example, a large model fine-

tuned on a small dataset might only need 1-3 epochs, while a smaller model fine-tuned on a larger

dataset could benefit from 5-10 epochs. It is helpful to monitor validation performance during

training and implement early stopping if the model’s performance plateaus or degrades. This

approach helps determine the optimal number of epochs dynamically and prevents overfitting.

Optimizers
Optimizers adjust the model’s parameters to minimize the loss function. For LLM fine-tuning,

AdamW (Adaptive Moment Estimation with Weight Decay) is highly recommended, particularly

its 8-bit version. AdamW 8-bit performs comparably to the 32-bit version while using less GPU

memory (but it doesn’t improve training speed). AdamW combines adaptive learning rates with

weight decay regularization, often leading to better training stability and model performance.

For scenarios with severe memory constraints, AdaFactor presents an alternative designed for

memory efficiency. It works well without explicit learning rate tuning, making it particularly

useful in resource-constrained environments. However, it may not always match AdamW’s perfor-

mance in all cases. In situations involving extremely large models or limited GPU memory, paged

versions of optimizers, such as paged AdamW 8-bit, can further reduce memory consumption

by offloading to CPU RAM. If memory allows and maximum performance is the priority, the

non-quantized adamw_torch optimizer may be the best choice.

Chapter 5 219

Weight decay
Weight decay works by adding a penalty for large weights to the loss function, encouraging the

model to learn simpler, more generalizable features. This helps the model avoid relying too heavily

on any single input feature, which can improve its performance on unseen data. Typically, weight

decay values range from 0.01 to 0.1, with 0.01 being a common starting point. For example, if

you’re using the AdamW optimizer, you might set the weight decay to 0.01.

While weight decay can be beneficial, setting it too high can impede learning by making it difficult

for the model to capture important patterns in the data. Conversely, setting it too low may not

provide sufficient regularization. The optimal weight decay value often depends on the specific

model architecture and dataset, so it’s generally a good practice to experiment with different

values.

Gradient checkpointing
Gradient checkpointing is a technique that reduces memory consumption during training by stor-

ing only a subset of intermediate activations generated in the forward pass. In standard training

procedures, all intermediate activations are retained in memory to facilitate gradient calculation

during the backward pass. However, for very deep networks like LLMs, this approach can quickly

become impractical due to hardware limitations, especially on GPUs with limited memory capacity.

Gradient checkpointing addresses this challenge by selectively saving activations at specific layers

within the network. For layers where activations are not saved, they are recomputed during the

backward pass as needed for gradient computation. This approach creates a trade-off between

computation time and memory usage. While it significantly reduces memory requirements, it

may increase overall computation time due to the need to recalculate some activations.

Other parameters and techniques exist but play a minor role compared to those previously dis-

cussed. In the next section, we will explore how to select and tune these parameters using a

concrete example.

Fine-tuning in practice
Let’s now fine-tune an open-source model on our custom dataset. In this section, we will show an

example that implements LoRA and QLoRA for efficiency. Depending on the hardware you have

available, you can select the technique that best corresponds to your configuration.

There are many efficient open-weight models we can leverage for task or domain-specific use

cases. To select the most relevant LLM, we need to consider three main parameters:

Supervised Fine-Tuning220

• License: Some model licenses only allow non-commercial work, which is a problem if

we want to fine-tune for a company. Custom licenses are common in this field, and can

target companies with a certain number of users, for example.

• Budget: Models with smaller parameter sizes (<10 B) are a lot cheaper to fine-tune and

deploy for inference than larger models. This is due to the fact that they can be run on

cheaper GPUs and process more tokens per second.

• Performance: Evaluating the base model on general-purpose benchmarks or, even better,

domain- or task-specific benchmarks relevant to the final use case, is crucial. This helps

ensure that the model has the necessary capabilities to perform well on the intended

tasks after fine-tuning.

In this chapter, we will choose Llama 3.1 8B, an open-weight model released by Meta. It has a

permissive custom license (“Llama 3.1 Community License Agreement”) that allows commercial

use. With 8B parameters, it is small enough to fit on most GPUs while reaching a high level of

performance compared to its competitors. We can verify this using the Open LLM Leaderboard,

as well as other benchmarks detailed in the model card.

There are specialized tools and libraries to fine-tune models. In particular, we recommend the

following:

• TRL: This is a library created and maintained by Hugging Face to train LLMs using SFT

and preference alignment. It is a popular and reliable library that tends to be the most

up-to-date in terms of algorithms. It works in single and multi-GPU settings with FSDP

and DeepSpeed.

• Axolotl: Created by Wing Lian, this tool streamlines the fine-tuning of LLMs with reusable

YAML configuration files. It is based on TRL but includes many additional features, such as

automatically combining datasets stored in various formats. It also supports single- and

multi-GPU settings with FSDP and DeepSpeed.

• Unsloth: Created by Daniel and Michael Han, Unsloth uses custom kernels to speed up

training (2-5x) and reduce memory use (up to 80% less memory). It is based on TRL and

provides many utilities, such as automatically converting models into the GGUF quanti-

zation format. At the time of writing, it is only available for single-GPU settings.

To maximize efficiency, we will perform fine-tuning using the Unsloth library. The following

code is designed as part of our LLMOps pipeline, but can also be used as a stand-alone script. It

can also be executed in different environments, like SageMaker, cloud GPUs (like Lambda Labs or

RunPod), Google Colab, and many others. We tested it on different GPUs, like A40, A100, and L4.

Chapter 5 221

To install the Unsloth library and its dependencies, we recommend directly installing from the

GitHub repository of the book (https://github.com/PacktPublishing/LLM-Engineering) or

Unsloth’s repo (https://github.com/unslothai/unsloth). This approach is recommended be-

cause the installation steps are regularly updated to address potential conflicts with dependencies:

1. First, we want to access a gated model and (optionally) upload our fine-tuned model to

Hugging Face (https://huggingface.co/). This requires being logged in to an account.

If you don’t have an account, you can create it and store your API key (Settings | Access

Tokens | Create new token) in the .env file:

HF_TOKEN = YOUR_API_KEY

2. Make sure that your Comet ML API key is also in the .env file:

COMET_API_KEY = YOUR_API_KEY

3. Import all the necessary packages:

import os

import torch

from trl import SFTTrainer

from datasets import load_dataset, concatenate_datasets

from transformers import TrainingArguments, TextStreamerfrom unsloth
import FastLanguageModel, is_bfloat16_supported

4. Let’s now load the model to fine-tune and its corresponding tokenizer. We use Unsloth’s

FastLaguageModel class with the .from_pretrained() method. In addition to the mod-

el name, we need to specify the max sequence length (2,048 in this example). Finally,

the load_in_4bit argument indicates if we want to use QLoRA (quantized pre-trained

weights) or LoRA.

We’ll use LoRA in this example because of faster training and higher quality, but you can

easily switch to QLoRA if you don’t meet the VRAM requirements.

max_seq_length = 2048

model, tokenizer = FastLanguageModel.from_pretrained(

 model_name="meta-llama/Meta-Llama-3.1-8B",

 max_seq_length=max_seq_length,

 load_in_4bit=False,

)

https://github.com/PacktPublishing/LLM-Engineering
https://github.com/unslothai/unsloth
https://huggingface.co/

Supervised Fine-Tuning222

5. Now that the model is loaded, we can define our LoRA configuration. Here, we use a rank

of 32 that is large enough to imitate the writing style and copy the knowledge from our in-

struction samples. You can increase this value to 64 or 128 if your results are underwhelm-

ing. We also set an alpha of 32, without dropout and without bias, to speed up training.

Finally, we target every linear layer to maximize the quality of the fine-tuning process.

model = FastLanguageModel.get_peft_model(

 model,

 r=32,

 lora_alpha=32,

 lora_dropout=0,

 target_modules=["q_proj", "k_proj", "v_proj", "up_proj", "down_
proj", "o_proj", "gate_proj"],

)

6. Next, we need to prepare the data in the right format for fine-tuning. In this example,

we don’t have a lot of samples in the llmtwin dataset (3,000 samples). This is an issue

because the model might not correctly learn the chat template. To address this, we will

upsample it with a high-quality general-purpose dataset called FineTome. This is a filtered

version of arcee-ai/The-Tome using the fineweb-edu-classifier. Instead of using

the 100,000 samples of this dataset, we will specify we only want 10,000 in the train split.

We concatenate these two datasets to create our final set.

dataset1 = load_dataset("mlabonne/llmtwin")

dataset2 = load_dataset("mlabonne/FineTome-Alpaca-100k",
split="train[:10000]")

dataset = concatenate_datasets([dataset1, dataset2])

7. Now, we need to format this data using a chat template. Let’s use the Alpaca template

for convenience. This template doesn’t require additional tokens, which makes it less

error-prone (but can slightly impact performance compared to ChatML). Here, we map

all the instructions and answers to the Alpaca template. We manually add the end of sen-

tence (EOS) token at the end of each message to ensure that the model learns to output

it. Without it, it will keep generating answers without ever stopping.

alpaca_template = """Below is an instruction that describes a task.
Write a response that appropriately completes the request.

Instruction:

Chapter 5 223

{}

Response:

{}"""

EOS_TOKEN = tokenizer.eos_token

dataset = dataset.map(format_samples, batched=True, remove_
columns=dataset.column_names)

8. Once the dataset is ready, we can divide it into training (95%) and test (5%) sets for val-

idation during training.

dataset = dataset.train_test_split(test_size=0.05)

9. The model is now ready to be trained. The SFTTrainer() class stores all the hyperparameters

for our training. In addition, we provide the model, tokenizer, LoRA configuration, and

datasets. Following the recommendations from the previous section, we set a learning

rate of 3e-4 with a linear scheduler and a maximum sequence length of 2048. We train

this model for three epochs with a batch size of 2 and 8 gradient accumulation steps (for

an effective batch size of 16). We also choose the adamw_8bit optimizer with a weight_

decay of 0.01. Depending on the GPU we use, it will automatically use FP16 or BF16 for

the activations. Finally, we report our training run to Comet ML for experiment tracking.

trainer = SFTTrainer(

 model=model,

 tokenizer=tokenizer,

 train_dataset=dataset["train"],

 eval_dataset=dataset["test"],

 dataset_text_field="text",

 max_seq_length=max_seq_length,

 dataset_num_proc=2,

 packing=True,

 args=TrainingArguments(

 learning_rate=3e-4,

 lr_scheduler_type="linear",

 per_device_train_batch_size=2,

 gradient_accumulation_steps=8,

 num_train_epochs=3,

 fp16=not is_bfloat16_supported(),

Supervised Fine-Tuning224

 bf16=is_bfloat16_supported(),

 logging_steps=1,

 optim="adamw_8bit",

 weight_decay=0.01,

 warmup_steps=10,

 output_dir="output",

 report_to="comet_ml",

 seed=0,

),

)

trainer.train()

Training this model on our concatenated dataset can take a few hours. For example, it

takes 50 minutes on an A100 GPU.

10. Once it’s done, we can test it with a quick example. The goal is not to properly evaluate

the fine-tuned model, but to make sure that there are no obvious errors related to the

tokenizer or chat template.

For fast inference, we can use FastLanguageModel.for_inference() from Unsloth. We

directly format an instruction with the Alpaca format. Note that we provide an empty

answer to append the assistant header (### Response): at the end of the user instruction.

This forces the model to answer the instruction instead of completing it. We also use a text

streamer to stream the generation instead of waiting for it to be complete before printing it.

FastLanguageModel.for_inference(model)

message = alpaca_prompt.format("Write a paragraph to introduce
supervised fine-tuning.", "")

inputs = tokenizer([message], return_tensors="pt").to("cuda")

text_streamer = TextStreamer(tokenizer)

_ = model.generate(**inputs, streamer=text_streamer, max_new_
tokens=256, use_cache=True)

11. Here is the answer provided by our model:

Supervised fine-tuning is a method used to enhance a language model
by providing it with a curated dataset of instructions and their
corresponding answers. This process is designed to align the model's

Chapter 5 225

responses with human expectations, thereby improving its accuracy
and relevance. The goal is to ensure that the model can respond
effectively to a wide range of queries, making it a valuable tool
for applications such as chatbots and virtual assistants.

This is correct and properly formatted with the Alpaca chat template.

12. Now that our model has been successfully fine-tuned, we can save it locally and/or push

it to the Hugging Face Hub using the following functions.

model.save_pretrained_merged("model", tokenizer, save_
method="merged_16bit")

model.push_to_hub_merged("mlabonne/TwinLlama-3.1-8B", tokenizer,
save_method="merged_16bit")

Congratulations on fine-tuning a base model from scratch! During training, you can access Comet

ML to monitor your training loss, validation loss, and many other metrics. You want to make sure

that these metrics correspond to what is expected. Figure 5.11 shows the training run correspond-

ing to the previous code in Comet ML.

Figure 5.11 – Four monitored metrics during fine-tuning in Comet ML

Supervised Fine-Tuning226

In particular, three of these metrics are important to monitor:

• Training loss: It measures how well the model is performing on the task it’s being trained

for. The loss should continuously decrease on average, indicating improving performance.

We expect a rapid decrease at the beginning of training, followed by a long plateau. Spikes

and continuous increases in the loss value are signs that the training is failing. In this

case, you might want to check the quality of your data, issues with the tokenizer, and

tune parameters like learning rate and batch size. In Figure 5.11 (loss), you can see three

different phases corresponding to our three epochs.

• Validation loss: It measures the loss using the validation set instead of the training set;

a well-fitted model typically shows both training and validation losses decreasing and

eventually stabilizing, with a small gap between them. This gap should be minimal but

is expected to exist as the model will always perform slightly better on the training data.

If the training loss continues to decrease while the validation loss starts to increase, it’s a

sign of overfitting. Conversely, if both curves remain flat at a relatively high loss value, it

indicates underfitting. There are no universal “recommended ranges” for loss values, as

these depend on the specific problem and loss function used. However, you should look for

convergence and stability in both curves. In Figure 4.11 (eval_loss), we see a slight increase

at step 340. This is still acceptable but might indicate that the model starts to overfit.

• Gradient norm: It represents the magnitude of the gradient vector during training. Large

gradient norms can indicate training instability like overfitting, especially if accompanied

by a divergence between training and validation losses. On the other hand, a stable or

decreasing gradient norm generally means that the model is converging toward a local

optimum. To mitigate issues associated with large gradient norms, gradient clipping can

be employed. This technique involves setting a maximum threshold for the gradient norm,

effectively limiting the size of parameter updates.

It is often interesting to try different learning rates and select the best model based on the minimal

loss. Note that this is a proxy for real evaluations, which are covered in the next chapter.

Summary
This chapter covered essential aspects of LLM fine-tuning, both in theory and practice. We ex-

amined the instruction data pipeline and how to create high-quality datasets, from curation

to augmentation. Each pipeline stage offers optimization opportunities, particularly in quality

assessment, data generation, and enhancement. This flexible pipeline can be adapted to your use

cases by selecting the most relevant stages and techniques.

Chapter 5 227

We applied this framework to real-world data from Chapter 3, using an LLM to convert raw text

into instruction-answer pairs. We then explored SFT techniques. This included an analysis of

SFT’s advantages and limitations, methods for storing and parsing instruction datasets with chat

templates, and an overview of three primary SFT techniques: full fine-tuning, LoRA, and QLoRA.

We compared these methods based on their impact on memory usage, training efficiency, and

output quality. The chapter concluded with a practical demonstration that involved fine-tuning

a Llama 3.1 8 B model on our custom instruction dataset. This example highlighted key steps and

implementation details for successful fine-tuning.

In the next chapter, we will use preference alignment techniques to create a new version of Twin-

Llama-3.1-8B. We will generate a new dataset with chosen and rejected answers that will help us

calibrate the type of answers we expect from our model. We will detail many applications that

can benefit from this framework and how to implement it.

References
• Tahori, Gulrajani, Zhang, Dubois, et al.. “Alpaca: A Strong, Replicable Instruction-Following

Model” crfm.stanford.edu, March 13, 2023, https://crfm.stanford.edu/2023/03/13/

alpaca.html.

• Subhabrata Mukherjee et al.. “Orca: Progressive Learning from Complex Explanation Traces

of GPT-4.” arXiv preprint arXiv:2306.02707, June 2023.

• Wing Lian and Bleys Goodson and Eugene Pentland and Austin Cook and Chanvichet Vong

and “Teknium”. “Open-Orca/OpenOrca.” huggingface.co, 2023, https://huggingface.co/

datasets/Open-Orca/OpenOrca.

• Weihao Zeng et al.. “Automatic Instruction Evolving for Large Language Models.” arXiv pre-

print arXiv:2406.00770, June 2024.

• Chunting Zhou et al.. “LIMA: Less Is More for Alignment.” arXiv preprint arXiv:2305.11206,

May 2023

• 01. AI. “Yi: Open Foundation Models by 01.AI.” arXiv preprint arXiv:2403.04652, March 2024.

• Alex Birch. “LLM finetuning memory requirements.” blog.scottlogic.com, November 24,

2023, https://blog.scottlogic.com/2023/11/24/llm-mem.html.

• Quentin Anthony et al.. “Transformer Math 101.” blog.eleuther.ai, April 18, 2023, https://

blog.eleuther.ai/transformer-math/.

crfm.stanford.edu
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://huggingface.co/datasets/Open-Orca/OpenOrca
https://huggingface.co/datasets/Open-Orca/OpenOrca
blog.scottlogic.com
https://blog.scottlogic.com/2023/11/24/llm-mem.html
https://blog.eleuther.ai/transformer-math/
https://blog.eleuther.ai/transformer-math/

Supervised Fine-Tuning228

• Edward J. Hu et al.. “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv preprint

arXiv:2106.09685, June 2021.

• Tim Dettmers et al.. “QLoRA: Efficient Finetuning of Quantized LLMs.” arXiv preprint arX-

iv:2305.14314, May 2023.

Join our book’s Discord space
Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/llmeng

https://packt.link/llmeng

6
Fine-Tuning with Preference
Alignment

Supervised Fine-Tuning (SFT) has been crucial in adapting LLMs to perform specific tasks. How-

ever, SFT struggles to capture the nuances of human preferences and the long tail of potential

interactions that a model might encounter. This limitation has led to the development of more

advanced techniques for aligning AI systems with human preferences, grouped under the um-

brella term preference alignment.

Preference alignment addresses the shortcomings of SFT by incorporating direct human or AI

feedback into the training process. This method allows a more nuanced understanding of human

preferences, especially in complex scenarios where simple supervised learning falls short. While

numerous techniques exist for preference alignment, this chapter will primarily focus on Direct

Preference Optimization (DPO) for simplicity and efficiency.

In this chapter, we will talk about the type of data that is required by preference alignment algo-

rithms like DPO. We will build our own dataset to modify the writing style of our model, making

it less artificial and more authentic. We will introduce the DPO algorithm and implement it to

align the model trained in Chapter 5.

In this chapter, we will cover the following topics:

• Understanding preference datasets

• How to create our own preference dataset

• Direct preference optimization (DPO)

• Implementing DPO in practice to align our model

Fine-Tuning with Preference Alignment230

By the end of this chapter, you will be able to create your own preference datasets and align

models with diverse techniques.

Understanding preference datasets
The principles for creating high-quality preference datasets are the same as those discussed in

Chapter 5 for instruction datasets. We want to maximize the accuracy, diversity, and complexity

of our samples. To achieve this, we follow the same stages, as outlined in Figure 6.1: data curation,

deduplication, decontamination, quality evaluation, exploration, generation, and augmentation.

Figure 6.1 – Overview of the post-training data pipeline covered in this chapter

To avoid repetition, this section will focus on the main differences between instruction and pref-

erence datasets. We will introduce the structure of preference samples and the ideal size for pref-

erence datasets. Then, we will focus on the two stages that differ most from creating instruction

datasets: data generation and evaluation.

Preference data
Preference datasets lack the standardization of instruction datasets due to varying data require-

ments across different training algorithms. Preference data comprises a collection of responses

to a given instruction, ranked by humans or language models. This chapter focuses on DPO, so

we will examine the specific data format required by this algorithm.

As illustrated in Table 6.1, the structure of DPO datasets is straightforward: each instruction is

paired with one preferred answer and one rejected answer. The objective is to train the model to

generate the preferred response rather than the rejected one.

All the code examples from this chapter can be found on GitHub at https://github.

com/PacktPublishing/LLM-Engineering.

https://github.com/PacktPublishing/LLM-Engineering
https://github.com/PacktPublishing/LLM-Engineering

Chapter 6 231

Instruction

Tell me a joke about octopuses.

Chosen answer

Why don’t octopuses play cards in casinos?

Because they can’t count past eight.

Rejected answer

How many tickles does it take to make an

octopus laugh? Ten tickles.

Table 6.1 – Example of sample from the mlabonne/orpo-dpo-mix-40k dataset

In preference datasets, the rejected response is as important as the chosen one. Without the

rejected response, the dataset would be a simple instruction set. Rejected responses represent

the behavior we aim to eliminate from the model. This provides a lot of flexibility and allows us

to use preference datasets in many contexts. Here is a list of examples where preference datasets

are more beneficial to use compared to using SFT alone:

• Chatbots: In conversational AI, the quality of responses often depends on subjective fac-

tors like naturalness, engagement, and contextual appropriateness. A preference dataset

allows the model to learn these nuanced aspects by comparing better and worse responses.

Simple SFT might not capture the subtleties of what makes one response preferable over

another in a given context.

• Content moderation: Determining whether content is appropriate or violates guidelines

often involves nuanced judgments. Preference datasets can help the model learn to dis-

tinguish between borderline cases by comparing examples of content that is and isn’t

acceptable. This is more effective than binary classification through SFT, as it helps the

model understand the reasoning behind moderation decisions.

• Summarization: The quality of a summary often depends on factors like conciseness,

relevance, and coherence. By using preference datasets, models can learn to generate

summaries that humans find more useful and informative. Simple SFT might result in

summaries that are technically correct but less preferable to human readers.

• Code generation: In coding tasks, there are often multiple correct solutions, but some

are more efficient or readable, or follow better practices than others. Preference datasets

can help the model learn these qualitative aspects of code quality, which might not be

captured by simple correctness-based SFT.

Fine-Tuning with Preference Alignment232

• Creative writing: For tasks like story generation or poetry writing, the quality of the

output is highly subjective and multifaceted. Preference datasets can capture human

judgments about style, creativity, and emotional impact better than instruction datasets,

which might focus more on technical correctness or adherence to prompts.

• Translation: While traditional metrics like BLEU scores can measure translation accu-

racy, they don’t always capture the fluency or naturalness of the translation. Preference

datasets can help models learn to produce translations that native speakers prefer, even

when multiple translations are technically correct.

In all these scenarios, preference datasets enable a more refined training approach. They capture

subjective quality assessments and human preferences that extend beyond simple correctness or

adherence to instructions. This method can produce models that generate output that is not only

technically accurate but also better aligned with human judgment and preferences in complex,

open-ended tasks.

Unlike instruction datasets, there are no standardized storage formats like Alpaca or ShareGPT.

Most preference datasets follow a structure similar to that shown in Table 6.1, with columns for

an instruction, a preferred answer, and a rejected answer. Multi-turn conversations are uncom-

mon in preference alignment. At the time of writing, major fine-tuning libraries do not support

multi-turn conversations and typically extract only the first or last message in a conversation.

Data quantity
DPO datasets typically require fewer samples than instruction datasets to significantly impact

model behavior. As with instruction datasets, the required sample count depends on model size

and task complexity. Larger models are more sample-efficient and thus require less data, while

complex tasks demand more examples to capture the desired behavior. Once again, data quality

is crucial, and a large number of preference pairs is generally beneficial.

General-purpose alignment is used by LLM providers to improve the overall performance of the

fine-tuned models. This requires preference datasets with millions of samples. Major players in

the AI industry, including Nvidia and Meta, are converging on similar post-training pipelines,

involving multiple rounds of preference alignment, and extensive use of synthetic data. This

consensus suggests that these methods are proving to be the most effective for pushing the

boundaries of language model capabilities.

On a smaller scale, the open-source community uses datasets ranging from 10,000 to 100,000

samples to enhance model performance. This approach has proven effective not only in improving

benchmark scores but also in healing networks after merging, pruning, and other modifications.

Generally, DPO is less destructive than SFT and has a milder impact on the final model.

Chapter 6 233

On the other hand, tasks like the ones previously described require fewer preference pairs.

Task-specific alignment focuses on improving model performance for a particular function, such

as modifying the writing style, refusing certain instructions, and so on. These alignments can

often be achieved with smaller datasets, ranging from 100 to 10,000 preference pairs, depending

on the task’s complexity.

An example of an application that requires few samples is instructing the model to state that it

wasn’t trained by OpenAI, Meta, or another LLM provider. This can be achieved using a prefer-

ence dataset, where the rejected answers are those claiming alternative origins, and the chosen

answers are responses where the model correctly states that it was trained by you. A relatively

small dataset of 200 to 500 pairs can be enough for this task.

Data generation and evaluation
When creating preference datasets, data generation and evaluation are closely linked. We first

create answers and then rate them to make the final dataset. In the following, we introduce both

steps as one process instead of two separate ones.

Generating preferences
Before making new preference data, it’s good to look at relevant open-source datasets. There are

fewer of these compared to instruction datasets, but you can find high-quality preference data-

sets on the Hugging Face Hub. These can be used for specific tasks or to add to your own dataset.

Well-known preference datasets include the Anthropic HH-RLHF dataset, which has human

preferences for helpful and harmless AI responses, and the OpenAI Summarize from Human

Feedback dataset, which focuses on article summaries.

DPO datasets can be created using various methods, each with its own trade-offs between quality,

cost, and scalability. These methods can be tailored to specific applications and require varying

degrees of human feedback. We divide them into four main categories:

• Human-generated, human-evaluated datasets: This method involves hiring people to

both create responses to prompts and evaluate the quality of these responses. While this

approach can capture nuanced human preferences and is ideal for complex tasks, it’s

extremely resource-intensive and difficult to scale. As a result, it’s primarily used by large

AI companies with substantial resources.

• Human-generated, LLM-evaluated datasets: This method can be useful if you have

a lot of existing human-generated content. However, it’s rarely used in practice due to

inefficiency, as it still requires significant human input for response generation while

potentially missing nuanced preferences during the LLM evaluation stage.

Fine-Tuning with Preference Alignment234

• LLM-generated, human-evaluated datasets: This method offers a good balance between

quality and efficiency. LLMs generate multiple responses to prompts, and humans rank

these responses. This approach is often preferred because humans are generally better at

judging answers than writing them from scratch. It allows the rapid generation of diverse

responses while still capturing human preferences effectively. However, it may not provide

creative or unexpected responses that humans might generate.

• LLM-generated, LLM-evaluated datasets: Fully synthetic datasets, where both gener-

ation and evaluation are done by LLMs, are becoming increasingly common due to their

scalability and cost-effectiveness. This method can produce massive datasets quickly and

improves as LLM capabilities advance. However, it requires careful prompt engineering to

ensure quality and diversity, and may perpetuate biases or limitations of the generating

LLM.

In practice, human-generated datasets are expensive, difficult to scale, and not necessarily of

the highest quality. On the other hand, human evaluation is quite valuable but can be difficult

to scale, which is why large datasets benefit from LLM evaluation. In addition to these high-level

considerations, the way you obtain your data and how you plan to use it also need to be considered.

For example, applications with many users can embed a feedback mechanism to provide prefer-

ences. This can be as simple as a like and dislike score, or something more in-depth with text.

Note that evaluation is not always required and preferences can emerge naturally from the gen-

eration process. For instance, it is possible to use a high-quality model to generate preferred

outputs and a lower-quality or intentionally flawed model to produce less preferred alternatives.

This creates a clear distinction in the preference dataset, allowing more effective training of AI

systems to recognize and emulate high-quality outputs. The Intel/orca_dpo_pairs dataset

available on the Hugging Face Hub was created with this process.

Another approach is to compare model-generated outputs with human-written responses, which

can provide insights into how well the model aligns with actual human preferences and highlight

areas where the model may be lacking. This can be used to copy a particular style and give a more

authentic tone to the model.

Tips for data generation
The data generation is consistent between instruction and preference datasets. Prompts should

be designed to encourage diversity and complexity in the model’s responses. By crafting prompts

that explicitly request different approaches or styles, we can ensure a wide range of outputs that

capture the varied nature of human preferences.

Chapter 6 235

For instance, when generating summaries, one might request variations such as concise sum-

maries, detailed summaries, and summaries focusing on key points. This approach not only

produces a diverse dataset but also helps in understanding how different styles and approaches

align with human preferences.

Introducing variability in the outputs is another crucial aspect of generating synthetic preference

datasets. This can be achieved by manipulating the temperature settings or employing other

sampling methods in the LLM. Higher temperature settings tend to produce more creative and

diverse responses, while lower settings result in more focused and deterministic outputs. This

creates a trade-off between diversity and coherence, which depends on the kind of data we want

to generate. For example, generating code requires low creativity, thus low temperature, while

writing articles can be high temperature.

Using multiple LLMs to generate samples can be better than using just one model. Some LLMs are

better at specific tasks, and this approach also adds more variety. This approach is used by popular

open-source datasets like argilla/Capybara-Preferences, combining GPT-4 with open-weight

models. The evaluation process then selects the chosen and the rejected answers.

Evaluating preferences
Data evaluation can be performed by human raters or automated with LLMs. LLM evaluation

involves developing detailed criteria, creating a prompt that clearly communicates these guide-

lines to the LLM, and using the model to select preferred and rejected responses. While more

scalable than human rating and allowing the consistent application of criteria, this quality of

LLM evaluation depends directly on the model’s performance and the provided guidelines. It

may miss subtle human preferences or cultural nuances. However, as LLMs continue to improve,

their ability to make nuanced judgments improves as well, potentially leading to higher-quality

datasets over time.

Implementing LLM evaluation for preference datasets can be done through absolute scoring or

pairwise ranking. In absolute scoring, the LLM assigns a numerical score or categorical rating to

each response based on predefined criteria. This method is straightforward but may suffer from

inconsistency across different prompts or evaluation sessions. Pairwise ranking, on the other

hand, involves presenting the LLM with two responses and asking it to choose the better one or

rank them. This approach more closely mimics the format of human evaluation and can lead to

more consistent results.

Fine-Tuning with Preference Alignment236

For absolute scoring, you would create a prompt that outlines the evaluation criteria and asks

the LLM to rate the response on a specific scale (e.g., 1-5 or poor/fair/good/excellent). The prompt

might look like this: “Rate the following response on a scale of 1-5 based on relevance, coherence,

and helpfulness: [INSERT RESPONSE].” For pairwise ranking, the prompt could be: “Compare the

following two responses. Which one is better in terms of relevance, coherence, and helpfulness?

Response A: [INSERT RESPONSE A] Response B: [INSERT RESPONSE B].”

The comparative nature of preference datasets makes pairwise ranking an ideal approach for

evaluation. This method is generally more accurate and more closely correlated to human judg-

ment than absolute scoring. Pairwise ranking mimics the natural way humans compare options,

making it easier for both human raters and LLMs to provide consistent and meaningful evaluations.

We can further improve the accuracy of pairwise ranking by providing a ground-truth answer

and using chain-of-thought reasoning. This approach encourages the evaluating LLM to consider

multiple aspects of the responses and articulate its decision-making process, leading to more

thorough and justified evaluations. When no ground-truth answer is available, we can prompt

the LLM to create a grading note, which is a description of the expected answer. This technique

works particularly well in scenarios where the LLM doesn’t have extensive knowledge about a

given topic, as it forces the model to establish clear criteria for evaluation before assessing the

responses.

Here’s a concrete implementation of an LLM-as-a-judge prompt to perform pairwise ranking:

Instruction

You are an answer judge. Your goal is to compare answer A and answer B. I want to know

which answer does a better job of answering the instruction in terms of relevance, accuracy,

completeness, clarity, structure, and conciseness.

Instruction: {instruction}

Answer A: {answer_a}

Answer B: {answer_b}

Explain your reasoning step by step and output the letter of the best answer using the following

structure:

Reasoning: (compare the two answers)

Best answer: (A or B)

Table 6.2 – Example of LLM-as-a-judge prompt for pairwise ranking with one instruction
and two answers

Chapter 6 237

However, it’s important to note that LLM-based evaluation can be subject to several types of bias:

• Position bias: In relative scoring, LLM judges tend to favor the first answer presented.

This bias can skew results and lead to inaccurate preferences.

• Length bias: Similar to humans, LLM judges often show a preference for longer answers,

potentially overlooking the quality of shorter, more concise responses.

• Family bias: LLM judges may favor responses that are generated by themselves or models

from the same family, potentially due to similarities in language patterns or knowledge

bases.

To mitigate these biases and enhance the quality of preference datasets, several solutions can

be implemented. One key approach is to randomize the order of answer A and answer B in each

comparison, which can counteract position bias by ensuring that the order of presentation doesn’t

consistently influence the evaluation. Another valuable strategy involves providing few-shot

examples that demonstrate a balanced distribution of scores. These examples serve to calibrate

the judge LLM’s internal scoring mechanism and can effectively address both length and family

bias by illustrating that shorter answers or those from different model families can also be of

high quality. Additionally, employing multiple models as a jury, rather than relying on a single

LLM judge, can significantly improve the robustness of the evaluation process. This multi-model

approach helps to balance out individual biases that may be present in any single model, leading

to a more comprehensive and accurate assessment of the responses.

In the next section, we will create our own preference dataset. We will rely on the data generation

process to naturally create chosen (human-generated) and rejected (LLM-generated) answers.

Creating our own preference dataset
Our model can currently write paragraphs about topics related to machine learning, but it doesn’t

have the same writing style as the original authors. This is a typical use case for preference align-

ment, where we want to change the “voice” of the model to closely imitate the source data. It’s

important to note that, experimentally, DPO tends to make models more verbose and pushes

them to use very formal language. Therefore, the training will need to use DPO surgically to avoid

this pitfall and instead adopt the less formal style of these blog articles.

In this section, we will create a preference dataset where the chosen answers are extracts from

the text, while rejected answers are generated by the model. To implement it, we will modify the

code created in Chapter 5, which was designed to generate instruction datasets.

Fine-Tuning with Preference Alignment238

As seen in the previous section, preference and instruction datasets rely on the same principles.

Instead of pairs of instructions and answers, we need triples (instruction, answer 1, answer 2).

What’s interesting in this setting is that we have ground-truth answers in the text chunks, which

means we don’t need complex evaluation processes like LLM judges. To make sure that these

extracts are high-quality, we will implement two additional quality filters, based on length and

punctuation. Figure 6.2 summarizes the end-to-end process:

Figure 6.2 – Synthetic data generation pipeline from raw text to preference dataset

We are now ready to implement the preference data generation pipeline:

1. We start by importing the necessary libraries.

import concurrent.futures

import json

import re

from typing import List, Tuple

from datasets import Dataset

from openai import OpenAI

from tqdm.auto import tqdm

Chapter 6 239

2. Instead of the InstructionAnswerSet class, we now have a PreferenceSet class. This

class is designed to handle triples of instructions, generated answers (rejected), and ex-

tracted answers (chosen).

class PreferenceSet:

 def __init__(self, triples: List[Tuple[str, str, str]]):

 self.triples = triples

 @classmethod

 def from_json(cls, json_str: str) -> 'PreferenceSet':

 data = json.loads(json_str)

 triples = [(triple['instruction'], triple['generated_
answer'], triple['extracted_answer'])

 for triple in data['preference_triples']]

 return cls(triples)

 def __iter__(self):

 return iter(self.triples)

3. The load_articles_from_json, clean_text, and extract_substrings functions remain

unchanged from the original code. Let’s start with load_articles_from_json, which takes

our JSON file (cleaned_documents.json) containing the articles as input and returns a

Hugging Face dataset with the text and metadata (ID, platform, author ID, author full

name, link).

def load_articles_from_json(file_path: str) -> Dataset:

 with open(file_path, "r") as file:

 data = json.load(file)

 return Dataset.from_dict(

 {

 "id": [item["id"] for item in data["artifact_data"]],

 "content": [item["content"] for item in data["artifact_
data"]],

 "platform": [item["platform"] for item in
data["artifact_data"]],

 "author_id": [item["author_id"] for item in
data["artifact_data"]],

Fine-Tuning with Preference Alignment240

 "author_full_name": [item["author_full_name"] for item
in data["artifact_data"]],

 "link": [item["link"] for item in data["artifact_
data"]],

 }

)

4. The clean_text function removes non-alphanumeric characters except for apostrophes,

periods, commas, exclamation marks, and question marks. It also replaces multiple

whitespaces with a single space to ensure proper formatting.

def clean_text(text: str) -> str: text = re.sub(r"[^\w\s.,!?']",
" ", text) text = re.sub(r"\s+", " ", text)

 return text.strip()

5. The extract_substrings function splits articles into chunks with a length between 1,000

and 2,000 characters. To make sure that the splitting doesn’t break sentences, which could

modify their meanings, we use a regex to only split after the end of a sentence.

def extract_substrings(dataset: Dataset, min_length: int = 1000,
max_length: int = 2000) -> List[str]:

 extracts = []

 sentence_pattern = r"(?<!\w\.\w.)(?<![A-Z][a-z]\.)
(?<=\.|\?|\!)\s"

 for article in dataset["content"]:

 cleaned_article = clean_text(article)

 sentences = re.split(sentence_pattern, cleaned_article)

 current_chunk = ""

 for sentence in sentences:

 sentence = sentence.strip()

 if not sentence:

 continue

 if len(current_chunk) + len(sentence) <= max_length:

 current_chunk += sentence + " "

 else:

 if len(current_chunk) >= min_length:

 extracts.append(current_chunk.strip())

Chapter 6 241

 current_chunk = sentence + " "

 if len(current_chunk) >= min_length:

 extracts.append(current_chunk.strip())

 return extracts

6. The generate_preference_triples function replaces the original generate_instruction_

answer_pairs function. The prompt is adapted from the instruction version and is de-

signed to generate triples instead of pairs. It also provides general guidance about the

type of instructions we’re interested in, how to extract answers from articles, and how

to style them:

def generate_preference_triples(extract: str, client: OpenAI) ->
List[Tuple[str, str, str]]:

 prompt = f"""Based on the following extract, generate five
instruction-answer triples. Each triple should consist of:

1. An instruction asking about a specific topic in the context.

2. A generated answer that attempts to answer the instruction based
on the context.

3. An extracted answer that is a relevant excerpt directly from the
given context.

Instructions must be self-contained and general, without explicitly
mentioning a context, system, course, or extract.

Important:

- Ensure that the extracted answer is a verbatim copy from the
context, including all punctuation and apostrophes.

- Do not add any ellipsis (...) or [...] to indicate skipped text
in the extracted answer.

- If the relevant text is not continuous, use two separate sentences
from the context instead of skipping text.

Provide your response in JSON format with the following structure:

{{

 "preference_triples": [

 {{

 "instruction": "...",

Fine-Tuning with Preference Alignment242

 "generated_answer": "...",

 "extracted_answer": "..."

 }},

 ...

]

}}

 Extract:

 {extract}

"""

7. In the same function, we use GPT-4o-mini to generate our answers using JSON mode. We

specify in the system prompt that we want triples instead of pairs. The JSON answers are

directly parsed by our PreferenceSet class to return the expected list of tuples.

 completion = client.chat.completions.create(

 model="gpt-4o-mini",

 messages=[

 {

 "role": "system",

 "content": "You are a helpful assistant who
generates instruction-answer triples based on the given context.
Each triple should include an instruction, a generated answer, and
an extracted answer from the context. Provide your response in JSON
format.",

 },

 {"role": "user", "content": prompt},

],

 response_format={"type": "json_object"},

 max_tokens=2000,

 temperature=0.7,

)

 result = PreferenceSet.from_json(completion.choices[0].message.
content)

 return result.triples

Chapter 6 243

8. Two new filtering functions are introduced for the preference data pipeline: filter_short_

answers and filter_answer_format. These functions filter out short answers and ensure

that answers start with an uppercase letter and end with proper punctuation. We use

them as heuristics to filter out samples with poor quality.

def filter_short_answers(dataset: Dataset, min_length: int = 100) ->
Dataset:

 def is_long_enough(example):

 return len(example['chosen']) >= min_length

 return dataset.filter(is_long_enough)

def filter_answer_format(dataset: Dataset) -> Dataset:

 def is_valid_format(example):

 chosen = example['chosen']

 return (len(chosen) > 0 and

 chosen[0].isupper() and

 chosen[-1] in ('.', '!', '?'))

 return dataset.filter(is_valid_format)

9. The create_preference_dataset function replaces the original create_instruction_

dataset function. This function now works with triples instead of pairs and uses different

column names in the resulting dataset.

def create_preference_dataset(dataset: Dataset, client: OpenAI, num_
workers: int = 4) -> Dataset:

 extracts = extract_substrings(dataset)

 preference_triples = []

 with concurrent.futures.ThreadPoolExecutor(max_workers=num_
workers) as executor:

 futures = [

 executor.submit(generate_preference_triples, extract,
client)

 for extract in extracts

]

 for future in tqdm(concurrent.futures.as_completed(futures),
total=len(futures)):

Fine-Tuning with Preference Alignment244

 preference_triples.extend(future.result())

 instructions, generated_answers, extracted_answers =
zip(*preference_triples)

 return Dataset.from_dict(

 {

 "prompt": list(instructions),

 "rejected": list(generated_answers),

 "chosen": list(extracted_answers)

 }

)

10. The main function is updated to include the new filtering steps and to use the preference

dataset creation function:

def main(dataset_id: str) -> Dataset:

 client = OpenAI()

 # 1. Load the raw data

 raw_dataset = load_articles_from_json("cleaned_documents.json")

 print("Raw dataset:")

 print(raw_dataset.to_pandas())

 # 2. Create preference dataset

 dataset = create_preference_dataset(raw_dataset, client)

 print("Preference dataset:")

 print(dataset.to_pandas())

 # 3. Filter out samples with short answers

 dataset = filter_short_answers(dataset)

 # 4. Filter answers based on format

 dataset = filter_answer_format(dataset)

 # 5. Export

 dataset.push_to_hub(dataset_id)

 return dataset

Chapter 6 245

The create_preference_dataset() function generated 2,970 samples. This dataset is then heav-

ily filtered to only retain 1,467 samples by removing answers that are too short or not properly

formatted (for example, answers that start with an uppercase letter or end with a period, excla-

mation mark, or question mark).

The final dataset is available on the Hugging Face Hub at the following address: https://

huggingface.co/datasets/mlabonne/llmtwin-dpo. You can see in Figure 6.3 an example that

captures a subtle nuance in terms of writing style. Both answers are correct, but the chosen (ex-

tracted) answer sounds slightly more casual.

Figure 6.3 – Screenshot of the mlabonne/llmtwin-dpo preference dataset on the Hugging
Face Hub

To produce this dataset, we iterated many times over the prompt to generate the data. This re-

quired some manual evaluation and experiments until we reached satisfying results. The quality

of the prompt is fundamental in this process, which is why it is recommended to follow a similar

process to generate your own preference datasets.

In the next section, we will introduce concepts related to Reinforcement Learning from Human

Feedback (RLHF) and DPO. This will cover new parameters and ideas that are implemented in

the final section of this chapter.

Preference alignment
Preference alignment regroups techniques to fine-tune models on preference data. In this section,

we provide an overview of this field and then focus on the technique we will implement: Direct

Preference Optimization (DPO).

https://huggingface.co/datasets/mlabonne/llmtwin-dpo
https://huggingface.co/datasets/mlabonne/llmtwin-dpo

Fine-Tuning with Preference Alignment246

Reinforcement Learning from Human Feedback
Reinforcement Learning from Human Feedback (RLHF) combines reinforcement learning

(RL) with human input to align models with human preferences and values. RLHF emerged as a

response to challenges in traditional RL methods, particularly the difficulty of specifying reward

functions for complex tasks and the potential for misalignment between engineered rewards

and intended objectives.

The origins of RLHF can be traced back to the field of preference-based reinforcement learning

(PbRL), which was independently introduced by Akrour et al. and Cheng et al. in 2011. PbRL aimed

to infer objectives from qualitative feedback, such as pairwise preferences between behaviors,

rather than relying on quantitative reward signals. This approach addressed some of the limita-

tions of conventional RL, where defining appropriate reward functions can be challenging and

prone to reward hacking or unintended behaviors.

The term RLHF was coined later, around 2021-2022, as the approach gained prominence in the

context of training LLMs. However, the core ideas had been developing for years prior. A seminal

paper by Christiano et al. in 2017 demonstrated the effectiveness of learning reward models from

human preferences and using them to train RL agents. This work showed that RLHF could match

or exceed the performance of agents trained on hand-engineered rewards, but with significantly

less human effort.

At its core, RLHF works by iteratively improving both a reward model and a policy:

• Reward model learning: Instead of using a pre-defined reward function, RLHF learns a

reward model from human feedback. This is typically done by presenting humans with

different answers and asking them to indicate which one they prefer. These preferences

are used to train a reward model, often using a Bradley-Terry model or similar approaches

that map preferences to underlying utility functions.

• Policy optimization: With the learned reward model, standard RL algorithms can be

used to optimize a policy. This policy generates new behaviors that aim to maximize the

predicted rewards from the learned model.

• Iterative improvement: As the policy improves, it generates new behaviors that can be

evaluated by humans, leading to refinements in the reward model. This cycle continues,

ideally resulting in a policy that aligns well with human preferences.

A key innovation in RLHF is its approach to handling the high cost of human feedback. Rather

than requiring constant human oversight, RLHF allows for asynchronous and sparse feedback.

Chapter 6 247

The learned reward model serves as a proxy for human preferences, enabling the RL algorithm

to train continuously without direct human input for every action.

As an example, Figure 6.4 shows a high-level view of the Proximal Policy Optimization (PPO)

algorithm, which is one of the most popular RLHF algorithms. Here, the reward model is used to

score the text that is generated by the trained model. This reward is regularized by an additional

Kullback–Leibler (KL) divergence factor, ensuring that the distribution of tokens stays similar

to the model before training (frozen model).

Figure 6.4 – High-level view of the PPO algorithm for preference alignment

While RLHF has proven effective for aligning AI systems with human preferences, it faces chal-

lenges due to its iterative nature and reliance on a separate reward model, which can be compu-

tationally expensive and potentially unstable. Despite theoretical superiority, RLHF algorithms

have also experimentally underperformed compared to simpler approaches. One such approach

that has gained significant attention is DPO.

Fine-Tuning with Preference Alignment248

Direct Preference Optimization
Introduced by Rafailov et al. in their 2023 paper Direct Preference Optimization: Your Language

Model is Secretly a Reward Model, DPO offers a streamlined alternative to traditional RLHF methods.

DPO’s core innovation lies in its reformulation of the preference learning problem. Unlike RLHF,

which typically involves training a separate reward model and then using reinforcement learning

algorithms like PPO to fine-tune the language model, DPO takes a more direct approach.

It derives a closed-form expression for the optimal policy under the standard RLHF objective of

maximizing expected reward subject to a KL-divergence constraint with a reference policy. This

mathematical insight allows DPO to express the preference learning problem directly in terms of

the policy, eliminating the need for a separate reward model or complex reinforcement learning

algorithms.

In practical terms, DPO can be implemented as a simple binary cross-entropy loss function that

operates directly on the language model’s output probabilities. This loss function encourages the

model to assign higher probability to preferred responses and lower probability to non-preferred

responses, while maintaining closeness to a reference (frozen) model. The importance of the ref-

erence model is directly controlled via a beta parameter between 0 and 1. The reference model is

ignored when beta is equal to 0, which means that the trained model can be very different from

the SFT one. In practice, a value of 0.1 is the most popular one, but this can be tweaked, as we’ll

see in the next section.

The simplicity of this approach allows optimization using standard gradient descent techniques,

without the need for sampling from the model during training or implementing complex RL

algorithms. Figure 6.5 shows a high-level view of the DPO algorithm, greatly simplifying the

training process compared to Figure 6.4.

Chapter 6 249

Figure 6.5 – High-level view of the DPO algorithm for preference alignment

DPO has several advantages over traditional RLHF methods. As previously mentioned, it signifi-

cantly simplifies the preference learning pipeline, reducing the engineering complexity associated

with RLHF methods. By eliminating the need for a separate reward model and RL algorithms, DPO

is more computationally efficient than traditional RLHF approaches. Particularly when trained

with adapters (LoRA, QLoRA), the frozen and trained models don’t have to be separated. Indeed,

since we’re only training adapters, the trained model is not modified. This allows us to only load

one model instead of two, which saves additional VRAM.

Despite its simplicity, DPO often matches the performance of more complex RLHF methods. It

also tends to be more stable during training and less sensitive to hyperparameters. The simpli-

fied approach makes DPO easier to implement and scale, particularly for small teams without

extensive RL knowledge.

Fine-Tuning with Preference Alignment250

While RLHF allows iterative improvement through multiple training rounds and can dynamically

adapt to new preferences, DPO offers a more straightforward path to achieving similar results.

The choice between DPO and PPO-based RLHF often comes down to a trade-off between ease of

implementation and potential peak performance. For large-scale training runs with millions of

preference samples, PPO-inspired methods still have a higher performance ceiling. However, for

most applications, DPO provides the majority of the performance benefits at a lower computa-

tional and engineering cost.

Both RLHF and DPO benefit significantly from the integration of synthetic data. As LLMs become

more capable, they can generate data that surpasses human-created content in quality and di-

versity. This enables a virtuous cycle where better models produce better training data, which

in turn leads to further model improvements. The iterative nature of both approaches allows

multiple rounds of model refinement, each focusing on different aspects of model performance

and gradually enhancing capabilities across various domains.

Despite its advantages, DPO is not without drawbacks. Like RLHF, DPO still requires paired pref-

erence data, which can be expensive and time-consuming to collect. DPO lacks some of the the-

oretical guarantees associated with reinforcement learning approaches. There may be scenarios

where the added flexibility of RLHF is beneficial, particularly for complex tasks or environments.

Nonetheless, DPO is ideal in most cases, including our twin LLM example. In the next section,

we will implement it using Unsloth.

Implementing DPO
In this section, we will DPO fine-tune the TwinLlama-3�1-8B model we created in Chapter 5. For

ease of use and to maximize performance, we will again use the Unsloth library for our DPO im-

plementation. Depending on the available VRAM, you can choose between LoRA (higher quality,

speed, and VRAM usage) and QLoRA (lower quality, speed, and VRAM usage). This technique,

along with other preference alignment algorithms, is also available in TRL and Axolotl.

This example can be seen as an advanced application of DPO. Indeed, our objective of imitating

a writing style conflicts with the natural tendency of DPO to encourage formal language. This is

partly due to the fact that chosen answers are often more formal than rejected ones. In practice,

this will force us to do light fine-tuning, with a low learning rate and number of epochs. To find

the best hyperparameters, we trained over 20 models and compared their outputs on a set of

questions, including “Write a paragraph to introduce supervised fine-tuning.” This allowed us

to select the model and parameters that worked best for this task.

Chapter 6 251

The dependencies are the same as those in Chapter 5 with SFT and can be found in the book’s

GitHub repository (https://github.com/PacktPublishing/LLM-Engineering) or in Unsloth’s

repo (https://github.com/unslothai/unsloth):

1. First, we want to access a gated model and (optionally) upload our fine-tuned model to

Hugging Face (https://huggingface.co/). This requires us to log in to an account. If

you don’t have an account, you can create one and store your API key (Settings | Access

Tokens | Create new token) in the .env file:

HF_TOKEN = YOUR_API_KEY

2. Make sure that your Comet ML API key is also in the .env file. Otherwise, the code will

crash and raise an error when training starts.

COMET_API_KEY = YOUR_API_KEY

3. Before we import all the necessary packages, we want to apply a patch for the DPOTrainer

class from TRL. This fixes the DPO logs in notebook environments.

from unsloth import PatchDPOTrainer

PatchDPOTrainer()

4. We can now import the other libraries. The main difference between DPO and SFT is the

import of DPOConfig and DPOTrainer from TRL, which are specific to DPO training.

import os

import torch

from datasets import load_dataset

from transformers import TrainingArguments, TextStreamer

from unsloth import FastLanguageModel, is_bfloat16_supportedfrom trl
import DPOConfig, DPOTrainer

5. This step loads our fine-tuned model from Chapter 5. We use the same configuration with

a max_seq_length of 2048. You can activate QLoRA by setting load_in_4bit to True. In

the following, we will perform LoRA DPO fine-tuning for increased speed and quality.

max_seq_length = 2048

model, tokenizer = FastLanguageModel.from_pretrained(

 model_name="mlabonne/TwinLlama-3.1-8B",

 max_seq_length=max_seq_length,

 load_in_4bit=False,

)

https://github.com/PacktPublishing/LLM-Engineering
https://github.com/unslothai/unsloth
https://huggingface.co/

Fine-Tuning with Preference Alignment252

6. Let’s now prepare the model for PEFT with the LoRA configuration. We increase the rank

(r) and lora_alpha from 32 (as it was in Chapter 5) to 64. This will allow more expressive

fine-tuning. We keep a dropout of 0 for speed and we target every linear module as per

usual.

model = FastLanguageModel.get_peft_model(

 model,

 r=32,

 lora_alpha=32,

 lora_dropout=0,

 target_modules=["q_proj", "k_proj", "v_proj", "up_proj", "down_
proj", "o_proj", "gate_proj"],

)

7. We load the llmtwin-dpo dataset (training split), which contains our prompts, chosen,

and rejected answers.

dataset = load_dataset("mlabonne/llmtwin-dpo", split="train")

8. The data preparation is significantly different from the SFT example in Chapter 5. Here, we

have triples with a prompt, a chosen answer, and a rejected answer. In the format_samples

function, we apply the Alpaca chat template to each individual message. Note that the

instruction is the only one that requires the chat format: chosen and rejected answers

only need to be concatenated with the end of sentence (EOS) token. Finally, we create a

train/test split with a 95%/5% ratio.

alpaca_template = """Below is an instruction that describes a task.
Write a response that appropriately completes the request.

Instruction:

{}

Response:

"""

EOS_TOKEN = tokenizer.eos_token

def format_samples(example):

 example["prompt"] = alpaca_template.format(example["prompt"])

 example["chosen"] = example['chosen'] + EOS_TOKEN

Chapter 6 253

 example["rejected"] = example['rejected'] + EOS_TOKEN

 return {"prompt": example["prompt"], "chosen":
example["chosen"], "rejected": example["rejected"]}

dataset = dataset.map(format_samples)

dataset = dataset.train_test_split(test_size=0.05)

9. The model and data are now ready, so we can start fine-tuning. Compared to SFT, there

are a few new parameters, like ref_model and beta. Since we’re using LoRA (or QLoRA),

we don’t directly train the model but instead the adapters. This means we can use the

original model (without adapters) as a reference, saving a lot of VRAM. The beta param-

eter controls the importance of the reference model. A standard value of 0.1 works well

in most scenarios, but we decided to increase it to 0.5 based on our experiments. This is

due to the fact that the trained model used formal language with lower values. Having it

closer to the reference model helps to fix this issue.

The learning rate is also lower (from 3e-4 for SFT to 2e-6 here). We train for 1 epoch instead

of 3, and the max_seq_length parameter is now broken down into two new parameters:

max_prompt_length (prompt only) and max_length (prompt and answer). Note that we

also replaced the TrainingArguments class with DPOConfig.

trainer = DPOTrainer(

 model=model,

 ref_model=None,

 tokenizer=tokenizer,

 beta=0.5,

 train_dataset=dataset["train"],

 eval_dataset=dataset["test"],

 max_length=max_seq_length//2,

 max_prompt_length=max_seq_length//2,

 args=DPOConfig(

 learning_rate=2e-6,

 lr_scheduler_type="linear",

 per_device_train_batch_size=2,

 per_device_eval_batch_size=2,

 gradient_accumulation_steps=8,

 num_train_epochs=1,

Fine-Tuning with Preference Alignment254

 fp16=not is_bfloat16_supported(),

 bf16=is_bfloat16_supported(),

 optim="adamw_8bit",

 weight_decay=0.01,

 warmup_steps=10,

 output_dir="output",

 eval_strategy="steps",

 eval_steps=0.2,

 logging_steps=1,

 report_to="comet_ml",

 seed=0,

),

)

trainer.train()

10. Once the model is trained, we can run it for a quick sanity check. This step is similar to the

SFT example. It prepares the model for inference and generates a response to a prompt.

FastLanguageModel.for_inference(model)

message = alpaca_template.format("Write a paragraph to introduce
supervised fine-tuning.", "")

inputs = tokenizer([message], return_tensors="pt").to("cuda")

text_streamer = TextStreamer(tokenizer)

_ = model.generate(**inputs, streamer=text_streamer, max_new_
tokens=256, use_cache=True)

11. The trained DPO model returns the following response:

Supervised fine-tuning is a method used to enhance the performance
of pre-trained language models by utilizing labeled data. This
technique involves taking a pre-trained model and refining it on
a specific task, such as content creation or customer service. By
providing the model with relevant data and guidance, it can learn to
generate outputs that align more closely with the desired outcomes.
This approach allows for the creation of more specialized models
that can tackle complex tasks with greater accuracy and efficiency.

Chapter 6 255

We can compare it with the answer provided by the SFT model:

Supervised fine-tuning is a method used to enhance a language model
by providing it with a curated dataset of instructions and their
corresponding answers. This process is designed to align the model's
responses with human expectations, thereby improving its accuracy
and relevance. The goal is to ensure that the model can respond
effectively to a wide range of queries, making it a valuable tool
for applications such as chatbots and virtual assistants.

The DPO model provides an answer that is both more accurate and closer to the desired

writing style. It correctly identifies pre-training language models as source models for

SFT. It also mentions domain or task-specific finetunes instead of alignment with “human

expectations,” which is closer to the preference alignment stage. The answer is also less

formal and something we would use in a blog post.

12. Finally, the last step consists of saving the trained model locally and pushing it to the

Hugging Face Hub.

model.save_pretrained_merged("model", tokenizer, save_
method="merged_16bit")

Congratulations! We have trained and exported our DPO model. It is now available on the Hug-

ging Face Hub at https://huggingface.co/mlabonne/TwinLlama-3.1-8B-DPO. Compared to

SFT, DPO has a few additional metrics that need to be tracked during training. Figure 6.6 shows

the Comet ML dashboard with the main metrics. You can publicly access it using the following

URL: https://www.comet.com/mlabonne/llm-twin-training/

https://huggingface.co/mlabonne/TwinLlama-3.1-8B-DPO
https://www.comet.com/mlabonne/llm-twin-training/

Fine-Tuning with Preference Alignment256

Figure 6.6 – Experiment tracking in Comet ML with DPO metrics

Let’s review these metrics:

• Training loss: We still want the loss to continuously decrease on average. Note that it can

rapidly fall to zero, meaning that the model is no longer learning anything. This behavior

doesn’t necessarily lead to overfitting or bad models but needs to be monitored closely.

• Validation loss: The same thing can be said about the validation loss. We expect a small

gap compared to the training loss.

• Gradient norm: We expect small gradient norms with few spikes.

• Rewards: We have two different rewards: chosen and rejected. They correspond to the

mean difference between the log probabilities output by the trained and reference mod-

els. Over time, we expect the model to choose the chosen answers and reject the rejected

answers, which means that the gap between them should increase. This difference is

directly tracked by the margins metric, defined as the difference between chosen and

rejected rewards. A well-trained model’s margin will quickly increase and then plateau.

Chapter 6 257

• Accuracies: This metric represents the percentage of times the model correctly identifies

the chosen answers. We want this accuracy to gradually increase during training, but it

doesn’t need to reach 100%. An accuracy of 100%, especially if it’s achieved quickly, in-

dicates that the preference dataset might be too easy for the model. While the LLM can

still learn from such a dataset, it might be beneficial to add more challenging examples.

In general, DPO is slightly harder to monitor and debug than SFT because it’s a more complex pro-

cess, involving a reference model. However, it’s also significantly easier to use than PPO and other

RLHF algorithms. As long as you have a high-quality preference dataset and a strong fine-tuned

model, you can experiment with different ranks, beta parameters, learning rates, and number of

epochs to see which experiment best captures your preferences.

While this is not the purpose of this chapter, it is possible to automate the evaluation of models

designed to imitate a writing style. A possible solution consists of comparing the distribution of

words in the text generated by different models (SFT and DPO) with our ground-truth dataset.

In this example, we expect the SFT model to output a lot of words that are overrepresented in

GPT-4o-mini (like “delve into”). The distribution output by our DPO model should be a lot closer

to the chosen answers.

Summary
This chapter explored preference alignment techniques for improving LLMs. It introduced the

concept of preference datasets, explaining their structure and importance in capturing nuanced

human preferences. We implemented our own custom preference data generation pipeline by

comparing original and AI-generated text from real articles. This pipeline can be reused and

customized based on your use case.

We also provided an overview of the evolution of RLHF, leading to the introduction of DPO as a

simpler and more efficient alternative. Finally, we implemented DPO using the Unsloth library to

fine-tune our TwinLlama-3.1-8B model from Chapter 5. Our step-by-step tutorial gave practical

instructions for training the model, as well as highlighting key differences from SFT. The final

model is available on the Hugging Face Hub.

In the next chapter, we will explore the crucial topic of LLM evaluation, addressing the challenges

and current approaches in assessing LLM performance. We’ll cover the creation of domain-specific

evaluation sets, examine why evaluation remains a persistent problem in the field, and introduce

the concept of using larger models to evaluate smaller ones (LLM-as-a-judge). The chapter will

conclude with a comprehensive evaluation pipeline, providing a structured framework for con-

sistent and effective LLM evaluation.

Fine-Tuning with Preference Alignment258

References
• Rafael Rafailov et al.. “Direct Preference Optimization: Your Language Model is Secretly a

Reward Model.” arXiv preprint arXiv:2305.18290, May 2023.

• Timo Kaufmann et al.. “A Survey of Reinforcement Learning from Human Feedback.” arXiv

preprint arXiv:2312.14925, December 2023.

• Anthropic. “GitHub - anthropics/hh-rlhf: Human preference data for “Training a Helpful and

Harmless Assistant with Reinforcement Learning from Human Feedback”.” github.com, 2022,

https://github.com/anthropics/hh-rlhf.

• Nisan Stiennon et al.. “Learning to summarize from human feedback.” arXiv preprint arX-

iv:2009.01325, September 2020.

• Intel(R) Neural Compressor. “Supervised Fine-Tuning and Direct Preference Optimization

on Intel Gaudi2.” medium.com, March 26, 2024, https://medium.com/intel-analytics-
software/the-practice-of-supervised-finetuning-and-direct-preference-

optimization-on-habana-gaudi2-a1197d8a3cd3.

• Argilla. “GitHub - argilla-io/distilabel.” github.com, August 23, 2024, https://github.

com/argilla-io/distilabel.

• Databricks. “Enhancing LLM-as-a-Judge with Grading Notes.” databricks.com, July 22, 2024,

https://www.databricks.com/blog/enhancing-llm-as-a-judge-with-grading-notes.

• Akrour, Riad & Schoenauer, Marc & Sebag, Michèle. (2011). Preference-Based Policy Learn-

ing. 12-27. 10.1007/978-3-642-23780-5_11.

• Cheng, Weiwei & Fürnkranz, Johannes & Hüllermeier, Eyke & Park, Sang-Hyeun. (2011).

Preference-Based Policy Iteration: Leveraging Preference Learning for Reinforcement Learning.

312-327. 10.1007/978-3-642-23780-5_30.

• Paul Christiano et al.. “Deep reinforcement learning from human preferences.” arXiv preprint

arXiv:1706.03741, June 2017.

• Long Ouyang et al.. “Training language models to follow instructions with human feedback.”

arXiv preprint arXiv:2203.02155, March 2022.

• John Schulman et al.. “Proximal Policy Optimization Algorithms.” arXiv preprint arX-

iv:1707.06347, July 2017.

• unslothai. “GitHub - unslothai/unsloth: Finetune Llama 3.1, Mistral, Phi & Gemma LLMs

2-5x faster with 80% less memory.” github.com, August 21, 2024, https://github.com/

unslothai/unsloth.

https://github.com/anthropics/hh-rlhf
https://medium.com/intel-analytics-software/the-practice-of-supervised-finetuning-and-direct-preference-optimization-on-habana-gaudi2-a1197d8a3cd3
https://medium.com/intel-analytics-software/the-practice-of-supervised-finetuning-and-direct-preference-optimization-on-habana-gaudi2-a1197d8a3cd3
https://medium.com/intel-analytics-software/the-practice-of-supervised-finetuning-and-direct-preference-optimization-on-habana-gaudi2-a1197d8a3cd3
github.com
https://github.com/argilla-io/distilabel
https://github.com/argilla-io/distilabel
https://www.databricks.com/blog/enhancing-llm-as-a-judge-with-grading-notes
https://github.com/unslothai/unsloth
https://github.com/unslothai/unsloth

Chapter 6 259

Join our book’s Discord space
Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/llmeng

https://packt.link/llmeng

7
Evaluating LLMs

LLM evaluation is a crucial process used to assess the performance and capabilities of LLM models.

It can take multiple forms, such as multiple-choice question answering, open-ended instructions,

and feedback from real users. Currently, there is no unified approach to measuring a model’s

performance but there are patterns and recipes that we can adapt to specific use cases.

While general-purpose evaluations are the most popular ones, with benchmarks like Massive

Multi-Task Language Understanding (MMLU) or LMSYS Chatbot Arena, domain- and task-spe-

cific models benefit from more narrow approaches. This is particularly true when dealing with

entire LLM systems (as opposed to models), often centered around a retrieval-augmented gen-

eration (RAG) pipeline. In these scenarios, we need to expand our evaluation framework to en-

compass the entire system, including new modules like retrievers and post-processors.

In this chapter, we will cover the following topics:

• Model evaluation

• RAG evaluation

• Evaluating TwinLlama-3.1-8B

By the end of this chapter, you will know the most popular LLM evaluations and how to evaluate

models and RAG systems using different techniques.

Model evaluation
In model evaluation, the objective is to assess the capabilities of a single model without any

prompt engineering, RAG pipeline, and so on.

Evaluating LLMs262

This evaluation is essential for several reasons, such as selecting the most relevant LLM or making

sure that the fine-tuning process actually improved the model. In this section, we will compare

ML and LLM evaluation to understand the main differences between these two fields. We will

then explore benchmarks for general-purpose, domain-specific, and task-specific models.

Comparing ML and LLM evaluation
ML evaluation is centered on assessing the performance of models designed for tasks like pre-

diction, classification, and regression. Unlike the evaluation of LLMs, which often focuses on

how well a model understands and generates language, ML evaluation is more concerned with

how accurately and efficiently a model can process structured data to produce specific outcomes.

This difference comes from the nature of the tasks these models handle. ML models are gener-

ally designed for narrowly defined problems, such as predicting stock prices or detecting out-

liers, which often involve numerical or categorical data, making the evaluation process more

straightforward. On the other hand, LLMs are tasked with interpreting and generating language,

which adds a layer of subjectivity to the evaluation process. Instead of relying solely on numerical

benchmarks, LLM evaluation requires a more nuanced approach and often incorporates qualita-

tive assessments, examining how well the model produces coherent, relevant, and contextually

accurate responses in natural language.

In particular, we can see three key differences in how these models work, which impact the

evaluation process:

• Numerical metrics: Evaluating ML models typically involves measuring objective per-

formance metrics, such as accuracy, precision, recall, or mean squared error, depending

on the type of task at hand. This is less clear with LLMs, which can handle multiple tasks

(hence, multiple evaluations) and can rarely rely on the same numerical metrics.

• Feature engineering: In traditional ML, a critical part of the process involves manually

selecting and transforming relevant data features before training the model. Evaluating

the success of this feature engineering often becomes part of the broader model evalua-

tion. LLMs, however, are designed to handle raw text data directly, reducing the need for

manual feature engineering.

• Interpretability: With ML models, it is easier to interpret why a model made certain pre-

dictions or classifications, and this interpretability can be a core part of their evaluation.

This direct interpretation is not possible with LLMs. However, requesting explanations

during the generation process can give insights into the model’s decision-making process.

Chapter 7 263

In the following section, we will see a more fine-grained exploration of different types of LLMs.

While evaluating general-purpose models is fairly disconnected from ML evaluation, task-specific

LLMs are more closely aligned with traditional ML.

General-purpose LLM evaluations
General-purpose evaluations refer to metrics dedicated to base and general-purpose fine-tuned

models. They cover a breadth of capabilities that are correlated with knowledge and usefulness

without focusing on specific tasks or domains. This allows developers to get an overview of

these capabilities, compare themselves with competitors, and identify strengths and weaknesses.

Based on these results, it is possible to tweak the dataset and hyperparameters, or even modify

the architecture.

We can broadly categorize general-purpose evaluations in three phases: during pre-training, after

pre-training, and after fine-tuning.

During pre-training, we closely monitor how the model learns, as shown at the end of Chapter

5. The most straightforward metrics are low-level and correspond to how models are trained:

• Training loss: Based on the cross-entropy loss, measures the difference between the

model’s predicted probability distribution and the true distribution of the next token

• Validation loss: Calculates the same loss as training loss, but on a held-out validation

set to assess generalization

• Perplexity: Exponential of the cross-entropy loss, representing how “surprised” the model

is by the data (lower is better)

• Gradient norm: Monitors the magnitude of gradients during training to detect potential

instabilities or vanishing/exploding gradients

It’s also possible to include benchmarks like HellaSwag (common sense reasoning) during this

stage but there’s a risk of overfitting these evaluations.

After pre-training, it is common to use a suite of evaluations to evaluate the base model. This

suite can include internal and public benchmarks. Here’s a non-exhaustive list of common public

pre-training evaluations:

• MMLU (knowledge): Tests models on multiple-choice questions across 57 subjects, from

elementary to professional levels

• HellaSwag (reasoning): Challenges models to complete a given situation with the most

plausible ending from multiple choices

Evaluating LLMs264

• ARC-C (reasoning): Evaluates models on grade-school-level multiple-choice science

questions requiring causal reasoning

• Winogrande (reasoning): Assesses common sense reasoning through pronoun resolution

in carefully crafted sentences

• PIQA (reasoning): Measures physical common sense understanding through questions

about everyday physical interactions

Many of these datasets are also used to evaluate general-purpose fine-tuned models. In this

case, we focus on the difference in a given score between the base and the fine-tuned model. For

example, bad fine-tuning can degrade the knowledge of the model, measured by MMLU. On the

contrary, a good one might instill even more knowledge and increase the MMLU score.

This can also help identify any contamination issues, where the model might have been fine-

tuned on data that is too close to a test set. For instance, improving the MMLU score of a base

model by 10 points during the fine-tuning phase is unlikely. This is a sign that the instruction

data might be contaminated.

In addition to these pre-trained evaluations, fine-tuned models also have their own benchmarks.

Here, we use the term “fine-tuned model” to designate a model that has been trained with su-

pervised fine-tuning (SFT) and preference alignment. These benchmarks target capabilities

connected to the ability of fine-tuned models to understand and answer questions. In particular,

they test instruction-following, multi-turn conversation, and agentic skills:

• IFEval (instruction following): Assesses a model’s ability to follow instructions with

particular constraints, like not outputting any commas in your answer

• Chatbot Arena (conversation): A framework where humans vote for the best answer to

an instruction, comparing two models in head-to-head conversations

• AlpacaEval (instruction following): Automatic evaluation for fine-tuned models that is

highly correlated with Chatbot Arena

• MT-Bench (conversation): Evaluates models on multi-turn conversations, testing their

ability to maintain context and provide coherent responses

• GAIA (agentic): Tests a wide range of abilities like tool use and web browsing, in a multi-

step fashion

Understanding how these evaluations are designed and used is important to choose the best LLM

for your application. For example, if you want to fine-tune a model, you want the best base model

in terms of knowledge and reasoning for a given size. This allows you to compare the capabilities

of different LLMs and pick the one that will offer the strongest foundation for your fine-tuning.

Chapter 7 265

Even if you don’t want to fine-tune a model, benchmarks like Chatbot Arena or IFEval are a good

way to compare different instruct models. For instance, you want great conversational abilities

if you’re building a chatbot. However, this is not necessary if your end goal is something like

information extraction from unstructured documents. In this case, you will benefit more from

excellent instruction-following skills to understand and execute tasks.

While these benchmarks are popular and useful, they also suffer from inherent flaws. For exam-

ple, public benchmarks can be gamed by training models on test data or samples that are very

similar to benchmark datasets. Even human evaluation is not perfect and is often biased toward

long and confident answers, especially when they’re nicely formatted (e.g., using Markdown).

On the other hand, private test sets have not been scrutinized as much as public ones and might

have their own issues and biases.

This means that benchmarks are not a single source of truth but should be used as signals. Once

multiple evaluations provide a similar answer, you can raise your confidence level about the real

capabilities of a model.

Domain-specific LLM evaluations
Domain-specific LLMs don’t have the same scope as general-purpose models. This is helpful to

target more fine-grained capabilities with more depth than the previous benchmarks.

Within the category, the choice of benchmarks entirely depends on the domain in question. For

common applications like a language-specific model or a code model, it is recommended to

search for relevant evaluations and even benchmark suites. These suites encompass different

benchmarks and are designed to be reproducible. By targeting different aspects of a domain, they

often capture domain performance more accurately.

To illustrate this, here is a list of domain-specific evaluations with leaderboards on the Hugging

Face Hub:

• Open Medical-LLM Leaderboard: Evaluates the performance of LLMs in medical ques-

tion-answering tasks. It regroups 9 metrics, with 1,273 questions from the US medical li-

cense exams (MedQA), 500 questions from PubMed articles (PubMedQA), 4,183 questions

from Indian medical entrance exams (MedMCQA), and 1,089 questions from 6 sub-cate-

gories of MMLU (clinical knowledge, medical genetics, anatomy, professional medicine,

college biology, and college medicine).

Evaluating LLMs266

• BigCodeBench Leaderboard: Evaluates the performance of code LLMs, featuring two main

categories: BigCodeBench-Complete for code completion based on structured docstrings,

and BigCodeBench-Instruct for code generation from natural language instructions. Mod-

els are ranked by their Pass@1 scores using greedy decoding, with an additional Elo rating

for the Complete variant. It covers a wide range of programming scenarios that test LLMs’

compositional reasoning and instruction-following capabilities.

• Hallucinations Leaderboard: Evaluates LLMs’ tendency to produce false or unsupported

information across 16 diverse tasks spanning 5 categories. These include Question Answer-

ing (with datasets like NQ Open, TruthfulQA, and SQuADv2), Reading Comprehension (using

TriviaQA and RACE), Summarization (employing HaluEval Summ, XSum, and CNN/DM),

Dialogue (featuring HaluEval Dial and FaithDial), and Fact Checking (utilizing MemoTrap,

SelfCheckGPT, FEVER, and TrueFalse). The leaderboard also assesses instruction-follow-

ing ability using IFEval.

• Enterprise Scenarios Leaderboard: Evaluates the performance of LLMs on six real-world

enterprise use cases, covering diverse tasks relevant to business applications. The bench-

marks include FinanceBench (100 financial questions with retrieved context), Legal Con-

fidentiality (100 prompts from LegalBench for legal reasoning), Writing Prompts (cre-

ative writing evaluation), Customer Support Dialogue (relevance in customer service

interactions), Toxic Prompts (safety assessment for harmful content generation), and

Enterprise PII (business safety for sensitive information protection). Some test sets are

closed-source to prevent gaming of the leaderboard. The evaluation focuses on specific

capabilities such as answer accuracy, legal reasoning, creative writing, contextual rele-

vance, and safety measures, providing a comprehensive assessment of LLMs’ suitability

for enterprise environments.

Leaderboards can have different approaches based on their domain. For example, BigCodeBench

is significantly different from others because it relies on only two metrics that sufficiently cap-

ture the entire domain. On the other hand, the Hallucinations Leaderboard regroups 16 metrics,

including many general-purpose evaluations. It shows that in addition to custom benchmarks,

reusing general-purpose ones can complete your own suite.

In particular, language-specific LLMs often reuse translated versions of general-purpose bench-

marks. This can be completed with original evaluations in the native language. While some of

these benchmarks use machine translation, it is better to rely on human-translated evaluations

to improve their quality. We selected the following three task-specific leaderboards and their

respective evaluation suites to give you an idea of how to build your own:

Chapter 7 267

• OpenKo-LLM Leaderboard: Evaluates the performance of Korean LLMs using nine metrics.

These metrics are a combination of general-purpose benchmarks translated into Korean

(GPQA, Winogrande, GSM8K, EQ-Bench, and IFEval) and custom evaluations (Knowledge,

Social Value, Harmlessness, and Helpfulness).

• Open Portuguese LLM Leaderboard: Evaluates the performance of Portuguese language

LLMs using nine diverse benchmarks. These benchmarks include educational assessments

(ENEM with 1,430 questions, and BLUEX with 724 questions from university entrance ex-

ams), professional exams (OAB Exams with over 2,000 questions), language understand-

ing tasks (ASSIN2 RTE and STS, FAQUAD NLI), and social media content analysis (HateBR

with 7,000 Instagram comments, PT Hate Speech with 5,668 tweets, and tweetSentBR).

• Open Arabic LLM Leaderboard: Evaluates the performance of Arabic language LLMs

using a comprehensive set of benchmarks, including both native Arabic tasks and trans-

lated datasets. The leaderboard features two native Arabic benchmarks: AlGhafa and

Arabic-Culture-Value-Alignment. Additionally, it incorporates 12 translated benchmarks

covering various domains, such as MMLU, ARC-Challenge, HellaSwag, and PIQA.

Both general-purpose and domain-specific evaluations are designed with three main principles.

First, they should be complex and challenge models to distinguish good and bad outputs. Second,

they should be diverse and cover as many topics and scenarios as possible. When one benchmark

is not enough, additional ones can create a stronger suite. Finally, they should be practical and

easy to run. This is more connected to evaluation libraries, which can be more or less complex to

work with. We recommend lm-evaluation-harness (github.com/EleutherAI/lm-evaluation-

harness) from Eleuther AI and lighteval (github.com/huggingface/lighteval) from Hugging

Face to run your benchmarks.

Task-specific LLM evaluations
While general-purpose and domain-specific evaluations indicate strong base or instruct models,

they cannot provide insights into how well these models work for a given task. This requires

benchmarks specifically designed for this purpose, measuring downstream performance.

Because of their narrow focus, task-specific LLMs can rarely rely on pre-existing evaluation data-

sets. This can be advantageous because their outputs also tend to be more structured and easier

to evaluate using traditional ML metrics. For example, a summarization task can leverage the

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metric, which measures the over-

lap between the generated text and reference text using n-grams.

github.com/EleutherAI/lm-evaluation-harness
github.com/EleutherAI/lm-evaluation-harness
github.com/huggingface/lighteval

Evaluating LLMs268

Likewise, classification tasks also benefit from it and use the following classic metrics, among

others:

• Accuracy: Accuracy refers to the proportion of correctly predicted instances compared

to the total instances. It’s particularly useful for tasks with categorical outputs or where

there is a clear distinction between right and wrong answers, such as named entity rec-

ognition (NER).

• Precision: The ratio of true positive predictions to the total positive predictions made

by the model.

• Recall: The ratio of true positive predictions to the total actual positive instances.

• F1 Score: The harmonic mean of precision and recall, used to balance both metrics. These

are particularly useful in tasks such as classification or entity extraction.

When the task cannot be directly mapped to a traditional ML task, it is possible to create a custom

benchmark. This benchmark can be inspired by general-purpose and domain-specific evaluation

datasets. A common and successful pattern is the use of multiple-choice question answering. In

this framework, the instruction consists of a question with several options. See the following

example with a question from the MMLU dataset (abstract algebra):

Instruction

Find the degree for the given field extension Q(sqrt(2), sqrt(3)) over Q.

A. 0

B. 4

C. 2

D. 6

Output

B

Table 7.1: Example from the MMLU dataset

Chapter 7 269

There are two main ways of evaluating models with this scheme—text generation and log-like-

lihood evaluations:

• The first approach involves having the model generate text responses and comparing

those to predefined answer choices. For example, the model generates a letter (A, B, C, or

D) as its answer, which is then checked against the correct answer. This method tests the

model’s ability to produce coherent and accurate responses in a format similar to how it

would be used in real-world applications.

• Evaluation using probabilities, on the other hand, looks at the model’s predicted probabil-

ities for different answer options without requiring text generation. For MMLU, lm-eval-

uation-harness compares the probabilities for the full text of each answer choice. This

approach allows for a more nuanced assessment of the model’s understanding, as it can

capture the relative confidence the model has in different options, even if it wouldn’t

necessarily generate the exact correct answer text.

For simplicity, we recommend the text-generation version of the evaluation that mimics human

test-taking. It is easier to implement, and generally more discriminative, as low-quality models

tend to overperform on probability-based evaluations. You can adapt this technique to quiz your

models about a particular task, and even expand it to specific domains.

Conversely, if the task is too open-ended, traditional ML metrics and multiple-choice question

answering might not be relevant. In this scenario, the LLM-as-a-judge technique introduced in

Chapter 5 can be used to evaluate the quality of the answers. If you have ground-truth answers,

providing them as additional context improves the accuracy of the evaluation. Otherwise, defining

different dimensions (such as relevance or toxicity, depending on your task) can also ground the

evaluation in more interpretable categories.

It is recommended to use large models for evaluation and to iteratively refine your prompt. In

this process, the explanations outputted by the model are important for understanding errors in

its reasoning and fixing them through additional prompt engineering.

Evaluating LLMs270

In order to easily parse answers, one can specify a structure in the instruction or use some kind

of structured generation (like Outlines or OpenAI’s JSON mode). Here is an example of an in-

struction with a structure:

You are an evaluator who assesses the quality of an answer to an
instruction.

Your goal is to provide a score that represents how well the answer
addresses the instruction.

You will use a scale of 1 to 4, where each number represents the following:

1. The answer is not relevant to the instruction.

2. The answer is relevant but not helpful.

3. The answer is relevant and helpful but could be more detailed.

4. The answer is relevant, helpful, and detailed.

Please provide your evaluation as follows:

##Evaluation##

Explanation: (analyze the relevant, helpfulness, and complexity of the
answer)

Total rating: (final score as a number between 1 and 4)

Instruction:

{instruction}

Answer:

{answer}

##Evaluation##

Explanation:

Table 7.2: Example of general-purpose LLM-as-a-judge prompt for answer evaluation

Naturally, you can tweak the scale, add a ground-truth answer to this prompt, and customize it

for your own use cases.

Chapter 7 271

However, judge LLMs can exhibit biases favoring assertive or verbose responses, potentially

overrating answers that sound more confident but are less accurate. They may also lack domain

expertise for specialized topics, leading to misjudgments. Consistency is also a concern, as LLMs

might score similar responses differently. Additionally, they could have implicit preferences for

certain writing styles unrelated to actual answer quality. To mitigate these issues, it’s possible to

combine LLM evaluations with other metrics, use multiple judges, and carefully design prompts

to address biases.

Once a model has been properly evaluated and works as intended, it might be included within a

broader system. In the next section, we will see how systems change the evaluation framework.

RAG evaluation
While traditional LLM evaluation focuses on the model’s inherent capabilities, RAG evaluation

requires a more comprehensive approach that considers both the model’s generative abilities

and its interaction with external information sources.

RAG systems combine the strengths of LLMs with information retrieval mechanisms, allowing

them to generate responses that are not only coherent and contextually appropriate but also

grounded in up-to-date, externally sourced information. This makes RAG particularly valuable

in fields where current and accurate information is crucial, such as news reporting, research, and

customer support.

The evaluation of RAG systems goes beyond assessing a standalone LLM. It requires examining

the entire system’s performance, including:

• Retrieval accuracy: How well does the system fetch relevant information?

• Integration quality: How effectively is the retrieved information incorporated into the

generated response?

• Factuality and relevance: Does the final output address the query appropriately while

seamlessly blending retrieved and generated content?

Key metrics for RAG evaluation include retrieval precision and recall, which measure the accura-

cy and comprehensiveness of the retrieved information. Additionally, the quality of integration

between retrieved data and generated text is crucial, as is the overall factuality and coherence

of the output.

Evaluating LLMs272

To illustrate how these metrics are applied in practice, consider a RAG system designed for a

customer support chatbot in an e-commerce setting. In this scenario, the user asks “What’s your

return policy for laptops purchased during the holiday sale?” The RAG pipeline finds relevant

documents on the electronics return policy and documents on holiday sale terms. This additional

context is appended at the end of the question, and the model uses it to respond:

For laptops purchased during our holiday sale, you have an extended return
period of 60 days from the date of purchase. This is longer than our
standard 30-day return policy for electronics. Please ensure the laptop is
in its original packaging with all accessories to be eligible for a full
refund.

Table 7.3: Example of output from a RAG pipeline designed for customer support

In this pipeline, we can evaluate if the retrieved documents correspond to what was expected

(retrieval accuracy). We can also measure the difference between responses with and without

additional context (integration quality). Finally, we can assess whether the output is relevant and

grounded in the information provided by the documents (factuality and relevance).

In this section, we will cover two methods to evaluate how well RAG models incorporate external

information into their responses.

Ragas
Retrieval-Augmented Generation Assessment (Ragas) is an open-source toolkit designed to

provide developers with a comprehensive set of tools for RAG evaluation and optimization. It’s

designed around the idea of metrics-driven development (MDD), a product development ap-

proach that relies on data to make well-informed decisions, involving the ongoing monitoring

of essential metrics over time to gain valuable insights into an application’s performance. By

embracing this methodology, Ragas enables developers to objectively assess their RAG systems,

identify areas for improvement, and track the impact of changes over time.

One of the key capabilities of Ragas is its ability to synthetically generate diverse and complex

test datasets. This feature addresses a significant pain point in RAG development, as manually

creating hundreds of questions, answers, and contexts is both time-consuming and labor-inten-

sive. Instead, it uses an evolutionary approach paradigm inspired by works like Evol-Instruct to

craft questions with varying characteristics such as reasoning complexity, conditional elements,

and multi-context requirements. This approach ensures a comprehensive evaluation of different

components within the RAG pipeline.

Chapter 7 273

Additionally, Ragas can generate conversational samples that simulate chat-based question-and-

follow-up interactions, allowing developers to evaluate their systems in more realistic scenarios.

Figure 7.1: Overview of the Ragas evaluation framework

As illustrated in Figure 7.1, Ragas provides a suite of LLM-assisted evaluation metrics designed to

objectively measure different aspects of RAG system performance. These metrics include:

• Faithfulness: This metric measures the factual consistency of the generated answer against

the given context. It works by breaking down the answer into individual claims and ver-

ifying if each claim can be inferred from the provided context. The faithfulness score is

calculated as the ratio of verifiable claims to the total number of claims in the answer.

• Answer relevancy: This metric evaluates how pertinent the generated answer is to the

given prompt. It uses an innovative approach where an LLM is prompted to generate

multiple questions based on the answer and then calculates the mean cosine similarity

between these generated questions and the original question. This method helps identify

answers that may be factually correct but off-topic or incomplete.

• Context precision: This metric evaluates whether all the ground-truth relevant items

present in the contexts are ranked appropriately. It considers the position of relevant in-

formation within the retrieved context, rewarding systems that place the most pertinent

information at the top.

• Context recall: This metric measures the extent to which the retrieved context aligns with

the annotated answer (ground truth). It analyzes each claim in the ground truth answer

to determine whether it can be attributed to the retrieved context, providing insights into

the completeness of the retrieved information.

Evaluating LLMs274

Finally, Ragas also provides building blocks for monitoring RAG quality in production environ-

ments. This facilitates continuous improvement of RAG systems. By leveraging the evaluation

results from test datasets and insights gathered from production monitoring, developers can

iteratively enhance their applications. This might involve fine-tuning retrieval algorithms, ad-

justing prompt engineering strategies, or optimizing the balance between retrieved context and

LLM generation.

Ragas can be complemented with another approach, based on custom classifiers.

ARES
ARES (an automated evaluation framework for RAG systems) is a comprehensive tool designed

to evaluate RAG systems. It offers an automated process that combines synthetic data genera-

tion with fine-tuned classifiers to assess various aspects of RAG performance, including context

relevance, answer faithfulness, and answer relevance.

The ARES framework operates in three main stages: synthetic data generation, classifier training,

and RAG evaluation. Each stage is configurable, allowing users to tailor the evaluation process

to their specific needs and datasets.

In the synthetic data generation stage, ARES creates datasets that closely mimic real-world sce-

narios for robust RAG testing. Users can configure this process by specifying document file paths,

few-shot prompt files, and output locations for the synthetic queries. The framework supports

various pre-trained language models for this task, with the default being google/flan-t5-xxl.

Users can control the number of documents sampled and other parameters to balance between

comprehensive coverage and computational efficiency.

Figure 7.2: Overview of the ARES evaluation framework

Chapter 7 275

The classifier training stage involves creating high-precision classifiers to determine the relevance

and faithfulness of RAG outputs. Users can specify the classification dataset (typically generated

from the previous stage), test set for evaluation, label columns, and model choice. ARES uses mi-

crosoft/deberta-v3-large as the default model but supports other Hugging Face models. Training

parameters such as the number of epochs, patience value for early stopping, and learning rate

can be fine-tuned to optimize classifier performance.

The final stage, RAG evaluation, leverages the trained classifiers and synthetic data to assess the

RAG model’s performance. Users provide evaluation datasets, few-shot examples for guiding the

evaluation, classifier checkpoints, and gold label paths. ARES supports various evaluation metrics

and can generate confidence intervals for its assessments.

ARES offers flexible model execution options, supporting both cloud-based and local runs through

vLLM integration. The framework also supports various artifact types (code snippets, documents,

HTML, images, and so on), enabling comprehensive evaluation across different RAG system

outputs.

In summary, Ragas and ARES complement each other through their distinct approaches to eval-

uation and dataset generation. Ragas’s strength in production monitoring and LLM-assisted

metrics can be combined with ARES’s highly configurable evaluation process and classifier-based

assessments. While Ragas may offer more nuanced evaluations based on LLM capabilities, ARES

provides consistent and potentially faster evaluations once its classifiers are trained. Combining

them offers a comprehensive evaluation framework, benefiting from quick iterations with Ragas

and in-depth, customized evaluations with ARES at key stages.

In the next section, we will create our own evaluation framework to evaluate our task-specific

TwinLlama-3.1-8B model.

Evaluating TwinLlama-3.1-8B
In the previous chapters, we created two models fine-tuned to generate high-quality posts and

articles: TwinLlama-3.1-8B and TwinLlama-3.1-8B-DPO. Based on this summary, we want to

assess their abilities to write text that is both accurate and well-written. In comparison, gener-

al-purpose fine-tuned models are accurate thanks to their extensive knowledge but often use

overly formal and verbose language. With this fine-tuning, we want to adopt a more natural

writing style, based on the original articles from the training set.

Evaluating LLMs276

Due to the open-ended nature of this problem, we will leverage a judge LLM to evaluate the quality

of the generated text. It will take both the instruction and the answer as inputs, and score it on

a 1–3 scale based on two criteria:

• Accuracy: The degree of factual correctness and comprehensiveness of the information

presented in the answer

• Style: The appropriateness of the tone and writing style for blog posts or social media

content (no formal or academic expressions)

In our evaluation framework, we will use the test split of our instruction dataset to get test in-

structions. We will feed them to our models and generate answers. These answers will then be

evaluated by our judge LLM (GPT-4o-mini), based on a prompt that specifies our criteria. Finally,

we will analyze the scores and draw conclusions based on qualitative and quantitative evaluations.

Generating answers
The first step consists of efficiently generating answers for each instruction in our test set. In ad-

dition to our two models, we will also use meta-llama/Meta-Llama-3.1-8B-Instruct, the official

instruct version of Llama-3.1-8B, as a reference point to better understand the trade-offs we made.

Let’s start the first stage of the implementation:

1. We import the relevant libraries, including vLLM for fast generation. This library is a lot

faster than transformers for batch generation with local models:

from vllm import LLM, SamplingParams

from datasets import load_dataset

from tqdm.auto import tqdm

import gc

2. We define a function called generate_answers that will process our dataset and generate

responses using a specified model. It takes two inputs—the ID of the model we want to

use and the name of the test dataset:

def generate_answers(model_id, dataset_name):

 dataset = load_dataset(dataset_name, split="test")

3. We need to format the raw instructions using the chat template our models have been

trained on. Note that Llama-3.1-8B-Instruct has been used with a different template, but

it can follow this simple format. Here, we use the same chat template with every model

for simplicity. We map the entire test set to this template with the format() function:

Chapter 7 277

 def format(sample):

 return "Below is an instruction that describes a task.
Write a response that appropriately completes the request.\n\n###
Instruction:\n{}\n\n### Response:\n".format(sample["instruction"])

 dataset = dataset.map(lambda sample: {"prompt": format(sample)})

4. Let’s initialize the LLM object used by vLLM with a maximum length of 4,096 tokens. We

can also specify sampling parameters, which correspond to variables used in the decod-

ing strategy. Here, we use parameters to encourage diversity (high temperature) while

removing the most unlikely tokens (top_p and min_p). Finally, we start the generation

by providing the list of prompts with dataset["prompt"]:

 llm = LLM(model=model_id, max_model_len=4096)

 sampling_params = SamplingParams(temperature=0.8, top_p=0.95,
min_p=0.05, max_tokens=4096)

 outputs = llm.generate(dataset["prompt"], sampling_params)

5. This process should take a few minutes with our 334 prompts. Once this is done, we ex-

tract the answers from the object that is outputted by vLLM. We then add these answers

as a new column to our dataset. This is useful to log the answers and review them later:

 answers = [output.outputs[0].text for output in outputs]

 dataset = dataset.add_column("answers", answers)

6. We save our results to the Hugging Face Hub for easy access later. Then, we clear our GPU

memory to prevent running out of space when we process the next model:

 print(f"Uploading results for {model_id}")

 dataset.push_to_hub(f"mlabonne/{model_id.split('/')
[-1]}-results")

 gc.collect()

 return dataset

7. We create a list of the three models we want to test. Then, we run our generate_answers()

function for each of these models, one at a time. This will create and upload a separate

set of results for each model:

model_ids = [

 'mlabonne/TwinLlama-3.1-8B',

 'mlabonne/TwinLlama-3.1-8B-DPO',

Evaluating LLMs278

 'meta-llama/Meta-Llama-3.1-8B-Instruct'

]

for model_id in model_ids:

 generate_answers(model_id, "mlabonne/llmtwin")

Now that we have the answer generation, we can move on to the evaluation process.

Evaluating answers
To evaluate our answers, we will rely on GPT-4o-mini as a judge. This strategy is similar to what

we used for data generation. As a matter of fact, you could adapt it to filter out bad samples during

the data generation process. Here, we will score every generated answer from every model in

terms of accuracy and style. The average scores will inform us about the quality of our fine-tuning

compared to Llama-3.1-8B-Instruct:

1. First, we import the required libraries, including openai:

import json

from typing import List

from datasets import Dataset, load_dataset

from openai import OpenAI

from tqdm.auto import tqdm

import concurrent.futures

2. We then define the evaluate_answer() function. This function contains our evaluation

prompt, which sets up the context for evaluating answers based on accuracy and style:

def evaluate_answer(

 instruction: str, answer: str, client: OpenAI

) -> dict:

 prompt = f"""You are an expert judge. Please evaluate the
quality of a given answer to an instruction based on two criteria:

1. Accuracy: How factually correct is the information presented in
the answer? You are a technical expert in this topic.

2. Style: Is the tone and writing style appropriate for a blog post
or social media content? It should use simple but technical words
and avoid formal or academic language.

3. In the same prompt, we define our scales for each metric. Those are three-point Likert

scales with a precise definition for each score:

Accuracy scale:

Chapter 7 279

1 (Poor): Contains factual errors or misleading information

2 (Good): Mostly accurate with minor errors or omissions

3 (Excellent): Highly accurate and comprehensive

Style scale:

1 (Poor): Too formal, uses some overly complex words

2 (Good): Good balance of technical content and accessibility, but
still uses formal words and expressions

3 (Excellent): Perfectly accessible language for blog/social media,
uses simple but precise technical terms when necessary

4. Finally, we conclude the prompt with two examples to illustrate what we mean by “complex

words” and “formal or academic language.” We provide the corresponding instruction-an-

swer pair and ask the model to return a response in JSON:

Example of bad style: The Llama2 7B model constitutes a noteworthy
progression in the field of artificial intelligence, serving as the
successor to its predecessor, the original Llama architecture.

Example of excellent style: Llama2 7B outperforms the original Llama
model across multiple benchmarks.

Instruction: {instruction}

Answer: {answer}

Provide your evaluation in JSON format with the following structure:

{{

 "accuracy": {{

 "analysis": "...",

 "score": 0

 }},

 "style": {{

 "analysis": "...",

 "score": 0

 }}

}}

"""

Evaluating LLMs280

5. This prompt is given as a user query to the GPT-4o-mini model. The system prompt rein-

forces that we are interested in answer evaluation based on accuracy and style:

 completion = client.chat.completions.create(

 model="gpt-4o-mini",

 messages=[

 {

 "role": "system",

 "content": "You are a helpful assistant who
evaluates answers based on accuracy and style. Provide your response
in JSON format with a short analysis and score for each criterion.",

 },

 {"role": "user", "content": prompt},

],

 response_format={"type": "json_object"},

 max_tokens=1000,

 temperature=0.8,

)

6. As in the previous chapters, we will batch our requests to speed up the process. This is

why we create an evaluate_batch() function, which returns a list of parsed structured

outputs with their corresponding indices. These indices are important to ensure a correct

ordering of the evaluations:

def evaluate_batch(batch, start_index):

 client = OpenAI(api_key=OPENAI_KEY)

 return [

 (i, evaluate_answer(instr, ans, client))

 for i, (instr, ans) in enumerate(batch, start=start_index)

]

7. We can now orchestrate the previous code in the evaluate_answers() function. It takes

the model ID, number of threads, and batch size as inputs. First, we load the dataset with

the generations we previously saved:

def evaluate_answers(model_id: str, num_threads: int = 10, batch_
size: int = 5) -> Dataset:

 dataset = load_dataset(f"mlabonne/{model_id.split('/')
[-1]}-results", split="all")

Chapter 7 281

8. We create batches of instruction-answer pairs from our dataset. Each batch contains

batch_size number of pairs:

 batches = [

 (i, list(zip(dataset["instruction"][i:i+batch_size],
dataset["answers"][i:i+batch_size])))

 for i in range(0, len(dataset), batch_size)

]

9. We perform parallel evaluation of batches of instruction-answer pairs using multiple

threads. We use parallel processing to evaluate multiple batches simultaneously, speed-

ing up the overall evaluation process. The ThreadPoolExecutor submits each batch to

evaluate_batch(). The results are stored in the evaluations list:

 evaluations = [None] * len(dataset)

 with concurrent.futures.ThreadPoolExecutor(max_workers=num_
threads) as executor:

 futures = [executor.submit(evaluate_batch, batch, start_
index) for start_index, batch in batches]

 for future in tqdm(concurrent.futures.as_completed(futures),
total=len(futures)):

 for index, evaluation in future.result():

 evaluations[index] = evaluation

10. We create a new column with the result of the evaluation process. This column will store

the raw JSON output of the judge model, including scores and explanations:

 if 'evaluation' in dataset.column_names:

 dataset = dataset.remove_columns(['evaluation'])

 dataset = dataset.add_column("evaluation", evaluations)

11. We can directly parse this JSON object with json.loads() and try to retrieve the accuracy

and style scores that should have been generated. This generation is in best-effort mode,

which means that scores are not guaranteed. If there’s an error in parsing, we use None

values as a fallback:

 accuracy_scores = []

 style_scores = []

Evaluating LLMs282

 for evaluation in dataset['evaluation']:

 try:

 eval_dict = json.loads(evaluation) if
isinstance(evaluation, str) else evaluation

 accuracy_score = eval_dict['accuracy']['score']

 style_score = eval_dict['style']['score']

 accuracy_scores.append(accuracy_score)

 style_scores.append(style_score)

 except (json.JSONDecodeError, KeyError, TypeError):

 accuracy_scores.append(None)

 style_scores.append(None)

12. We add two new columns to store the accuracy and style scores for further analysis:

 if 'accuracy' in dataset.column_names:

 dataset = dataset.remove_columns(['accuracy'])

 dataset = dataset.add_column('accuracy', accuracy_scores)

 if 'style' in dataset.column_names:

 dataset = dataset.remove_columns(['style'])

 dataset = dataset.add_column('style', style_scores)

13. Let’s push the final dataset with generated answers, evaluations, and scores to the Hug-

ging Face Hub:

 dataset.push_to_hub(f"mlabonne/{model_id.split('/')
[-1]}-results")

 return dataset

14. We can now call the evaluate_answers() function with the three models we selected:

model_ids = [

 'mlabonne/TwinLlama-3.1-8B',

 'mlabonne/TwinLlama-3.1-8B-DPO',

 'meta-llama/Meta-Llama-3.1-8B-Instruct'

Chapter 7 283

]

for model_id in model_ids:

 evaluate_answers(model_id)

By saving intermediate results, our evaluation framework becomes more robust to failures. It is

also easily extendable to other models, datasets, and criteria.

Analyzing results
There are three elements we can review at the end of this evaluation process: model answers,

explanations from evaluations, and scores.

While reviewing answers is not scalable, it is a crucial step that can help to identify a lot of com-

mon mistakes, such as a wrong chat template or incorrect model. Here, we will focus on a single

instruction and read the answers provided by our two models and Llama-3.1-8B-Instruct.

Instruction

Discuss the concept of algorithm bias and its implications.

TwinLlama-3�1-8B

Algorithm bias refers to the tendency of algorithms to produce outcomes that are skewed

or unfair due to underlying assumptions or programming biases. This can have significant

implications, particularly in fields like machine learning and AI, where algorithms are relied

upon to make critical decisions. If an algorithm is not properly vetted for bias, it may lead

to discriminatory outcomes, such as lending practices that disproportionately affect certain

demographic groups or recruitment processes that unfairly favor certain candidates. It is

essential to ensure that algorithms are designed and implemented with fairness and accuracy

in mind to mitigate these risks.

TwinLlama-3�1-8B-DPO

Algorithm bias refers to the tendency of algorithms to produce outcomes that are skewed

or unfair due to underlying assumptions or programming biases. This can have significant

implications, particularly in fields like machine learning and AI, where algorithms are relied

upon to make critical decisions. If an algorithm is not properly vetted for bias, it could

lead to discriminatory outcomes, such as denying loans to certain demographic groups or

perpetuating stereotypes. Therefore, it is essential to address algorithmic bias proactively to

ensure that the technology we develop is equitable and just.

Evaluating LLMs284

Llama-3�1-8B-Instruct

Algorithm bias, also known as algorithmic bias, refers to the unintended or inherent bias in

machine learning models that can affect their performance, accuracy, and fairness. This bias

can be caused by various factors, including the data used to train the model, the algorithm

itself, and the biases present in the society or culture. One of the most significant implications

of algorithm bias is its potential to perpetuate and exacerbate existing social inequalities. For

instance, facial recognition software has been shown to be less accurate for people of color,

leading to wrongful arrests and discrimination. Similarly, language processing models have

been found to be biased towards the language and dialect of the dominant group, making it

difficult for marginalized communities to access information and services. Algorithm bias

can also have severe consequences in areas such as healthcare, education, and employment.

For example, a medical diagnosis algorithm that is biased towards certain demographics

may misdiagnose or underdiagnose conditions in other groups, leading to delayed or

inadequate treatment. In education, an algorithm that is biased towards certain learning

styles may disproportionately affect students with different learning abilities, leading to

unequal opportunities. To mitigate the effects of algorithm bias, it is essential to address

the root causes of bias and implement measures to ensure fairness and transparency in

machine learning models. This can be achieved through techniques such as data cleansing,

regularization, and debiasing, as well as implementing diverse and representative datasets.

Additionally, it is crucial to involve diverse stakeholders, including members of marginalized

communities, in the development and testing of algorithms to ensure that they are fair and

equitable. In conclusion, algorithm bias is a significant concern that can have far-reaching

implications for individuals and society as a whole. It is essential to recognize the potential

biases in machine learning models and take proactive steps to mitigate their effects. By doing

so, we can create more equitable and just systems that benefit everyone, regardless of their

background or demographic characteristics.

Table 7.4: Example of generated answers for a given instruction

Immediately, we can see that the answers from our models are very close to each other. This is not

the case with Llama-3.1-8B-Instruct’s answer, which is extremely verbose and lists many examples.

This is typically the kind of answer that is correct but can feel artificial and unpleasant to read

because of its length. On the other hand, the DPO model slightly simplifies the language of the

SFT version, making it less academic. This is exactly the behavior we want to capture, modifying

the writing style but not the actual content of the answer.

Let’s now review the evaluations provided by GPT-4o-mini for each answer.

Chapter 7 285

TwinLlama-3.1-8B
Accuracy

The answer accurately defines algorithm bias
and highlights its implications in fields like
machine learning and AI. It correctly identi-
fies the risks of discriminatory outcomes due
to biased algorithms. There are no apparent
factual errors, making this a comprehensive
response.

Score: 3

Style

The tone is informative and relatively ac-
cessible, though it tends towards a formal
tone in some sections (e.g., ‘underlying
assumptions or programming biases’).
While it does use some technical terms
appropriately, it could be simplified further
for a broader audience, especially for blog
or social media content.

Score: 2
TwinLlama-3.1-8B-DPO
Accuracy

The answer accurately defines algorithm bias
and outlines its implications in critical fields
like machine learning and AI. It highlights the
potential for discriminatory outcomes, making
it a comprehensive overview of the topic with-
out any factual errors.

Score: 3

Style

The writing style is clear, accessible, and ef-
fectively communicates the technical con-
cept of algorithm bias without becoming
overly formal. While it uses some technical
terms, they are appropriate and explained
well for a general audience.

Score: 3

Llama-3.1-8B-Instruct

Accuracy

The answer accurately defines algorithm bias
and discusses its causes and implications in
various domains such as facial recognition,
healthcare, and education. It also correctly
identifies methods to mitigate bias, such as
involving diverse stakeholders and employing
debiasing techniques. Overall, the information
is factually correct and comprehensive.

Score: 3

Style

The tone is informative and accessible,
with technical terms explained clearly.
However, some phrases like ‘unintended
or inherent bias’ and ‘implementation of
diverse and representative datasets’ could
be simplified for broader audience appeal.
The writing is generally suitable for blog or
social media content, but it could benefit
from a more conversational tone.

Score: 2

Table 7.5: Evaluations of each answer made by GPT-4o-mini, according to style and ac-
curacy

Evaluating LLMs286

According to our judge LLM, there is no issue with the accuracy of the answers, which get a perfect

score. However, the style is considered too formal for TwinLlama-3.1-8B (SFT) and Llama-3.1-

8B-Instruct, with a score of 2. The judge LLM agreed with our previous analysis and assigned a

perfect score to TwinLlama-3.1-8B-DPO’s answer for communicating “the technical concept of

algorithm bias without becoming overly formal.”

This trend is confirmed by the average scores obtained by each model:

TwinLlama-3.1-8B - Accuracy: 2.45

TwinLlama-3.1-8B - Style: 2.04

TwinLlama-3.1-8B-DPO - Accuracy: 2.46

TwinLlama-3.1-8B-DPO - Style: 2.12

Llama-3.1-8B-Instruct - Accuracy: 2.62

Llama-3.1-8B-Instruct - Style: 1.86

In terms of accuracy, our two fine-tuned models get similar scores, while Llama-3.1-8B-Instruct

achieves the highest accuracy score of 2.62. This suggests that the instruct-tuned Llama model

may have a slight edge in providing factually correct information. This is probably due to its

extensive post-training process with over 10 million samples (compared to 13,000 in our case).

However, when it comes to style, we see a different pattern. TwinLlama-3.1-8B-DPO leads with

a score of 2.12, successfully achieving a more accessible and less formal writing style without

sacrificing content quality. TwinLlama-3.1-8B (SFT) follows with 2.04, showing improvement but

retaining some formality, while Llama-3.1-8B-Instruct trails with 1.86, tending toward verbosity.

Based on this feedback and the manual review of the generated answers, we can detect mistakes

and identify areas for improvement. This is essential for refining the data generation process

through additional filtering or augmenting the dataset with missing information. While this first

version already shows promising results, iterating over different datasets and models will allow

us to significantly outperform our baseline and create the best possible model for our use case.

Summary
In this chapter, we explored LLM evaluation with models and RAG systems. We saw how to

interpret classic benchmarks like MMLU to select strong candidates to use or fine-tune. We also

detailed how domain-specific and task-specific evaluations work, and how to create our own

based on publicly available examples.

Chapter 7 287

We focused on two techniques (multiple-choice question answering and LLM-as-a-judge) as the

backbone of these custom evaluation frameworks.

However, models are commonly integrated into broader systems that provide additional context.

We introduced two evaluation frameworks for RAG systems, Ragas and ARES. We saw both simi-

larities (for example, synthetic data generation) and differences in how they evaluate RAG systems

(context-based metrics versus trained classifiers). Finally, we evaluated TwinLlama-3.1-8B with

a judge LLM according to three criteria: relevance, coherence, and conciseness. This provided

insights into how we can improve it.

In the next chapter, we will explore inference optimization techniques to improve speed and

reduce memory usage, without significantly compromising model performance. We will also

delve into optimization methods, model parallelism techniques and examine different quanti-

zation approaches.

References
• Lianmin Zheng et al.. “Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena.” arXiv

preprint arXiv:2306.05685, June 2023.

• Aymeric Roucher. “Using LLM-as-a-judge for an automated and versatile evaluation - Hugging

Face Open-Source AI Cookbook.” huggingface.co, No date found, https://huggingface.co/

learn/cookbook/en/llm_judge.

• LangChain. “Aligning LLM-as-a-Judge with Human Preferences.” blog.langchain.dev, June

26, 2024, https://blog.langchain.dev/aligning-llm-as-a-judge-with-human-

preferences/.

• Dan Hendrycks et al.. “Measuring Massive Multitask Language Understanding.” arXiv pre-

print arXiv:2009.03300, September 2020.

• Jeffrey Zhou et al.. “Instruction-Following Evaluation for Large Language Models.” arXiv

preprint arXiv:2311.07911, November 2023.

• Yann Dubois et al.. “Length-Controlled AlpacaEval: A Simple Way to Debias Automatic Eval-

uators.” arXiv preprint arXiv:2404.04475, April 2024.

• Grégoire Mialon et al.. “GAIA: a benchmark for General AI Assistants.” arXiv preprint arX-

iv:2311.12983, November 2023.

https://huggingface.co/learn/cookbook/en/llm_judge
https://huggingface.co/learn/cookbook/en/llm_judge
https://blog.langchain.dev/aligning-llm-as-a-judge-with-human-preferences/
https://blog.langchain.dev/aligning-llm-as-a-judge-with-human-preferences/

Evaluating LLMs288

• Giwon Hong et al.. “The Hallucinations Leaderboard -- An Open Effort to Measure Hallucina-

tions in Large Language Models.” arXiv preprint arXiv:2404.05904, April 2024.

• Shahul Es et al.. “RAGAS: Automated Evaluation of Retrieval Augmented Generation.” arXiv

preprint arXiv:2309.15217, September 2023.

• Jon Saad-Falcon et al.. “ARES: An Automated Evaluation Framework for Retrieval-Augmented

Generation Systems.” arXiv preprint arXiv:2311.09476, November 2023.

Join our book’s Discord space
Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/llmeng

https://packt.link/llmeng

8
Inference Optimization

Deploying LLMs is challenging due to their significant computational and memory requirements.

Efficiently running these models necessitates the use of specialized accelerators, such as GPUs or

TPUs, which can parallelize operations and achieve higher throughput. While some tasks, like

document generation, can be processed in batches overnight, others require low latency and fast

generation, such as code completion. As a result, optimizing the inference process – how these

models make predictions based on input data – is critical for many practical applications. This

includes reducing the time it takes to generate the first token (latency), increasing the number

of tokens generated per second (throughput), and minimizing the memory footprint of LLMs.

Indeed, naive deployment approaches lead to poor hardware utilization and underwhelming

throughput and latency. Fortunately, a variety of optimization techniques have emerged to dra-

matically speed up inference. This chapter will explore key methods like speculative decoding,

model parallelism, and weight quantization, demonstrating how thoughtful implementations

can achieve speedups of 2–4X or more. We will also introduce three popular inference engines

(Text Generation Inference, vLLM, and TensorRT-LLM) and compare their features in terms of

inference optimization.

In this chapter, we will cover the following topics:

• Model optimization strategies

• Model parallelism

• Model quantization

Inference Optimization290

By the end of this chapter, you will understand the core challenges in LLM inference and be fa-

miliar with state-of-the-art optimization techniques, including model parallelism and weight

quantization.

Model optimization strategies
Most of the LLMs used nowadays, like GPT or Llama, are powered by a decoder-only Transformer

architecture. The decoder-only architecture is designed for text-generation tasks. It predicts the

next word in a sequence based on preceding words, making it effective for generating contextually

appropriate text continuations.

In contrast, an encoder-only architecture, like BERT, focuses on understanding and representing

the input text with detailed embeddings. It excels in tasks that require comprehensive context

understanding, such as text classification and named entity recognition. Finally, the encoder-de-

coder architecture, like T5, combines both functionalities. The encoder processes the input text

to generate a context-rich representation, which the decoder then uses to produce the output

text. This dual structure is particularly powerful for sequence-to-sequence tasks like translation

and summarization, where understanding the input context and generating a relevant output

are equally important.

In this book, we only focus on the decoder-only architecture, which dominates the LLM field.

Figure 8.1 – Inference process with decoder-only models. We provide “I have a dream” as
input and obtain “of” as output.

All the code examples from this chapter can be found on GitHub at https://github.

com/PacktPublishing/LLM-Engineering.

https://github.com/PacktPublishing/LLM-Engineering
https://github.com/PacktPublishing/LLM-Engineering

Chapter 8 291

As shown in Figure 8.1, the basic inference process for a decoder-only model involves:

1. Tokenizing the input prompt and passing it through an embedding layer and positional

encoding.

2. Computing key and value pairs for each input token using the multi-head attention

mechanism.

3. Generating output tokens sequentially, one at a time, using the computed keys and values.

While Steps 1 and 2 are computationally expensive, they consist of highly parallelizable matrix

multiplication that can achieve high hardware utilization on accelerators like GPUs and TPUs.

The real challenge is that the token generation in Step 3 is inherently sequential – to generate

the next token, you need to have generated all previous tokens. This leads to an iterative process

where the output sequence is grown one token at a time, failing to leverage the parallel computing

capabilities of the hardware. Addressing this bottleneck is one of the core focuses of inference

optimization.

In this section, we will detail several optimization strategies that are commonly used to speed

up inference and reduce Video Random-Access Memory (VRAM) usage, such as implementing

a (static) KV cache, continuous batching, speculative decoding, and optimized attention mech-

anisms.

KV cache
We saw that LLMs generate text token by token, which is slow because each new prediction

depends on the entire previous context. For example, to predict the 100th token in a sequence,

the model needs the context of tokens 1 through 99. When predicting the 101st token, it again

needs the information from tokens 1 through 99, plus token 100. This repeated computation is

particularly inefficient.

The key-value (KV) cache addresses this issue by storing key-value pairs produced by self-at-

tention layers. Instead of recalculating these pairs for each new token, the model retrieves them

from the cache, significantly speeding up the generation.

Inference Optimization292

You can see an illustration of this technique in Figure 8.2:

Figure 8.2 – Illustration of the KV cache

When a new token is generated, only the key and value for that single token need to be computed

and added to the cache. The KV cache is an immediate optimization that is implemented in every

popular tool and library. Some implementations maintain a separate KV cache for each layer of

the model.

The size of the KV cache scales with the number of tokens (𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) and several model dimensions,

like the number of layers (𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙), the number of attention heads (𝑛𝑛ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒), their dimension (dimℎ𝑒𝑒𝑒𝑒𝑒𝑒

), and the precision of the parameters in bytes (𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏):𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

For a typical 7B parameter model using 16-bit precision, this exceeds 2 GB for high sequence

lengths (higher than 2,048 tokens). Larger models with more layers and higher embedding di-

mensions will see even greater memory requirements.

Chapter 8 293

Since the KV cache grows with each generation step and is dynamic, it prevents you from taking

advantage of torch.compile, a powerful optimization tool that fuses PyTorch code into fast and

optimized kernels. The static KV cache solves this issue by pre-allocating the KV cache size to a

maximum value, which allows you to combine it with torch.compile for up to a 4x speedup in

the forward pass.

To configure a model to use a static KV cache with the transformers library, follow these steps:

1. We import the tokenizer and the model we want to optimize:

import torch

from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = "google/gemma-2b-it"

tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(model_id, device_
map="auto")

2. To implement the static cache, we change the cache implementation in the model’s gen-

eration config to static:

model.generation_config.cache_implementation = "static"

3. Now that our KV cache is static, we can compile the model using torch.compile:

compiled_model = torch.compile(model, mode="reduce-overhead",
fullgraph=True)

4. We tokenize an input question, “What is 2+2?", and store it on a GPU if available (if not,

we store it on the CPU):

device = "cuda" if torch.cuda.is_available() else "cpu"

inputs = tokenizer("What is 2+2?", return_tensors="pt").to(device)

5. Let’s use the generate() method to get the model’s output and decode it with batch_

decode() to print its answer:

outputs = model.generate(**inputs, do_sample=True, temperature=0.7,
max_new_tokens=64)

print(tokenizer.batch_decode(outputs, skip_special_tokens=True))

['What is 2+2?\n\nThe answer is 4. 2+2 = 4.']

Inference Optimization294

This returns a list containing both the input and output, correctly answering our question.

Efficiently managing the KV cache is essential, as it can quickly exhaust available GPU memory

and limit the batch sizes that can be processed. This has motivated the development of memo-

ry-efficient attention mechanisms and other techniques, which we will cover in the last section.

Continuous batching
Batching, or processing multiple inference requests simultaneously, is a standard approach to

achieve high throughput. Larger batch sizes spread out the memory cost of model weights and

transfer more data to the GPU at once, better saturating its parallel compute capacity.

However, decoder-only models pose a particular challenge due to the high variability in input

prompt lengths and desired output lengths. Some requests may have short prompts and only

need a one-word answer, while others may input a lengthy context and expect a multi-paragraph

response.

With traditional batching, we would have to wait for the longest request in a batch to complete be-

fore starting a new batch. This leads to under-utilization as the accelerator sits partly idle waiting

for a straggling request to finish. Continuous batching, also known as in-flight batching, aims to

prevent idle time by immediately feeding a new request into the batch as soon as one completes.

The batching process begins the same – by filling the batch with initial requests. But as soon as

a request completes its generation, it is evicted from the batch and a new request takes its place.

This way, the accelerator is always processing a full batch, leading to maximally efficient hardware

utilization. An additional consideration is the need to periodically pause the generation process

to run prefill, or the embedding and encoding of waiting requests. Finding the optimal balance

between generation and prefill requires some tuning of the waiting-served ratio hyperparameter.

Continuous batching is natively implemented in most inference frameworks, like Hugging Face’s

Text Generation Inference (TGI), vLLM, and NVIDIA TensorRT-LLM.

Note that the static cache doesn’t work with all architectures. For details on which

architectures are supported, check out the transformers documentation.

Chapter 8 295

Speculative decoding
Another powerful optimization technique is speculative decoding, also called assisted generation.

The key insight is that even with continuous batching, the token-by-token generation process

fails to fully saturate the parallel processing capabilities of the accelerator. Speculative decoding

aims to use this spare compute capacity to predict multiple tokens simultaneously, using a smaller

proxy model (see Figure 8.3).

Figure 8.3 – Illustration of traditional decoding (left) and speculative decoding (right)

The general approach is:

• Apply a smaller model, like a distilled or pruned version of the main model, to predict

multiple token completions in parallel. This could be 5–10 tokens predicted in a single step.

• Feed these speculative completions into the full model to validate which predictions

match what the large model would have generated.

• Retain the longest matching prefix from the speculative completions and discard any

incorrect tokens.

The result is that, if the small model approximates the large model well, multiple tokens can be

generated in a single step. This avoids running the expensive large model for several iterations.

The degree of speedup depends on the quality of the small model’s predictions – a 90% match

could result in a 3–4X speedup.

It is crucial that both models use the same tokenizer. If this is not the case, the tokens generated

by the draft model will not align with those produced by the large model, making them incom-

patible. Let’s implement this using the transformers library. In this example, we will use two

Qwen1.5 models from Alibaba Cloud: a 1.8B version as the main model, and a 0.5B version as the

draft model. Note that, if you have enough VRAM, you can use much larger models like 14B, 32B,

72B, or 110B as the main model.

Inference Optimization296

Here, we’re limited by the VRAM of the T4 GPU in Google Colab, but to get the maximum speedup,

the assistant model should be much smaller than the large model.

Here’s a step-by-step guide to implement speculative decoding:

1. We load the tokenizer and both models:

import torch

from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = "Qwen/Qwen1.5-1.8B-Chat"

tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(model_id, device_
map="auto")

draft_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-
0.5B-Chat", device_map="auto")

2. We then tokenize the same input and store it in the accelerator, if available:

device = "cuda" if torch.cuda.is_available() else "cpu"

inputs = tokenizer("What is 2+2?", return_tensors="pt").to(device)

3. We can now use model.generate() with the argument assistant_model to enable specu-

lative decoding:

outputs = model.generate(**inputs, do_sample=True, assistant_
model=draft_model, temperature=0.7, max_new_tokens=64)

print(tokenizer.batch_decode(outputs, skip_special_tokens=True))

['What is 2+2? 2 + 2 equals 4!']

The speedup in this small example is not significant, but it is clearly noticeable with bigger models.

Prompt lookup decoding is a variant of speculative decoding, tailored to input-grounded tasks like

summarization where there is often overlap between the prompt and output. Shared n-grams

are used as the LLM candidate tokens. We can enable prompt lookup decoding by using the

prompt_lookup_num_tokens parameter in model.generate():

outputs = model.generate(**inputs, prompt_lookup_num_tokens=4)

By combining the static KV cache with torch.compile, implementing continuous batching, and

leveraging speculative decoding techniques, LLMs can see inference speedups of 2–4x or more

with no loss in quality.

Chapter 8 297

Another approach to creating a small proxy model consists of jointly fine-tuning a small model

alongside a large model for maximum fidelity. A representative technique here is Medusa, which

inserts dedicated speculation heads into the main model. The Medusa-1 approach fine-tunes

these speculation heads while freezing the large model, while the Medusa-2 approach jointly fine-

tunes both the speculation heads and the large model. The Medusa method has demonstrated

impressive results, enabling a 70M parameter model to closely approximate the performance

of a 7B parameter model on a range of tasks. Speculative decoding is natively supported by TGI.

Optimized attention mechanisms
The Transformer architecture is based on the attention mechanism, which scales quadratically

with the number of input tokens (or sequence length). This is particularly inefficient for longer

sequences, where the size of the KV cache can blow up.

Introduced by Kwon, Li, et al. (2023), PagedAttention addresses these memory challenges by

drawing inspiration from virtual memory and paging in operating systems. It partitions the KV

cache into blocks, eliminating the need for contiguous memory allocation. Each block contains the

keys and values for a fixed number of tokens. During attention computation, the PagedAttention

kernel efficiently fetches these blocks, regardless of their physical memory location.

This partitioning allows for near-optimal memory utilization. This is useful for batching more

sequences together, which increases throughput and GPU utilization. Moreover, PagedAttention's

block-based approach naturally supports memory sharing across multiple output sequences

generated from the same prompt. This is particularly advantageous in parallel sampling and

beam search, where the same prompt is used to generate multiple outputs. The shared memory

blocks reduce redundant computations and memory usage, cutting the memory overhead by

up to 55% and improving throughput by up to 2.2x, according to the authors. The vLLM library

received the first implementation of PagedAttention. Since then, PagedAttention has also been

implemented in TGI and TensorRT-LLM.

Another popular option is FlashAttention-2. Developed by Tri Dao (2023), it introduced several

key innovations that are designed to address the quadratic runtime and memory constraints in

traditional attention. By dividing input and output matrices into smaller blocks, FlashAtten-

tion-2 ensures that these blocks can fit into the GPU’s on-chip SRAM, which is much faster than

high-bandwidth memory. This approach significantly reduces the frequency of data transfers

between the GPU’s main memory and its processing units.

Inference Optimization298

This is combined with online softmax, which computes the softmax function independently for

each block of the attention scores matrix, rather than for the entire matrix at once. By maintaining

a running maximum and a running sum of exponentials, FlashAttention-2 can calculate attention

probabilities without needing to store large intermediate matrices.

Additionally, FlashAttention-2’s online softmax computation enables block-wise processing,

maintaining accuracy while significantly reducing memory requirements. This is particularly im-

portant for training, where the recomputation of intermediate values (instead of storing them) in

the backward pass reduces memory usage from quadratic to linear, in relation to sequence length.

Unlike PagedAttention, FlashAttention-2 can easily be used with the transformers library through

the attn_implementation parameter:

1. Install the flash-attn library with --no-build-isolation so that we don’t install the

dependencies:

pip install flash-attn --no-build-isolation

2. To use FlashAttention-2 for inference, specify flash_attention_2 in the attn_

implementation parameter when loading a model. For example, this is how to load Mis-

tral-7B-Instruct-v0.3 with FlashAttention-2:

from transformers import AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained(

 "mistralai/Mistral-7B-Instruct-v0.3",

 attn_implementation="flash_attention_2",

)

The techniques presented in this section focused on improving the model’s efficiency in processing

tokens. In the next section, we will discuss how to distribute our model and calculations across

multiple GPUs.

Model parallelism
Model parallelism allows you to distribute the memory and compute requirements of LLMs across

multiple GPUs. This enables the training and inference of models too large to fit on a single device,

while also improving performance in terms of throughput (tokens per second).

There are three main approaches to model parallelism, each involving splitting the model weights

and computation in different ways: data parallelism, pipeline parallelism, and tensor parallelism.

Chapter 8 299

Although these approaches were originally developed for training, we can reuse them for inference

by focusing on the forward pass only.

Data parallelism
Data parallelism (DP) is the simplest type of model parallelism. It involves making copies of the

model and distributing these replicas across different GPUs (see Figure 8.4). Each GPU processes

a subset of the data simultaneously. During training, the gradients calculated on each GPU are

averaged and used to update the model parameters, ensuring that each replica remains synchro-

nized. This approach is particularly beneficial when the batch size is too large to fit into a single

machine or when aiming to speed up the training process.

Figure 8.4 – Illustration of data parallelism with four GPUs

During inference, DP can be useful for processing concurrent requests. By distributing the work-

load across multiple GPUs, this approach helps reduce latency, as multiple requests can be handled

simultaneously. This concurrent processing also increases throughput, since a higher number of

requests can be processed at the same time.

However, the effectiveness of DP is limited by the model size and the communication overhead

between GPUs. Indeed, replicating the model’s parameters on each GPU is inefficient. This means

that this technique only works when the model is small enough to fit into a single GPU, leaving

less room for input data and thus limiting the batch size. For larger models or when memory is

a constraint, this can be a significant drawback.

Typically, DP is mainly used for training, while pipeline and tensor parallelism are preferred for

inference.

Inference Optimization300

Pipeline parallelism
Introduced by Huang et al. in the GPipe paper (2019), pipeline parallelism (PP) is a strategy

for distributing the computational load of training and running large neural networks across

multiple GPUs.

Unlike traditional DP, which replicates the entire model on each GPU, pipeline parallelism parti-

tions the model’s layers across different GPUs. This approach allows each GPU to handle a specific

portion of the model, thereby reducing the memory burden on individual GPUs.

Figure 8.5 – Illustration of pipeline parallelism with four GPUs

As shown in Figure 8.5, in a typical four-way pipeline parallel split, the model is divided into four

segments, with each segment assigned to a different GPU. The first 25% of the model’s layers might

be processed by GPU 1, the next 25% by GPU 2, and so on. During the forward pass, activations

are computed and then passed along to the next GPU. For training, the backward pass follows a

similar sequence in reverse, with gradients being propagated back through the GPUs. The number

of GPUs is often referred to as the degree of parallelism.

The primary advantage of pipeline parallelism is its ability to significantly reduce the memory

requirements per GPU. However, this approach introduces new challenges, particularly related

to the sequential nature of the pipeline. One of the main issues is the occurrence of “pipeline

bubbles.” These bubbles arise when some GPUs are idle, waiting for activations from preceding

layers. This idle time can reduce the overall efficiency of the process.

Chapter 8 301

Micro-batching was developed to mitigate the impact of pipeline bubbles. By splitting the input

batch into smaller sub-batches, micro-batching ensures that GPUs remain busier, as the next

sub-batch can begin processing before the previous one is fully completed.

Figure 8.6 – Illustration of pipeline parallelism with micro-batching.

Figure 8.6 shows an example of pipeline parallelism with micro-batching. In this example, the

pipeline has four stages (F0, F1, F2, F3), and the input batch is divided into four micro-batches.

GPU 0 will process forward paths F0,0, F0,1, F0,2, and F0,3, sequentially. Once F0,0 is complete,

GPU 1 can immediately start processing F1,0 and so on. After completing these forward passes,

GPU 0 waits for the other GPUs to finish their respective forward computations before starting

the backward paths (B0,3, B0,2, B0,1, and B0,0).

Pipeline parallelism is implemented in distributed training frameworks like Megatron-LM, Deep-

Speed (ZeRO), and PyTorch through the dedicated Pipeline Parallelism for PyTorch (PiPPy)

library. At the time of writing, only certain inference frameworks like TensorRT-LLM support

pipeline parallelism.

Tensor parallelism
Introduced by Shoeby, Patwary, Puri et al. in the Megatron-LM paper (2019), tensor parallelism

(TP) is another popular technique to distribute the computation of LLM layers across multiple

devices. In contrast to pipeline parallelism, TP splits the weight matrices found in individual

layers. This enables simultaneous computations, significantly reducing memory bottlenecks and

increasing processing speed.

Inference Optimization302

In TP, large matrices, such as the weight matrices in MLPs or the attention heads in self-atten-

tion layers, are partitioned across several GPUs. Each GPU holds a portion of these matrices and

performs computations on its respective slice.

Figure 8.7 – Illustration of column-wise tensor parallelism in an MLP layer (W)

For instance, in an MLP layer, the weight matrix is divided so that each GPU processes only a subset

of the weights (see Figure 8.7). The inputs are broadcast to all GPUs, which then independently

compute their respective outputs. The partial results are then aggregated through an all-reduce

operation, combining them to form the final output.

In the context of self-attention layers, TP is particularly efficient due to the inherent parallelism

of attention heads. Each GPU can compute a subset of these heads independently, allowing the

model to process large sequences more effectively. This makes TP more efficient than pipeline

parallelism, which requires waiting for the completion of previous layers.

Despite its advantages, TP is not universally applicable to all layers of a neural network. Layers

like LayerNorm and Dropout, which have dependencies spanning the entire input, cannot be effi-

ciently partitioned and are typically replicated across devices instead. However, these operations

can be split on the sequence dimension of the input instead (sequence parallelism). Different

GPUs can compute these layers on different slices of the input sequence, avoiding replication of

weights. This technique is limited to a few specific layers, but it can provide additional memory

savings, especially for very large input sequence lengths.

Chapter 8 303

Moreover, TP necessitates high-speed interconnects between devices to minimize communica-

tion overhead, making it impractical to implement across nodes with insufficient interconnect

bandwidth.

TP is also implemented in distributed training frameworks like Megatron-LM, DeepSpeed (ZeRO),

and PyTorch (FSDP). It is available in most inference frameworks, like TGI, vLLM, and Tensor-

RT-LLM.

Combining approaches
Data, tensor, and pipeline parallelisms are orthogonal techniques that can be combined. Figure

8.8 illustrates how a given model can be split according to each approach:

Figure 8.8 – Illustration of the different model parallelism techniques

Combining these techniques can mitigate their respective issues. Pipeline parallelism provides

the greatest memory reduction but sacrifices efficiency, due to pipeline bubbles. This may be

ideal if the primary constraint fits the model in the GPU memory. In contrast, if low latency is

paramount, then prioritizing tensor parallelism and accepting a larger memory footprint may

be the better trade-off. In practice, a model may be split depth-wise into a few pipeline stages,

with tensor parallelism used within each stage.

Balancing these tradeoffs and mapping a given model architecture onto available hardware ac-

celerators is a key challenge in deploying LLMs.

Model quantization
Quantization refers to the process of representing the weights and activations of a neural net-

work using lower-precision data types. In the context of LLMs, quantization primarily focuses

on reducing the precision of the model’s weights and activations.

Inference Optimization304

By default, weights are typically stored in a 16-bit or 32-bit floating-point format (FP16 or FP32),

which provides high precision but comes at the cost of increased memory usage and computa-

tional complexity. Quantization is a solution to reduce the memory footprint and accelerate the

inference of LLMs.

In addition to these benefits, larger models with over 30 billion parameters can outperform

smaller models (7B–13B LLMs) in terms of quality when quantized to 2- or 3-bit precision. This

means they can achieve superior performance while maintaining a comparable memory footprint.

In this section, we will introduce the concepts of quantization, GGUF with llama.cpp, GPTQ,

and EXL2, along with an overview of additional techniques. In addition to the code provided in

this section, you can refer to AutoQuant (bit.ly/autoquant) to quantize their models using a

Google Colab notebook.

Introduction to quantization
There are two main approaches to weight quantization: Post-Training Quantization (PTQ) and

Quantization-Aware Training (QAT). PTQ is a straightforward technique where the weights of

a pre-trained model are directly converted to a lower precision format without any retraining.

While PTQ is easy to implement, it may result in some performance degradation. Conversely, QAT

performs quantization during the training or fine-tuning stage, allowing the model to adapt to

the lower precision weights. QAT often yields better performance compared to PTQ but requires

additional computational resources and representative training data.

The choice of data type plays a crucial role in quantization. Floating-point numbers, such as

FP32, FP16 (half-precision), and BF16 (brain floating-point), are commonly used in deep learning.

These formats allocate a fixed number of bits to represent the sign, exponent, and significand

(mantissa) of a number.

bit.ly/autoquant

Chapter 8 305

Figure 8.9 – Comparison the between FP32, FP16, and BF16 formats

A sign of 0 represents a positive number, while 1 indicates a negative number. Conversely, the

exponent controls the range that is represented (big or small). Finally, the significand controls

the precision of the number (the number of digits). The formula used to convert these represen-

tations into real numbers is: (−1)sign × baseexponent × significand

The data types shown in Figure 7.7 display different tradeoffs, as illustrated with different repre-

sentations of 𝜋𝜋 (≈ 3.1415926535). FP32 uses 32 bits, providing high precision but also requiring more

memory. Conversely, FP16 and BF16 use 16 bits, lowering the memory footprint at the cost of a

lower precision. In general, neural networks prefer a bigger range than better precision, which is

why BF16 is the most popular data type when the hardware supports it. For example, NVIDIA’s

Ampere architecture (A100, A30, etc.) supports BF16, but previous generations like Turing (T4,

T40, etc.) do not.

Inference Optimization306

However, we are not restricted to these three data types. Lower-precision data types, such as INT8

(8-bit integers), can be employed for quantization, further reducing the memory footprint. Naïve

quantization techniques, such as absolute maximum (absmax) quantization and zero-point quanti-

zation, can be applied to convert FP32, FP16, or BF16 weights to INT8, as illustrated in Figure 8.10:

Figure 8.10 – Quantization of 0.1 in a [-3.0, 3.2] range with absmax quantization and zero-point
quantization

Absmax quantization maps the original weights 𝐗𝐗 to the range [-127, 127] by dividing them by the

absolute maximum value of 𝐗𝐗 and scaling them:

𝐗𝐗quant = round (127 ⋅ 𝐗𝐗max|𝐗𝐗|)

For example, if our absolute maximum value is 3.2 (see Figure 8.8), a weight of 0.1 would be

quantized to round (127⋅0.13.2) = 4 . To dequantize it, we do the inverse operation:

𝐗𝐗dequant = max|𝐗𝐗| ⋅ 𝐗𝐗quant127

This means that if we dequantize our weight, we obtain 3.2⋅4 127 ≈ 0.1008 . We can see a rounding er-

ror of 0.0008 in this example. In Python, we can implement it as follows with the PyTorch library:

import torch

def absmax_quantize(X):

 # Calculate scale

 scale = 127 / torch.max(torch.abs(X))

 # Quantize

 X_quant = (scale * X).round()

 return X_quant.to(torch.int8)

Chapter 8 307

Zero-point quantization, on the other hand, considers asymmetric input distributions and maps

the weights
0.0008

to the range [-128, 127] by introducing a zero-point offset:𝐗𝐗quant = round(scale ⋅ 𝐗𝐗 𝐗 𝐗ero𝐗o𝐗n𝐗)
Where scale = 255max(𝐗𝐗)−min(𝐗𝐗) and zeropoint = −round(scale ⋅ min(𝐗𝐗)) − 128 .

If we take the same example with a weight of 0.1, we get a scale of 2553.2+3.0 ≈ 41.13 and a zero-point

value of −round (2553.2+3.0 ⋅ −3.0) − 128 = −5 . The weight of 0.1 would be quantized to round(41.13 ⋅ 0.1 − 5) = −1 ,

unlike the value of 4 provided by absmax.

We can easily get the dequantization by applying the inverse operation:𝐗𝐗dequant = 𝐗𝐗quant − zeropointscale

In Python, zero-point quantization can be implemented as follows:

def zeropoint_quantize(X):

 # Calculate value range (denominator)

 x_range = torch.max(X) - torch.min(X)

 x_range = 1 if x_range == 0 else x_range

 # Calculate scale

 scale = 255 / x_range

 # Shift by zero-point

 zeropoint = (-scale * torch.min(X) - 128).round()

 # Scale and round the inputs

 X_quant = torch.clip((X * scale + zeropoint).round(), -128, 127)

 return X_quant.to(torch.int8)

However, naïve quantization methods have limitations, particularly when dealing with outlier

features in LLMs. Outlier features are extreme weight values (about 0.1% of total values) that

can significantly impact the quantization process, leading to reduced precision for other values.

Inference Optimization308

Discarding these outliers is not feasible, as it would degrade a model’s performance. You can see

an example of outliers in Figure 8.11:

Figure 8.11 – Example of outliers in a weight matrix

To address the outlier problem, more advanced quantization techniques have been proposed.

One notable example is LLM.int8(), introduced by Dettmers et al. (2022). LLM.int8() employs a

mixed-precision quantization scheme, where outlier features are processed using FP16, while the

remaining values are quantized to INT8. This approach effectively reduces the memory footprint

of LLMs by nearly 2x while minimizing performance degradation.

LLM.int8() works by performing matrix multiplication in three steps. First, it extracts columns

containing outlier features from the input hidden states using a custom threshold. Second, it

performs separate matrix multiplications for the outliers (in FP16) and non-outliers (in INT8)

using vector-wise quantization. Finally, it dequantizes the non-outlier results and combines

them with the outlier results to obtain the final output in FP16.

The effectiveness of LLM.int8() has been demonstrated empirically, showing negligible perfor-

mance degradation (<1%) compared to the original FP32 models. However, it does introduce an

additional computational overhead, resulting in around 20% slower inference for large models.

Models can be directly loaded in 8-bit precision with the transformer library, using LLM.int8(),

as follows:

from transformers import AutoModelForCausalLM

model_name = "meta-llama/Meta-Llama-3-8B-Instruct"

model = AutoModelForCausalLM.from_pretrained(model_name, device_
map="auto", load_in_8bit=True)

Chapter 8 309

Introduced by Dettmers et al. (2023), NF4 is a 4-bit precision format designed for QLoRA (discussed

in Chapter 5). It is also integrated into the transformers library but requires the bitsandbytes

library as a dependency. To load a model in NF4 (4-bit precision), you can use the load_in_4bit

parameter, as follows:

from transformers import AutoModelForCausalLM

model_name = "meta-llama/Meta-Llama-3-8B-Instruct"

model = AutoModelForCausalLM.from_pretrained(model_name, device_
map="auto", load_in_4bit=True)

Quantization with GGUF and llama.cpp
The llama.cpp project is an open-source C++ software library created by Georgi Gerganov, de-

signed to perform inference with various LLMs. It is the most popular quantization technique,

with many quantized models available on the Hugging Face Hub.

Compared to other libraries that rely on hardware-specific closed-source libraries like CUDA,

llama.cpp can run on a broader range of hardware. It has gained significant popularity, par-

ticularly among users without specialized hardware, as it can operate on CPUs and Android

devices. Moreover, llama.cpp can also offload layers to the GPU, accelerating inference speed. It

is compatible with different inference optimization techniques, such as FlashAttention-2 and

speculative decoding.

This project features its own quantization format, GGUF, designed to simplify and speed up

model loading. GGUF files store tensors and metadata, supporting various formats, from 1-bit

to 8-bit precision. It follows a naming convention based on the number of bits used and specific

variants, such as:

• IQ1_S and IQ1_M: 1-bit precision – very low quality

• IQ2_XXS/XS/S/M and Q2_K: 2-bit precision – generally low quality but IQ2 can be usable

for large models

• IQ3_XXS/XS/S/M and Q3_K_S/M/L: 3-bit precision – low quality but usable for large models

• IQ4_XS/NL and Q4_K_S/M, Q4_0/1: 4-bit precision – good quality and usable for most

models

• Q5_K_S/M and Q5_0/1: 5-bit precision – high quality

• Q6_K: 6-bit precision –very high quality

• Q8_0: 8-bit precision – highest quality

Inference Optimization310

To provide a brief overview of GGUF quantization, llama.cpp groups values into blocks and rounds

them to a lower precision. For instance, the legacy Q4_0 format handles 32 values per block, scaling

and quantizing them based on the largest weight value in the block (w = q × block_scale). In Q4_1,

the smallest Lvalue in the block is also added (w = q × block_scale + block_minimum). In Q4_K, weights

are divided into super-blocks, containing 8 blocks with 32 values. Block scales and minimum

values are also quantized in higher precision with 6 bits (w = q × block_scale(6bit) + block_min(6bit)).

Finally, i-quants like IQ4_XS are inspired by another quantization technique called QuIP#. This

ensures an even number of positive (or negative) quant signs in groups of eight and implements

the E8 lattice to store their magnitude.

Here is a practical example of how to quantize a model in the GGUF format. The following steps

can be executed on a free T4 GPU in Google Colab:

1. Install llama.cpp and the required libraries:

!git clone https://github.com/ggerganov/llama.cpp

!cd llama.cpp && git pull && make clean && LLAMA_CUBLAS=1 make

!pip install -r llama.cpp/requirements.txt

2. Download the model to convert. We will provide the model ID from the Hugging Face

Hub – for example, mistralai/Mistral-7B-Instruct-v0.2:

MODEL_ID = "mlabonne/EvolCodeLlama-7b"

MODEL_NAME = MODEL_ID.split('/')[-1]

!git lfs install

!git clone https://huggingface.co/{MODEL_ID}

3. First, we convert the model into FP16. This is an intermediary artifact that will be used

for every GGUF quantization type. Note that different conversion scripts exist in llama.

cpp and are compatible with different models:

fp16 = f"{MODEL_NAME}/{MODEL_NAME.lower()}.fp16.bin"

!python llama.cpp/convert.py {MODEL_NAME} --outtype f16 --outfile
{fp16}

4. We select a format (here, Q4_K_M) and start the quantization. This process can take an

hour on a T4 GPU:

METHOD = "q4_k_m"

qtype = f"{MODEL_NAME}/{MODEL_NAME.lower()}.{method.upper()}.gguf"

!./llama.cpp/quantize {fp16} {qtype} {METHOD}

Chapter 8 311

5. Once it’s done, your quantized model is ready. You can download it locally, or upload it

to the Hugging Face Hub using the following code:

from huggingface_hub import create_repo, HfApi

hf_token = "" # Specify your token

username = "" # Specify your username

api = HfApi()

Create empty repo

create_repo(

 repo_id = f"{username}/{MODEL_NAME}-GGUF",

 repo_type="model",

 exist_ok=True,

 token=hf_token

)

Upload gguf files

api.upload_folder(

 folder_path=MODEL_NAME,

 repo_id=f"{username}/{MODEL_NAME}-GGUF",

 allow_patterns=f"*.gguf",

 token=hf_token

)

GGUF models can be used with backends such as llama-cpp-python and frameworks like Lang-

Chain. This is useful if you want to integrate a quantized model into a broader system. You can

also directly chat with the model using frontends, like llama.cpp’s lightweight server, LM Studio,

and the Text Generation Web UI. These tools enable easy interaction with the GGUF models,

providing an experience similar to ChatGPT.

Quantization with GPTQ and EXL2
While GGUF and llama.cpp offer CPU inference with GPU offloading, GPTQ and EXL2 are two

quantization formats dedicated to GPUs. This makes them both faster than llama.cpp during

inference. In particular, EXL2 offers the highest throughput with its dedicated library, ExLlamaV2.

Inference Optimization312

GPTQ and EXL2 quants are based on the GPTQ algorithm, introduced by Frantar et al. (2023).

It optimizes weight quantization for LLMs by refining the Optimal Brain Quantization (OBQ)

approach to handle extensive matrices efficiently. It begins with a Cholesky decomposition of

the Hessian inverse, ensuring numerical stability. Instead of quantizing weights in a strict order,

GPTQ processes them in batches, updating columns and associated blocks iteratively. This meth-

od leverages lazy batch updates, reducing computational redundancy and memory bottlenecks.

While GPTQ is limited to 4-bit precision, EXL2 offers more flexibility with a highly customizable

precision that can mix different quantization levels. This allows for precise bitrates between 2

and 8 bits per weight, such as 2.3, 3.5, or 6.0. It can also apply multiple quantization levels to

each linear layer, prioritizing more important weights with higher bit quantization. Parameters

are selected automatically, by quantizing each matrix multiple times and choosing a combination

that minimizes the quantization error while meeting a target bitrate. In practice, this allows 70B

models to run on a single 24 GB GPU with 2.55-bit precision.

The inference itself is handled by the ExLlamaV2 library, which supports both the GPTQ and

EXL2 models.

In the following example, let’s quantize a model in the EXL2 format using ExLlamaV2. These

steps can be executed on a free T4 GPU in Google Colab:

1. Install the ExLlamaV2 library from source:

!git clone https://github.com/turboderp/exllamav2

!pip install -e exllamav2

2. We download the model to quantize by cloning its repo from the Hugging Face Hub:

MODEL_ID = "meta-llama/Llama-2-7b-chat-hf"

MODEL_NAME = MODEL_ID.split('/')[-1]

!git lfs install

!git clone https://huggingface.co/{MODEL_ID}

3. Download the calibration dataset used to measure the quantization error. In this case,

we will use WikiText-103, a standard calibration dataset with high-quality articles from

Wikipedia:

!wget https://huggingface.co/datasets/wikitext/
resolve/9a9e482b5987f9d25b3a9b2883fc6cc9fd8071b3/wikitext-103-v1/
wikitext-test.parquet

Chapter 8 313

4. Quantize the model at a given precision (for example, 4.5):

!mkdir quant

!python exllamav2/convert.py \

 -i {MODEL_NAME} \

 -o quant \

 -c wikitext-test.parquet \

 -b 4.5

The quantized model can then be uploaded to the Hugging Face Hub, as seen previously.

GPTQ and EXL2 quants are not as widely supported as GGUF. For example, frontends like LM

Studio do not currently integrate them. You can use other tools instead, like oobabooga’s Text

Generation Web UI. It is also directly integrated into the transformers library and supported by

TGI. GPTQ models are also supported in TensorRT-LLM.

While less popular than GGUF, you can find a lot of GPTQ and EXL2 models on the Hugging Face

Hub.

Other quantization techniques
There is a variety of quantization techniques beyond GGUF, GPTQ, and EXL2. This subsection will

briefly introduce Activate-aware Weight Quantization (AWQ) as well as extreme quantization

techniques, like QuIP# (Quantization with Incoherence Processing) and HQQ (Half-Quadratic

Quantization).

Introduced by Lin et al. (2023), AWQ is another popular quantization algorithm. It identifies

and protects the most important weights, which are determined based on activation magnitude

instead of weight magnitude. This approach involves applying optimal per-channel scaling to

these salient weights, without relying on backpropagation or reconstruction, ensuring that the

LLM does not overfit the calibration set. While it relies on a different paradigm, AWQ is quite close

to the GPTQ and EXL2 versions, although slightly slower. They are well-supported by inference

engines and integrated into TGI, vLLM, and TensorRT-LLM.

An interesting trend is the quantization of models into 1- or 2-bit precision. While some formats,

like EXL2, allow extreme quantization, the quality of the models often suffers significantly. How-

ever, recent algorithms like QuIP# and HQQ have targeted this regime and offer quantization

methods that better preserve the performance of the original models. This is particularly true for

large models (over 30B parameters), which can end up taking less space than 7B or 13B parameter

models while providing higher-quality outputs.

Inference Optimization314

This trend is expected to continue, further optimizing these quantization methods.

To conclude this chapter, here is a table summarizing the features of the three main inference

engines we covered in the previous sections:

Technique TGI vLLM TensorRT-LLM

Continuous batching ✓ ✓ ✓

Speculative decoding ✓

FlashAttention2 ✓ ✓ ✓

PagedAttention ✓ ✓ ✓

Pipeline parallelism ✓

Tensor parallelism ✓ ✓ ✓

GPTQ ✓ ✓

EXL2 ✓

AWQ ✓ ✓ ✓

Table 8.1 – Summary of features for TGI, vLLM, and TensorRT-LLM

Summary
In summary, inference optimization is a critical aspect of deploying LLMs effectively. This chap-

ter explored various optimization techniques, including optimized generation methods, model

parallelism, and weight quantization. Significant speedups can be achieved by leveraging tech-

niques like predicting multiple tokens in parallel with speculative decoding, or using an optimized

attention mechanism with FlashAttention-2. Additionally, we discussed how model parallelism

methods, including data, pipeline, and tensor parallelism, distribute the computational load across

multiple GPUs to increase throughput and reduce latency. Weight quantization, with formats

like GGUF and EXL2, further reduces the memory footprint and accelerates inference, with some

calculated tradeoff in output quality.

Understanding and applying these optimization strategies are essential for achieving high per-

formance in practical applications of LLMs, such as chatbots and code completion. The choice

of techniques and tools depends on specific requirements, including available hardware, desired

latency, and throughput. By combining various approaches, such as continuous batching and

speculative decoding, along with advanced attention mechanisms and model parallelism, users

can tailor their deployment strategies to maximize efficiency.

Chapter 8 315

Way back in Chapter 4, we focused only on implementing the ingestion pipeline, which is just

one component of a standard RAG application. In the next chapter, we will conclude the RAG

system by implementing the retrieval and generation components and integrating them into

the inference pipeline.

References
• Hugging Face, Text Generation Inference, https://github.com/huggingface/text-

generation-inference, 2022.

• W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C.H. Yu, J.E. Gonzalez, H. Zhang, I. Stoica, Ef-

ficient Memory Management for Large Language Model Serving with PagedAttention, 2023.

• Nvidia, TensorRT-LLM, https://github.com/NVIDIA/TensorRT-LLM, 2023.

• Y. Leviathan, M. Kalman, Y. Matias, Fast Inference from Transformers via Speculative Decoding,

2023.

• T. Cai, Y. Li, Z. Geng, H. Peng, J.D. Lee, D. Chen, T. Dao, Medusa: Simple LLM Inference Accel-

eration Framework with Multiple Decoding Heads, 2024.

• W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C.H. Yu, J.E. Gonzalez, H. Zhang, I. Stoica, Ef-

ficient Memory Management for Large Language Model Serving with PagedAttention, 2023.

• R.Y. Aminabadi, S. Rajbhandari, M. Zhang, A.A. Awan, C. Li, D. Li, E. Zheng, J. Rasley, S. Smith,

O. Ruwase, Y. He, DeepSpeed Inference: Enabling Efficient Inference of Transformer Models at

Unprecedented Scale, 2022.

• Y. Huang, Y. Cheng, A. Bapna, O. Firat, M.X. Chen, D. Chen, H. Lee, J. Ngiam, Q.V. Le, Y. Wu,

Z. Chen, GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism, 2019.

• K. James Reed, PiPPy: Pipeline Parallelism for PyTorch, https://github.com/pytorch/PiPPy,

2022.

• M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, B. Catanzaro, Megatron-LM: Training

Multi-Billion Parameter Language Models Using Model Parallelism, 2020.

• Verma and Vaidya, Mastering LLM Techniques: Inference Optimization, NVIDIA Developer

Technical Blog, https://developer.nvidia.com/blog/mastering-llm-techniques-

inference-optimization/, 2023.

https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/pytorch/PiPPy
https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization/
https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization/

Inference Optimization316

• T. Dettmers, M. Lewis, Y. Belkada, L. Zettlemoyer, LLM.int8(): 8-bit Matrix Multiplication for

Transformers at Scale, 2022.

• G. Gerganov, llama.cpp, https://github.com/ggerganov/llama.cpp, 2023.

• E. Frantar, S. Ashkboos, T. Hoefler, D. Alistarh, GPTQ: Accurate Post-Training Quantization for

Generative Pre-trained Transformers, 2023.

• Tuboderp, exllamav2, https://github.com/turboderp/exllamav2, 2023.

• J. Lin, J. Tang, H. Tang, S. Yang, W.-M. Chen, W.-C. Wang, G. Xiao, X. Dang, C. Gan, S. Han,

AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration, 2024.

Join our book’s Discord space
Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/llmeng

https://github.com/ggerganov/llama.cpp
https://github.com/turboderp/exllamav2
https://packt.link/llmeng

9
RAG Inference Pipeline

Back in Chapter 4, we implemented the retrieval-augmented generation (RAG) feature pipeline

to populate the vector database (DB). Within the feature pipeline, we gathered data from the data

warehouse, cleaned, chunked, and embedded the documents, and, ultimately, loaded them to the

vector DB. Thus, at this point, the vector DB is filled with documents and ready to be used for RAG.

Based on the RAG methodology, you can split your software architecture into three modules: one

for retrieval, one to augment the prompt, and one to generate the answer. We will follow a sim-

ilar pattern by implementing a retrieval module to query the vector DB. Within this module, we

will implement advanced RAG techniques to optimize the search. Afterward, we won’t dedicate

a whole module to augmenting the prompt, as that would be overengineering, which we try to

avoid. However, we will write an inference service that inputs the user query and context, builds

the prompt, and calls the LLM to generate the answer. To summarize, we will implement two core

Python modules, one for retrieval and one for calling the LLM using the user’s input and context

as input. When we glue these together, we will have an end-to-end RAG flow.

In Chapters 5 and 6, we fine-tuned our LLM Twin model, and in Chapter 8, we learned how to

optimize it for inference. Thus, at this point, the LLM is ready for production. What is left is to

build and deploy the two modules described above.

RAG Inference Pipeline318

We will dedicate the next chapter entirely to deploying our fine-tuned LLM Twin model to AWS

SageMaker, as an AWS SageMaker inference endpoint. Thus, the focus of this chapter is to dig

into the advanced RAG retrieval module implementation. We have dedicated a whole chapter to

the retrieval step because this is where the magic happens in an RAG system. At the retrieval step

(and not when calling the LLM), you write most of the RAG inference code. This step is where

you have to wrangle your data to ensure that you retrieve the most relevant data points from the

vector DB. Hence, most of the advanced RAG logic goes within the retrieval step.

To sum up, in this chapter, we will cover the following topics:

• Understanding the LLM Twin’s RAG inference pipeline

• Exploring the LLM Twin’s advanced RAG techniques

• Implementing the LLM Twin’s RAG inference pipeline

By the end of this chapter, you will know how to implement an advanced RAG retrieval module,

augment a prompt using the retrieved context, and call an LLM to generate the final answer.

Ultimately, you will know how to build a production-ready RAG inference pipeline end to end.

Understanding the LLM Twin’s RAG inference
pipeline
Before implementing the RAG inference pipeline, we want to discuss its software architecture

and advanced RAG techniques. Figure 9.1 illustrates an overview of the RAG inference flow. The

inference pipeline starts with the input query, retrieves the context using the retrieval module

(based on the query), and calls the LLM SageMaker service to generate the final answer.

Chapter 9 319

Figure 9.1: RAG inference pipeline architecture

The feature pipeline and the retrieval module, defined in Figure 9.1, are independent processes. The

feature pipeline runs on a different machine on a schedule to populate the vector DB. At the same

time, the retrieval module is called on demand, within the inference pipeline, on every user request.

RAG Inference Pipeline320

By separating concerns between the two components, the vector DB is always populated with the

latest data, ensuring feature freshness, while the retrieval module can access the latest features

on every request. The input of the RAG retrieval module is the user’s query, based on which we

have to return the most relevant and similar data points from the vector DB, which will be used

to guide the LLM in generating the final answer.

To fully understand the dynamics of the RAG inference pipeline, let’s go through the architecture

flow from Figure 9.1 step by step:

1. User query: We begin with the user who makes a query, such as “Write an article about...”

2. Query expansion: We expand the initial query to generate multiple queries that reflect

different aspects or interpretations of the original user query. Thus, instead of one query,

we will use xN queries. By diversifying the search terms, the retrieval module increases

the likelihood of capturing a comprehensive set of relevant data points. This step is crucial

when the original query is too narrow or vague.

3. Self-querying: We extract useful metadata from the original query, such as the author’s

name. The extracted metadata will be used as filters for the vector search operation, elim-

inating redundant data points from the query vector space (making the search more

accurate and faster).

4. Filtered vector search: We embed each query and perform a similarity search to find

each search’s top K data points. We execute xN searches corresponding to the number of

expanded queries. We call this step a filtered vector search as we leverage the metadata

extracted from the self-query step as query filters.

5. Collecting results: We get up to xK results closest to its specific expanded query interpre-

tation for each search operation. Further, we aggregate the results of all the xN searches,

ending up with a list of N x K results containing a mix of articles, posts, and repositories

chunks. The results include a broader set of potentially relevant chunks, offering multiple

relevant angles based on the original query’s different facets.

6. Reranking: To keep only the top K most relevant results from the list of N x K potential

items, we must filter the list further. We will use a reranking algorithm that scores each

chunk based on the relevance and importance relative to the initial user query. We will

leverage a neural cross-encoder model to compute the score, a value between 0 and 1,

where 1 means the result is entirely relevant to the query. Ultimately, we sort the N x K

results based on the score and pick the top K items. Thus, the output is a ranked list of K

chunks, with the most relevant data points situated at the top.

Chapter 9 321

7. Build the prompt and call the LLM: We map the final list of the most relevant K chunks

to a string used to build the final prompt. We create the prompt using a prompt template,

the retrieved context, and the user’s query. Ultimately, the augmented prompt is sent to

the LLM (hosted on AWS SageMaker exposed as an API endpoint).

8. Answer: We are waiting for the answer to be generated. After the LLM processes the

prompt, the RAG logic finishes by sending the generated response to the user.

That wraps up the overview of the RAG inference pipeline. Now, let’s dig deeper into the details.

Exploring the LLM Twin’s advanced RAG techniques
Now that we understand the overall flow of our RAG inference pipeline, let’s explore the advanced

RAG techniques we used in our retrieval module:

• Pre-retrieval step: Query expansion and self-querying

• Retrieval step: Filtered vector search

• Post-retrieval step: Reranking

Before digging into each method individually, let’s lay down the Python interfaces we will use

in this section, which are available at https://github.com/PacktPublishing/LLM-Engineers-

Handbook/blob/main/llm_engineering/application/rag/base.py.

The first is a prompt template factory that standardizes how we instantiate prompt templates.

As an interface, it inherits from ABC and exposes the create_template() method, which returns

a LangChain PromptTemplate instance. Even if we avoid being heavily reliant on LangChain, as

we want to implement everything ourselves to understand the engineering behind the scenes,

some objects, such as the PromptTemplate class, are helpful to speed up the development without

hiding too much functionality:

from abc import ABC, abstractmethod

from langchain.prompts import PromptTemplate

from pydantic import BaseModel

class PromptTemplateFactory(ABC, BaseModel):

https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/rag/base.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/rag/base.py

RAG Inference Pipeline322

 @abstractmethod

 def create_template(self) -> PromptTemplate:

 pass

We also want to define a RAGStep interface used to standardize the interface of advanced RAG

steps such as query expansion and self-querying. As these steps are often dependent on other

LLMs, it has a mock attribute to reduce costs and debugging time during development:

from typing import Any

from llm_engineering.domain.queries import Query

class RAGStep(ABC):

 def __init__(self, mock: bool = False) -> None:

 self._mock = mock

 @abstractmethod

 def generate(self, query: Query, *args, **kwargs) -> Any:

 pass

Ultimately, we must understand how we modeled the Query domain entity to wrap the user’s

input with other metadata required for advanced RAG. Thus, let’s look at its implementation.

First, we import the necessary classes:

from pydantic import UUID4, Field

from llm_engineering.domain.base import VectorBaseDocument

from llm_engineering.domain.types import DataCategory

Next, we define the Query entity class, which inherits from the VectorBaseDocument object-vector

mapping (OVM) class, discussed in Chapter 4. Thus, each query can easily be saved or retrieved

from the vector DB:

class Query(VectorBaseDocument):

 content: str

 author_id: UUID4 | None = None

 author_full_name: str | None = None

 metadata: dict = Field(default_factory=dict)

Chapter 9 323

class Config:

 category = DataCategory.QUERIES

What is essential to notice are the class’s attributes used to combine the user’s query with a

bunch of metadata fields:

• content: A string containing input query.

• author_id: An optional UUID4 identifier extracted from the query used as a filter within

the vector search operation to retrieve chunks written only by a specific author

• author_full_name: An optional string used to query the author_id

• metadata: A dictionary for any additional metadata, initialized as an empty dict by default

Besides the standard definition of a domain class, we also define a from_str() class method to

create a Query instance directly from a string. This allows us to standardize how we clean the query

string before constructing the query object, such as stripping any leading or trailing whitespace

and newline characters:

 @classmethod

 def from_str(cls, query: str) -> "Query":

 return Query(content=query.strip("\n "))

Additionally, there’s an instance method called replace_content() used to create a new Query

instance with updated content while retaining the original query’s id, author_id, author_full_

name, and metadata:

 def replace_content(self, new_content: str) -> "Query":

 return Query(

 id=self.id,

 content=new_content,

 author_id=self.author_id,

 author_full_name=self.author_full_name,

 metadata=self.metadata,

)

This can be particularly useful when modifying the query text, for example, during preprocessing

or normalization, without losing the associated metadata or identifiers. Following the Query class,

we define the EmbeddedQuery class:

class EmbeddedQuery(Query):

RAG Inference Pipeline324

 embedding: list[float]

 class Config:

 category = DataCategory.QUERIES

The EmbeddedQuery class extends Query by adding the embedding field. The EmbeddedQuery entity

encapsulates all the data and metadata necessary to perform vector search operations on top of

Qdrant (or another vector DB).

Now that we understand all the interfaces and new domain entities used within the RAG inference

pipeline, let’s move on to our advanced RAG pre-retrieval optimization techniques.

Advanced RAG pre-retrieval optimizations: query expansion
and self-querying
We implemented two methods to optimize the pre-retrieval optimization step: query expansion

and self-querying. The two methods work closely with the filtered vector search step, which we

will touch on in the next section. For now, however, we will start with understanding the code

for query expansion and move to implementing self-querying.

Within these two methods, we will leverage OpenAI’s API to generate variations of the original

query within the query expansion step and to extract the necessary metadata within the self-que-

rying algorithm. When we wrote this book, we used GPT-4o-mini in all our examples, but as

OpenAI’s models quickly evolve, the model might get deprecated. But that’s not an issue, as you

can quickly change it in your .env file by configuring the OPENAI_MODEL_ID environment variable.

Query expansion
The problem in a typical retrieval step is that you query your vector DB using a single vector rep-

resentation of your original question. This approach covers only a small area of the embedding

space, which can be limiting. If the embedding doesn’t contain all the required information or

nuances of your query, the retrieved context may not be relevant. This means essential documents

that are semantically related but not near the query vector might be overlooked.

The solution is based on query expansion, which offers a way to overcome this limitation. Using an

LLM to generate multiple queries based on your initial question, you create various perspectives

that capture different facets of your query. These expanded queries, when embedded, target other

areas of the embedding space that are still relevant to your original question. This increases the

likelihood of retrieving more relevant documents from the vector DB.

Chapter 9 325

Implementing query expansion can be as straightforward as crafting a detailed zero-shot prompt

to guide the LLM in generating these alternative queries. Thus, after implementing query ex-

pansion, instead of having only one query to search relevant context, you will have xN queries,

hence xN searches.

Increasing the number of searches can impact your latency. Thus, you must experiment with the

number of queries you generate to ensure the retrieval step meets your application requirements.

You can also optimize the searches by parallelizing them, drastically reducing the latency, which

we will do in the ContextRetriever class implemented at the end of this chapter.

Now, let’s dig into the code. We begin by importing the necessary modules and classes required

for query expansion:

from langchain_openai import ChatOpenAI

from llm_engineering.domain.queries import Query

from llm_engineering.settings import settings

from .base import RAGStep

from .prompt_templates import QueryExpansionTemplate

Next, we define the QueryExpansion class, which generates expanded query versions. The class

implementation can be found at https://github.com/PacktPublishing/LLM-Engineers-

Handbook/blob/main/llm_engineering/application/rag/query_expanison.py:

class QueryExpansion(RAGStep):

 def generate(self, query: Query, expand_to_n: int) -> list[Query]:

 assert expand_to_n > 0, f"'expand_to_n' should be greater than 0.
Got {expand_to_n}."

 if self._mock:

 return [query for _ in range(expand_to_n)]

Query expansion is also known as multi-query, but the principles are the

same. For example, this is an example of LangChain’s implementation called

MultiQueryRetriver: https://python.langchain.com/docs/how_to/
MultiQueryRetriever/

https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/rag/query_expanison.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/rag/query_expanison.py
https://python.langchain.com/docs/how_to/MultiQueryRetriever/
https://python.langchain.com/docs/how_to/MultiQueryRetriever/

RAG Inference Pipeline326

In the generate method, we first ensure that the number of expansions requested (expand_to_n)

is greater than zero. If the instance is in mock mode (self._mock is True), it simply returns a

list containing copies of the original query to simulate expansion without actually calling the

API. If not in mock mode, we proceed to create the prompt and initialize the language model:

 query_expansion_template = QueryExpansionTemplate()

 prompt = query_expansion_template.create_template(expand_to_n - 1)

 model = ChatOpenAI(model=settings.OPENAI_MODEL_ID, api_
key=settings.OPENAI_API_KEY, temperature=0)

Here, we instantiate QueryExpansionTemplate and create a prompt tailored to generate expand_

to_n - 1 new queries (excluding the original). We initialize the ChatOpenAI model with the

specified settings and set the temperature to 0 for deterministic output. We then create a Lang-

Chain chain by combining the prompt with the model and invoke it with the user’s question:

 chain = prompt | model

 response = chain.invoke({"question": query})

 result = response.content

By piping the prompt into the model (prompt | model), we set up a chain that generates expanded

queries when invoked with the original query. The response from the model is captured in the

result object. After receiving the response, we parse and clean the expanded queries:

		

We split the result using the separator defined in the template to get individual queries. Starting

with a list containing the original query, we append each expanded query after stripping any

extra whitespace.

Chapter 9 327

Finally, we define the QueryExpansionTemplate class, which constructs the prompt used for

query expansion. The class and other prompt templates can be accessed at https://github.com/
PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/rag/

prompt_templates.py:

from langchain.prompts import PromptTemplate

from .base import PromptTemplateFactory

class QueryExpansionTemplate(PromptTemplateFactory):

 prompt: str = """You are an AI language model assistant. Your task is
to generate {expand_to_n}

 different versions of the given user question to retrieve relevant
documents from a vector

 database. By generating multiple perspectives on the user question,
your goal is to help

 the user overcome some of the limitations of the distance-based
similarity search.

 Provide these alternative questions separated by '{separator}'.

 Original question: {question}"""

 @property

 def separator(self) -> str:

 return "#next-question#"

 def create_template(self, expand_to_n: int) -> PromptTemplate:

 return PromptTemplate(

 template=self.prompt,

 input_variables=["question"],

 partial_variables={

 "separator": self.separator,

 "expand_to_n": expand_to_n,

 },

)

This class defines a prompt instructing the language model to generate multiple versions of

the user’s question. It uses placeholders like {expand_to_n}, {separator}, and {question} to

customize the prompt.

https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/rag/prompt_templates.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/rag/prompt_templates.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/rag/prompt_templates.py

RAG Inference Pipeline328

It takes expand_to_n as an input parameter to define how many queries we wish to generate while

we build the PromptTemplate instance. The separator property provides a unique string to split the

generated queries. The expand_to_n and separator variables are passed as partial_variables,

making them immutable at runtime. Meanwhile, the {question} placeholder will be changed

every time the LLM chain is called.

Now that we have finished studying the query expansion implementation, let’s look at an exam-

ple of how to use the QueryExpansion class. Let’s run the following code using this python -m

llm_engineering.application.rag.query_expansion command:

query = Query.from_str("Write an article about the best types of advanced
RAG methods.")

 query_expander = QueryExpansion()

 expanded_queries = query_expander.generate(query, expand_to_n=3)

 for expanded_query in expanded_queries:

 logger.info(expanded_query.content)

We get the following variations of the original query. As you can observe, the query expansion

method was successful in providing more details and different perspectives of the initial query,

such as highlighting the effectiveness of advanced RAG methods or the overview of these methods

(remember that the first query is the original one):

2024-09-18 17:51:33.529 | INFO - Write an article about the best types of
advanced RAG methods.

2024-09-18 17:51:33.529 | INFO - What are the most effective advanced RAG
methods, and how can they be applied?

2024-09-18 17:51:33.529 | INFO - Can you provide an overview of the top
advanced retrieval-augmented generation techniques?

Now, let’s move to the next pre-retrieval optimization method: self-querying.

Self-querying
The problem when embedding your query into a vector space is that you cannot guarantee that

all the aspects required by your use case are present with enough signal in the embedding vec-

tor. For example, you want to be 100% sure that your retrieval depends on the tags provided

in the user’s input. Unfortunately, you can’t control the signal left within the embedding that

emphasizes the tag. By embedding the query prompt alone, you can never be sure that the tags

are sufficiently represented in the embedding vector or have enough signal when computing the

distance against other vectors.

Chapter 9 329

This problem stands for any other metadata you want to present during the search, such as IDs,

names, or categories.

The solution is to use self-querying to extract the tags or other critical metadata within the query

and use them alongside the vector search as filters. Self-querying uses an LLM to extract various

metadata fields crucial for your business use case, such as tags, IDs, number of comments, likes,

shares, etc. Afterward, you have complete control over how the extracted metadata is considered

during retrieval. In our LLM Twin use case, we extract the author’s name and use it as a filter.

Self-queries work hand-in-hand with filtered vector searches, which we will explain in the next

section.

Now, let’s move on to the code. We begin by importing the necessary modules and classes on

which our code relies:

from langchain_openai import ChatOpenAI

from llm_engineering.application import utils

from llm_engineering.domain.documents import UserDocument

from llm_engineering.domain.queries import Query

from llm_engineering.settings import settings

from .base import RAGStep

from .prompt_templates import SelfQueryTemplate

Next, we define the SelfQuery class, which inherits from RAGStep and implements the generate()

method. The class can be found at https://github.com/PacktPublishing/LLM-Engineers-

Handbook/blob/main/llm_engineering/application/rag/self_query.py:

class SelfQuery(RAGStep):

 def generate(self, query: Query) -> Query:

 if self._mock:

 return query

In the generate() method, we check if the _mock attribute is set to True. If it is, we will return the

original query object unmodified. This allows us to bypass calling the model while testing and

debugging. If not in mock mode, we create the prompt template and initialize the language model.

 prompt = SelfQueryTemplate().create_template()

 model = ChatOpenAI(model=settings.OPENAI_MODEL_ID, api_
key=settings.OPENAI_API_KEY, temperature=0)

https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/rag/self_query.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/rag/self_query.py

RAG Inference Pipeline330

Here, we instantiate the prompt using the SelfQueryTemplate factory class and create a ChatOpenAI

model instance (similar to the query expansion implementation). We then combine the prompt

and the model into a chain and invoke it with the user’s query.

 chain = prompt | model

 response = chain.invoke({"question": query})

 user_full_name = response.content.strip("\n ")

We extract the content from the LLM response and strip any leading or trailing whitespace to

obtain the user_full_name value. Next, we check if the model was able to extract any user in-

formation.

 if user_full_name == "none":

 return query

If the response is "none", it means no user name was found in the query, so we return the origi-

nal query object. If a user name is found, we will split the user_full_name into the first_name

and last_name variables using a utility function. Then, based on the user’s details, we retrieve

or create a UserDocument user instance:

 first_name, last_name = utils.split_user_full_name(user_full_name)

 user = UserDocument.get_or_create(first_name=first_name, last_
name=last_name)

Finally, we update the query object with the extracted author information and return it:

 query.author_id = user.id

 query.author_full_name = user.full_name

 return query

The updated query now contains the author_id and author_full_name values, which can be

used in subsequent steps of the RAG pipeline.

Let’s look at the SelfQueryTemplate class, which defines the prompt to extract user information:

from langchain.prompts import PromptTemplate

from .base import PromptTemplateFactory

Chapter 9 331

class SelfQueryTemplate(PromptTemplateFactory):

 prompt: str = """You are an AI language model assistant. Your task is
to extract information from a user question.

 The required information that needs to be extracted is the user name
or user id.

 Your response should consist of only the extracted user name (e.g.,
John Doe) or id (e.g. 1345256), nothing else.

 If the user question does not contain any user name or id, you should
return the following token: none.

 For example:

 QUESTION 1:

 My name is Paul Iusztin and I want a post about...

 RESPONSE 1:

 Paul Iusztin

 QUESTION 2:

 I want to write a post about...

 RESPONSE 2:

 none

 QUESTION 3:

 My user id is 1345256 and I want to write a post about...

 RESPONSE 3:

 1345256

 User question: {question}"""

 def create_template(self) -> PromptTemplate:

 return PromptTemplate(template=self.prompt, input_
variables=["question"])

In the SelfQueryTemplate class, we define a prompt instructing the AI model to extract the user

name or ID from the input question. The prompt uses few-shot learning to guide the model on

how to respond in different scenarios. When the template is invoked, the {question} placeholder

will be replaced with the actual user question.

RAG Inference Pipeline332

By implementing self-querying, we ensure that critical metadata required for our use case is ex-

plicitly extracted and used during retrieval. This approach overcomes the limitations of relying

solely on the semantics of the embeddings to capture all necessary aspects of a query.

Now that we’ve implemented the SelfQuery class, let’s provide an example. Run the following

code using the python -m llm_engineering.application.rag.self_query CLI command:

 query = Query.from_str("I am Paul Iusztin. Write an article about the
best types of advanced RAG methods.")

 self_query = SelfQuery()

 query = self_query.generate(query)

 logger.info(f"Extracted author_id: {query.author_id}")

 logger.info(f"Extracted author_full_name: {query.author_full_name}")

We get the following results where the author’s full name and ID were extracted correctly:

2024-09-18 18:02:10.362 | INFO - Extracted author_id: 900fec95-d621-4315-
84c6-52e5229e0b96

2024-09-18 18:02:10.362 | INFO - Extracted author_full_name: Paul Iusztin

Now that we understand how self-querying works, let’s explore how it can be used together with

filtered vector search within the retrieval optimization step.

Advanced RAG retrieval optimization: filtered vector search
Vector search is pivotal in retrieving relevant information based on semantic similarity. A plain

vector search, however, can introduce significant challenges that affect both the accuracy and

latency of information retrieval. This is primarily because it operates solely on the numerical

proximity of vector embeddings without considering the contextual or categorical nuances that

might be crucial for relevance.

One of the primary issues with plain vector search is retrieving semantically similar but contex-

tually irrelevant documents. Since vector embeddings capture general semantic meanings, they

might assign high similarity scores to content that shares language patterns or topics but doesn’t

align with the specific intent or constraints of the query. For instance, searching for “Java” could

retrieve documents about the programming language or the Indonesian island, depending solely

on semantic similarity, leading to ambiguous or misleading results.

Moreover, as the size of the dataset increases, plain vector search can suffer from scalability issues.

The lack of filtering means the search algorithm has to compute similarities across the entire

vector space, which can significantly increase latency.

Chapter 9 333

This exhaustive search slows response times and consumes more computational resources, making

it inefficient for real-time or large-scale applications.

Filtered vector search emerges as a solution by filtering after additional criteria, such as metadata

tags or categories, reducing the search space before computing vector similarities. By applying

these filters, the search algorithm narrows the pool of potential results to those contextually

aligned with the query’s intent. This targeted approach enhances accuracy by eliminating irrel-

evant documents that might have otherwise been considered due to their semantic similarities

alone.

Additionally, filtered vector search improves latency by reducing the number of comparisons the

algorithm needs to perform. Working with a smaller, more relevant subset of data decreases the

computational overhead, leading to faster response times. This efficiency is crucial for applica-

tions requiring real-time interactions or handling large queries.

As the metadata used within the filtered vector search is often part of the user’s input, we have

to extract it before querying the vector DB. That’s precisely what we did during the self-query

step, where we extracted the author’s name to reduce the vector space only to the author’s con-

tent. Thus, as we processed the query within the self-query step, it went into the pre-retrieval

optimization category, whereas when the filtered vector search optimized the query, it went into

the retrieval optimization bin.

For example, when using Qdrant, to add a filter that looks for a matching author_id within the

metadata of each document, you must implement the following code:

from qdrant_client.models import FieldCondition, Filter, MatchValue

records = qdrant_connection.search(

 collection_name="articles",

 query_vector=query_embedding,

 limit=3,

 with_payload=True,

 query_filter= Filter(

 must=[

 FieldCondition(

 key="author_id",

 match=MatchValue(

 value=str("1234"),

),

RAG Inference Pipeline334

)

]

),

)

In essence, while plain vector search provides a foundation for semantic retrieval, its limitations

can slow performance in practical applications. Filtered vector search addresses these challenges

by combining the strengths of vector embeddings with contextual filtering, resulting in more

accurate and efficient information retrieval in RAG systems. The last step for optimizing our RAG

pipeline is to look into reranking.

Advanced RAG post-retrieval optimization: reranking
The problem in RAG systems is that the retrieved context may contain irrelevant chunks that only:

• Add noise: The retrieved context might be irrelevant, cluttering the information and

potentially confusing the language model.

• Make the prompt bigger: Including unnecessary chunks increases the prompt size, lead-

ing to higher costs. Moreover, language models are usually biased toward the context’s

first and last pieces. So, if you add a large amount of context, there’s a big chance it will

miss the essence.

• Be come unaligned with your question: Chunks are retrieved based on the similarity

between the query and chunk embeddings. The issue is that the embedding model might

not be tuned to your question, resulting in high similarity scores for chunks that aren’t

entirely relevant.

The solution is to use reranking to order all the N × K retrieved chunks based on their relevance

relative to the initial question, where the first chunk will be the most relevant and the last the

least. N represents the number of searches after query expansion, while K is the number of chunks

retrieved per search. Hence, we retrieve a total of N x K chunks. In RAG systems, reranking serves

as a critical post-retrieval step that refines the initial results obtained from the retrieval model.

We assess each chunk’s relevance to the original query by applying the reranking algorithm, which

often uses advanced models like neural cross-encoders. These models evaluate the semantic sim-

ilarity between the query and each chunk more accurately than initial retrieval methods based

on embeddings and the cosine similarity distance, as explained in more detail in Chapter 4 in the

An overview of advanced RAG section.

Chapter 9 335

Ultimately, we pick the top K most relevant chunks from the sorted list of N x K items based on

the reranking score. Reranking works well when combined with query expansion. First, let’s

understand how reranking works without query expansion:

1. Search for > K chunks: Retrieve more than K chunks to have a broader pool of potentially

relevant information.

2. Reorder using rerank: Apply reranking to this larger set to evaluate the actual relevance

of each chunk relative to the query.

3. Take top K: Select the top K chunks to use them as context in the final prompt.

Thus, when combined with query expansion, we gather potential valuable context from multiple

points in space rather than just looking for more than K samples in a single location. Now the

flow looks like this:

1. Search for N × K chunks: Retrieve multiple sets of chunks using the expanded queries.

2. Reorder using rerank: Rerank all the retrieved chunks based on their relevance.

3. Take top K: Select the most relevant chunks for the final prompt.

Integrating reranking into the RAG pipeline enhances the quality and relevance of the re-

trieved context and efficiently uses computational resources. Let’s look at implementing the

LLM Twin’s reranking step to understand what we described above, which can be accessed on

GitHub at https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_

engineering/application/rag/reranking.py.

We begin by importing the necessary modules and classes for our reranking process:

from llm_engineering.application.networks import
CrossEncoderModelSingleton

from llm_engineering.domain.embedded_chunks import EmbeddedChunk

from llm_engineering.domain.queries import Query

from .base import RAGStep

Next, we define the Reranker class, which is responsible for reranking the retrieved documents

based on their relevance to the query:

class Reranker(RAGStep):

 def __init__(self, mock: bool = False) -> None:

 super().__init__(mock=mock)

 self._model = CrossEncoderModelSingleton()

https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/rag/reranking.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/rag/reranking.py

RAG Inference Pipeline336

In the initializer of the Reranker class, we instantiate our cross-encoder model by creating an

instance of CrossEncoderModelSingleton. This is the cross-encoder model used to score the

relevance of each document chunk with respect to the query.

The core functionality of the Reranker class is implemented in the generate() method:

 def generate(self, query: Query, chunks: list[EmbeddedChunk], keep_
top_k: int) -> list[EmbeddedChunk]:

 if self._mock:

 return chunks

 query_doc_tuples = [(query.content, chunk.content) for chunk in
chunks]

 scores = self._model(query_doc_tuples)

 scored_query_doc_tuples = list(zip(scores, chunks, strict=False))

 scored_query_doc_tuples.sort(key=lambda x: x[0], reverse=True)

 reranked_documents = scored_query_doc_tuples[:keep_top_k]

 reranked_documents = [doc for _, doc in reranked_documents]

 return reranked_documents

The generate() method takes a query, a list of chunks (document segments), and the number

of top documents to keep (keep_top_k). If we’re in mock mode, it simply returns the original

chunks. Otherwise, it performs the following steps:

1. Creates pairs of the query content and each chunk’s content

2. Uses the cross-encoder model to score each pair, assessing how well the chunk matches

the query

3. Zips the scores with the corresponding chunks to create a scored list of tuples

4. Sorts this list in descending order based on the scores

5. Selects the top keep_top_k chunks

6. Extracts the chunks from the tuples and returns them as the reranked documents

Before defining the CrossEncoder class, we import the necessary components:

from sentence_transformers.cross_encoder import CrossEncoder

from .base import SingletonMeta

Chapter 9 337

We import the CrossEncoder class from the sentence_transformers library, which provides the

functionality for scoring text pairs. We also import SingletonMeta from our base module to en-

sure our model class follows the singleton pattern, meaning only one instance of the model exists

throughout the application. Now, we define the CrossEncoderModelSingleton class:

class CrossEncoderModelSingleton(metaclass=SingletonMeta):

 def __init__(

 self,

 model_id: str = settings.RERANKING_CROSS_ENCODER_MODEL_ID,

 device: str = settings.RAG_MODEL_DEVICE,

) -> None:

 """

 A singleton class that provides a pre-trained cross-encoder model
for scoring pairs of input text.

 """

 self._model_id = model_id

 self._device = device

 self._model = CrossEncoder(

 model_name=self._model_id,

 device=self._device,

)

 self._model.model.eval()

This class initializes the cross-encoder model using the specified model_id and device from the

global settings loaded from the .env file. We set the model to evaluation mode using self._

model.model.eval() to ensure the model is ready for inference.

The CrossEncoderModelSingleton class includes a callable method to score text pairs:

 def __call__(self, pairs: list[tuple[str, str]], to_list: bool = True)
-> NDArray[np.float32] | list[float]:

 scores = self._model.predict(pairs)

 if to_list:

 scores = scores.tolist()

 return scores

RAG Inference Pipeline338

The __call__ method allows us to pass in a list of text pairs (each consisting of the query and

a document chunk) and receive their relevance scores. The method uses the model’s predict()

function to call the model and compute the scores.

The CrossEncoderModelSingleton class is a wrapper over the CrossEncoder class, which we wrote

for two purposes. The first one is for the singleton pattern, which allows us to easily access the

same instance of the cross-encoder model from anywhere within the application without loading

the model in memory every time we need it. The second reason is that by writing our wrapper,

we defined our interface for a cross-encoder model (or any other model used for reranking).

This makes the code future-proof as in case we need a different implementation or strategy for

reranking, for example, using an API, we only have to write a different wrapper that follows the

same interface and swap the old class with the new one. Thus, we can introduce new reranking

methods without touching the rest of the code.

We now understand all the advanced RAG techniques used within our architecture. In the next

section, we will examine the ContextRetriever class that connects all these methods and explain

how to use the retrieval module with an LLM for an end-to-end RAG inference pipeline.

Implementing the LLM Twin’s RAG inference pipeline
As explained at the beginning of this chapter, the RAG inference pipeline can mainly be divided

into three parts: the retrieval module, the prompt creation, and the answer generation, which

boils down to calling an LLM with the augmented prompt. In this section, our primary focus will

be implementing the retrieval module, where most of the code and logic go. Afterward, we will

look at how to build the final prompt using the retrieved context and user query.

Ultimately, we will examine how to combine the retrieval module, prompt creation logic, and

the LLM to capture an end-to-end RAG workflow. Unfortunately, we won’t be able to test out

the LLM until we finish Chapter 10, as we haven’t deployed our fine-tuned LLM Twin module to

AWS SageMaker.

Thus, by the end of this section, you will learn how to implement the RAG inference pipeline,

which you can test out end to end only after finishing Chapter 10. Now, let’s start by looking at

the implementation of the retrieval module.

Chapter 9 339

Implementing the retrieval module
Let’s dive into the ContextRetriever class implementation, which orchestrates the retrieval

step in our RAG system by integrating all the advanced techniques we previously used: que-

ry expansion, self-querying, reranking, and filtered vector search. The class can be found on

GitHub at https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_

engineering/application/rag/retriever.py.

Figure 9.2: Search logic of the RAG retrieval module

https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/rag/retriever.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/application/rag/retriever.py

RAG Inference Pipeline340

The entry point function of the ContextRetriever class is the search() method, which calls all the

advanced steps discussed in this chapter. Figure 9.2 shows in more detail how the search method

glues together all the steps required to search results similar to the user’s query. It highlights how

the extracted author details from the self-query step are used within the filtered vector search.

Also, it zooms in on the search operation itself, where, for each query, we do three searches to

the vector DB, looking for articles, posts, or repositories similar to the query. For each search (out

of N searches), we want to retrieve a maximum of K results. Thus, we retrieve a maximum of K

/ 3 items for each data category (as we have three categories). Therefore, when summed up, we

will have a list of ≤ K chunks. The retrieved list is ≤ K (and not equal to K) when a particular data

category or more returns < K / 3 items after applying the author filters due to missing chunks

for that specific author or data category.

Figure 9.3: Processing the results flow of the RAG retrieval module

Chapter 9 341

Figure 9.3 illustrates how we process the results returned by the xN searches. As each search

returns ≤ K items, we will end up with ≤ N x K chunks that we aggregate into a single list. As

some results might overlap between searchers, we must deduplicate the aggregated list to ensure

each chunk is unique. Ultimately, we send the results to the rerank model, order them based on

their reranking score, and pick the most relevant top K chunks we will use as context for RAG.

Let’s understand how everything from Figures 9.2 and 9.3 is implemented in the ContextRetriever

class. First, we initialize the class by setting up instances of the QueryExpansion, SelfQuery, and

Reranker classes:

class ContextRetriever:

 def __init__(self, mock: bool = False) -> None:

 self._query_expander = QueryExpansion(mock=mock)

 self._metadata_extractor = SelfQuery(mock=mock)

 self._reranker = Reranker(mock=mock)

In the search() method, we convert the user’s input string into a query object. We then use the

SelfQuery instance to extract the author_id and author_full_name from the query:

 def search(

 self,

 query: str,

 k: int = 3,

 expand_to_n_queries: int = 3,

) -> list:

 query_model = Query.from_str(query)

 query_model = self._metadata_extractor.generate(query_model)

 logger.info(

 "Successfully extracted the author_id from the query.",

 author_id=query_model.author_id,

)

Next, we expand the query to generate multiple semantically similar queries using the

QueryExpansion instance:

 n_generated_queries = self._query_expander.generate(query_model,
expand_to_n=expand_to_n_queries)

 logger.info(

 "Successfully generated queries for search.",

RAG Inference Pipeline342

 num_queries=len(n_generated_queries),

)

We then perform the search concurrently for all expanded queries using a thread pool. Each que-

ry is processed by the _search() method, which we’ll explore shortly. The results are flattened,

deduplicated, and collected into a single list:

 with concurrent.futures.ThreadPoolExecutor() as executor:

 search_tasks = [executor.submit(self._search, _query_model, k)
for _query_model in n_generated_queries]

 n_k_documents = [task.result() for task in concurrent.futures.
as_completed(search_tasks)]

 n_k_documents = utils.misc.flatten(n_k_documents)

 n_k_documents = list(set(n_k_documents))

 logger.info("All documents retrieved successfully.", num_
documents=len(n_k_documents))

After retrieving the documents, we rerank them based on their relevance to the original query

and keep only the top k documents:

 if len(n_k_documents) > 0:

 k_documents = self.rerank(query, chunks=n_k_documents, keep_
top_k=k)

 else:

 k_documents = []

 return k_documents

The _search() method performs the filtered vector search across different data categories like

posts, articles, and repositories. It uses the EmbeddingDispatcher to convert the query into an

EmbeddedQuery, which includes the query’s embedding vector and any extracted metadata:

 def _search(self, query: Query, k: int = 3) -> list[EmbeddedChunk]:

 assert k >= 3, "k should be >= 3"

 def _search_data_category(

 data_category_odm: type[EmbeddedChunk], embedded_query:
EmbeddedQuery

) -> list[EmbeddedChunk]:

Chapter 9 343

 if embedded_query.author_id:

 query_filter = Filter(

 must=[

 FieldCondition(

 key="author_id",

 match=MatchValue(

 value=str(embedded_query.author_id),

),

)

]

)

 else:

 query_filter = None

 return data_category_odm.search(

 query_vector=embedded_query.embedding,

 limit=k // 3,

 query_filter=query_filter,

)

 embedded_query: EmbeddedQuery = EmbeddingDispatcher.
dispatch(query)

We used the same EmbeddingDispatcher to embed the query as in the RAG feature pipeline to

embed the document chunks stored in the vector DB. Using the same class ensures we use the

same embedding model at ingestion and query time, which is critical for the retrieval step.

We search each data category separately by leveraging the local _search_data_category() func-

tion. Within the _search_data_category() function, we apply the filters extracted from the

embedded_query object. For instance, if an author_id is present, we use it to filter the search results

only to include documents from that author. The results from all categories are then combined:

 post_chunks = _search_data_category(EmbeddedPostChunk, embedded_
query)

 articles_chunks = _search_data_category(EmbeddedArticleChunk,
embedded_query)

 repositories_chunks = _search_data_
category(EmbeddedRepositoryChunk, embedded_query)

RAG Inference Pipeline344

 retrieved_chunks = post_chunks + articles_chunks + repositories_
chunks

 return retrieved_chunks

Finally, the rerank() method takes the original query and the list of retrieved documents to

reorder them based on relevance:

 def rerank(self, query: str | Query, chunks: list[EmbeddedChunk],
keep_top_k: int) -> list[EmbeddedChunk]:

 if isinstance(query, str):

 query = Query.from_str(query)

 reranked_documents = self._reranker.generate(query=query,
chunks=chunks, keep_top_k=keep_top_k)

 logger.info("Documents reranked successfully.", num_
documents=len(reranked_documents))

 return reranked_documents

Leveraging the ContextRetriever class, we can retrieve context from any query with only a few

lines of code. For example, let’s take a look at the following code snippet, where we call the entire

advanced RAG architecture with a simple call to the search() method:

from loguru import logger

from llm_engineering.application.rag.retriever import ContextRetriever

query = """

 My name is Paul Iusztin.

 Could you draft a LinkedIn post discussing RAG systems?

 I'm particularly interested in:

 - how RAG works

 - how it is integrated with vector DBs and large language
models (LLMs).

 """

Chapter 9 345

retriever = ContextRetriever(mock=False)

documents = retriever.search(query, k=3)

logger.info("Retrieved documents:")

for rank, document in enumerate(documents):

 logger.info(f"{rank + 1}: {document}")

Calling the code from above using the following CLI command: poetry poe call-rag-retrieval-

module. This outputs the following:

2024-09-18 19:01:50.588 | INFO - Retrieved documents:

2024-09-18 19:01:50.588 | INFO - 1: id=UUID('541d6c22-d15a-4e6a-924a-
68b7b1e0a330') content='4 Advanced RAG Algorithms You Must Know by
Paul Iusztin Implement 4 advanced RAG retrieval techniques to optimize
your vector DB searches. Integrate the RAG retrieval module into a
production LLM system…" platform='decodingml.substack.com' document_
id=UUID('32648f33-87e6-435c-b2d7-861a03e72392') author_id=UUID('900fec95-
d621-4315-84c6-52e5229e0b96') author_full_name='Paul Iusztin'
metadata={'embedding_model_id': 'sentence-transformers/all-MiniLM-L6-v2',
'embedding_size': 384, 'max_input_length': 256} link='https://decodingml.
substack.com/p/the-4-advanced-rag-algorithms-you?r=1ttoeh'

2024-09-18 19:01:50.588 | INFO - 2: id=UUID('5ce78438-1314-4874-8a5a-
04f5fcf0cb21') content='Overview of advanced RAG optimization techniquesA
production RAG system is split into 3 main components ingestion clean,
chunk, embed, and load your data to a vector DBretrieval query your vector
DB for …" platform='medium' document_id=UUID('bd9021c9-a693-46da-97e7-
0d06760ee6bf') author_id=UUID('900fec95-d621-4315-84c6-52e5229e0b96')
author_full_name='Paul Iusztin' metadata={'embedding_model_id': 'sentence-
transformers/all-MiniLM-L6-v2', 'embedding_size': 384, 'max_input_length':
256} link='https://medium.com/decodingml/the-4-advanced-rag-algorithms-
you-must-know-to-implement-5d0c7f1199d2'

2024-09-18 19:02:45.729 | INFO - 3: id=UUID('0405a5da-4686-428a-91ca-
446b8e0446ff') content='Every Medium article will be its own lesson
An End to End Framework for Production Ready LLM Systems by Building
Your LLM TwinThe Importance of Data Pipelines in the Era of Generative
AIChange Data Capture Enabling Event Driven …" platform='medium' document_
id=UUID('bd9021c9-a693-46da-97e7-0d06760ee6bf') author_id=UUID('900fec95-
d621-4315-84c6-52e5229e0b96') author_full_name='Paul Iusztin'
metadata={'embedding_model_id': 'sentence-transformers/all-MiniLM-L6-v2',
'embedding_size': 384, 'max_input_length': 256} link='https://medium.

RAG Inference Pipeline346

com/decodingml/the-4-advanced-rag-algorithms-you-must-know-to-implement-
5d0c7f1199d2'

As you can observe in the output above, along with the retrieved content, we have access to all

kinds of metadata, such as the embedding model used for retrieval or the link from which the

chunk was taken. These can quickly be added to a list of references when generating the result

for the user, increasing trust in the final results.

Now that we understand how the retrieval module works, let’s take a final step and examine the

end-to-end RAG inference pipeline.

Bringing everything together into the RAG inference
pipeline
To fully implement the RAG flow, we still have to build the prompt using the context from the

retrieval model and call the LLM to generate the answer. This section will discuss these two steps

and wrap everything together into a single rag() function. The functions from this section can

be accessed on GitHub at https://github.com/PacktPublishing/LLM-Engineers-Handbook/

blob/main/llm_engineering/infrastructure/inference_pipeline_api.py.

Let’s start by looking at the call_llm_service()function, responsible for interfacing with the

LLM service. It takes in a user’s query and an optional context, sets up the language model end-

point, executes the inference, and returns the generated answer. The context is optional; you can

call the LLM without it, as you would when interacting with any other LLM:

def call_llm_service(query: str, context: str | None) -> str:

 llm = LLMInferenceSagemakerEndpoint(

 endpoint_name=settings.SAGEMAKER_ENDPOINT_INFERENCE, inference_
component_name=None

)

 answer = InferenceExecutor(llm, query, context).execute()

 return answer

This function makes an HTTP request to our fine-tuned LLM Twin model, which is hosted as

an AWS SageMaker inference endpoint. We will explore all the SageMaker details in the next

chapter, where we will dig into the LLMInferenceSagemakerEndpoint and InferenceExecutor

classes. For now, what is essential to know is that we use this function to call our fine-tuned LLM.

Still, we must highlight how the query and context, passed to the InferenceExecutor class, are

transformed into the final prompt. We do that using a simple prompt template that is customized

using the user query and retrieved context:

https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/infrastructure/inference_pipeline_api.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/infrastructure/inference_pipeline_api.py

Chapter 9 347

prompt = f"""

You are a content creator. Write what the user asked you to while using
the provided context as the primary source of information for the content.

User query: {query}

Context: {context}

 """

Moving on to the rag() function, this is where the RAG logic comes together. It handles retriev-

ing relevant documents based on the query, mapping the documents to the context that will be

injected into the prompt, and obtaining the final answer from the LLM:

def rag(query: str) -> str:

 retriever = ContextRetriever(mock=False)

 documents = retriever.search(query, k=3)

 context = EmbeddedChunk.to_context(documents)

 answer = call_llm_service(query, context)

 return answer

As we modularized all the RAG steps into independent classes, we reduced the high-level rag()

function to five lines of code (encapsulating all the complexities of the system) similar to what we

see in tools such as LangChain, LlamaIndex, or Haystack. Instead of their high-level implementa-

tion, we learned how to build an advanced RAG service from scratch. Also, by clearly separating

the responsibility of each class, we can use them like LEGOs. Thus, you can quickly call the LLM

independently without context or use the retrieval module as a query engine on top of your vector

DB. In the next chapter, we will see the rag() function in action after we deploy our fine-tuned

LLM to an AWS SageMaker inference endpoint.

Before ending this chapter, we want to discuss potential improvements you could add to the RAG

inference pipeline. As we are building a chatbot, the first one is to add a conversation memory that

stores all the user prompts and generated answers in memory. Thus, when interacting with the

chatbot, it will be aware of the whole conversation, not only the latest prompt. When prompting

the LLM, along with the new user input and context, we also pass the conversation history from

the memory. As the conversation history can get long, to avoid exceeding the context window or

higher costs, you have to implement a way to reduce the size of your memory. As illustrated in

Figure 9.4, the simplest one is to keep only the latest K items from your chat history. Unfortunately,

using this strategy, the LLM will never be aware of the whole conversation.

RAG Inference Pipeline348

Therefore, another way to add the chat history to your prompt is to keep a summary of the conver-

sation along with the latest K replies. There are multiple ways to compute this summary, which

might defeat the purpose of this book if we get into them all, but the simplest way is to always

update the summary on every user prompt and generate an answer.

Figure 9.4: Routing and memory examples

As for each search, we send three queries to the vector DB, one for each data category. Thus, the

second improvement is to add a router between the query and the search. The router will be a

multi-category classifier that predicts the data categories we must retrieve for that specific query.

Hence, instead of making three requests for every search, we can often reduce it to one or two. For

example, if the user wants to write a theoretical paragraph about RAG for an article, then most

probably, it’s valuable to query only the article’s collection. In this case, the router will predict

the article class, which we can use to decide what collection we must query.

Chapter 9 349

Another example would be if we want to illustrate a piece of code that shows how to build a RAG

pipeline. In this case, the router would have to predict the article and repository data category,

as we need to look up examples in both collections for an exhaustive context.

Usually, the router strategy decides what model to call based on a user’s input, such as whether

to use GPT-4 or a self-hosted Llama 3.1 model for that specific query. However, in our particular

use case, we can adapt the router algorithm to optimize the retrieval step.

We can further optimize the retrieval using a hybrid search algorithm that combines the vector

search (based on embeddings) with a keyword search algorithm, such as BM25. Search algorithms

used BM25 (or similar methods) to find similar items in a DB before vector search algorithms

became popular. By merging the methods, hybrid search retrieves results that match the exact

terms, such as RAG, LLM, or SageMaker, and the query semantics, increasing the accuracy and

relevance of your retrieved results. Fundamentally, the hybrid search algorithms follow the next

mechanics:

1. Parallel processing: The search query is processed simultaneously through both the

vector search and BM25 algorithms. Each algorithm retrieves a set of relevant documents

based on its criteria.

2. Score normalization: The results from both searches are assigned relevance scores, which

are then normalized to ensure comparability. This step is crucial because vector search

and BM25 scoring mechanisms work at different scales. Thus, they can’t be compared or

merged without normalization.

3. Result merging: The normalized scores are combined, often through a weighted sum, to

produce a final ranking of documents. Adjusting the weights allows for fine-tuning the

emphasis on the semantic or keyword search algorithm.

To conclude, by combining the semantic and exact keyword search algorithms, you can improve

the accuracy of your retrieval step. Vector search helps recognize synonyms or related concepts,

ensuring that relevant information isn’t overlooked due to vocabulary differences. Keyword search

ensures that documents containing critical keywords are emphasized appropriately, particularly

in technical fields with specific terminology.

One last improvement we can make to our RAG system is to use multi-index vector structures

instead of indexing based only on the content’s embedding. Let’s detail how multi-indexing

works. Instead of using the embeddings of a single field to do the vector search for a particular

collection, it combines multiple fields.

RAG Inference Pipeline350

For example, in our LLM Twin use case, we used only the content field of our articles, posts, or

repositories to query the vector DB. When using a multi-index strategy, along with the content

field, we could index the embeddings of the platform where the content was posted or when the

content was published. This could impact the final accuracy of your retrieval as different platforms

have different types of content, or more recent content is usually more relevant. Frameworks

such as Superlinked make multi-indexing easy. For example, in the code snippet below, using

Superlinked, we defined a multi-index on the content and platform for our article collection in

just a few lines of code:

from superlinked.framework.common.schema.id_schema_object import IdField

from superlinked.framework.common.schema.schema import schema

from superlinked.framework.common.schema.schema_object import String

… # Other Superlinked imports.

@schema

class ArticleSchema:

 id: IdField

 platform: String

 content: String

article = ArticleSchema()

articles_space_content = TextSimilaritySpace(

 text=chunk(article.content, chunk_size=500, chunk_overlap=50),

 model=settings.EMBEDDING_MODEL_ID,

)

articles_space_plaform = CategoricalSimilaritySpace(

 category_input=article.platform,

 categories=["medium", "substack", "wordpress"],

 negative_filter=-5.0,

)

article_index = Index(

 [articles_space_content, articles_space_plaform],

 fields=[article.author_id],

)

Chapter 9 351

Superlinked is a powerful Python tool for any use case that includes vector computing, such as RAG,

recommender systems, and semantic search. It offers an ecosystem where you can quickly ingest

data into a vector DB, write complex queries on top of it, and deploy the service as a RESTful API.

The world of LLMs and RAG is experimental, similar to any other AI domain. Thus, when build-

ing real-world products, it’s important to quickly build an end-to-end solution that works but is

not necessarily the best. Then, you can reiterate with various experiments until you completely

optimize it for your use case. This is standard practice in the industry and lets you iterate fast

while providing value to the business and gathering user feedback as quickly as possible in the

product’s lifecycle.

Summary
This chapter taught us how to build an advanced RAG inference pipeline. We started by looking

into the software architecture of the RAG system. Then, we zoomed in on the advanced RAG meth-

ods we used within the retrieval module, such as query expansion, self-querying, filtered vector

search, and reranking. Afterward, we saw how to write a modular ContextRetriever class that

glues all the advanced RAG components under a single interface, making searching for relevant

documents a breeze. Ultimately, we looked into how to connect all the missing dots, such as the

retrieval, the prompt augmentation, and the LLM call, under a single RAG function that will serve

as our RAG inference pipeline.

As highlighted a few times in this chapter, we couldn’t test our fine-tuned LLM because we haven’t

deployed it yet to AWS SageMaker as an inference endpoint. Thus, in the next chapter, we will

learn how to deploy the LLM to AWS SageMaker, write an inference interface to call the endpoint,

and implement a FastAPI web server to serve as our business layer.

References
• A real-time retrieval system for social media data | VectorHub by SuperLinked. (n.d.). https://

superlinked.com/vectorhub/articles/real-time-retrieval-system-social-media-

data

• Building a Router from Scratch - LlamaIndex. (n.d.). https://docs.llamaindex.ai/en/

stable/examples/low_level/router/

• How to add memory to chatbots | LangChain. (n.d.). https://python.langchain.com/docs/
how_to/chatbots_memory/#summary-memory

https://superlinked.com/vectorhub/articles/real-time-retrieval-system-social-media-data
https://superlinked.com/vectorhub/articles/real-time-retrieval-system-social-media-data
https://superlinked.com/vectorhub/articles/real-time-retrieval-system-social-media-data
https://docs.llamaindex.ai/en/stable/examples/low_level/router/
https://docs.llamaindex.ai/en/stable/examples/low_level/router/
https://python.langchain.com/docs/how_to/chatbots_memory/#summary-memory

https://python.langchain.com/docs/how_to/chatbots_memory/#summary-memory

RAG Inference Pipeline352

• How to do “self-querying” retrieval | LangChain. (n.d.). https://python.langchain.com/

docs/how_to/self_query/

• How to route between sub-chains | LangChain. (n.d.). https://python.langchain.com/

docs/how_to/routing/#routing-by-semantic-similarity

• How to use the MultiQueryRetriever | LangChain. (n.d.). https://python.langchain.com/

docs/how_to/MultiQueryRetriever/

• Hybrid Search explained. (2023, January 3). Weaviate. https://weaviate.io/blog/hybrid-

search-explained

• Iusztin, P. (2024, August 20). 4 Advanced RAG Algorithms You Must Know | Decoding

ML. Medium. https://medium.com/decodingml/the-4-advanced-rag-algorithms-you-

must-know-to-implement-5d0c7f1199d2

• Monigatti, L. (2024, February 19). Advanced Retrieval-Augmented Generation: From Theory

to LlamaIndex Implementation. Medium. https://towardsdatascience.com/advanced-
retrieval-augmented-generation-from-theory-to-llamaindex-implementation-

4de1464a9930

• Multi-attribute search with vector embeddings | VectorHub by Superlinked. (n.d.). https://

superlinked.com/vectorhub/articles/multi-attribute-semantic-search

• Optimizing RAG with Hybrid Search & Reranking | VectorHub by Superlinked. (n.d.). https://
superlinked.com/vectorhub/articles/optimizing-rag-with-hybrid-search-

reranking

• Refactoring.Guru. (2024, January 1). Singleton. https://refactoring.guru/design-

patterns/singleton

• Stoll, M. (2024, September 7). Visualize your RAG Data—Evaluate your Retrieval-Aug-

mented Generation System with Ragas. Medium. https://towardsdatascience.com/
visualize-your-rag-data-evaluate-your-retrieval-augmented-generation-system-

with-ragas-fc2486308557

• Using LLM’s for retrieval and reranking—LlamaIndex, data framework for LLM applications.

(n.d.). https://www.llamaindex.ai/blog/using-llms-for-retrieval-and-reranking-
23cf2d3a14b6

https://python.langchain.com/docs/how_to/self_query/
https://python.langchain.com/docs/how_to/self_query/
https://python.langchain.com/docs/how_to/routing/#routing-by-semantic-similarity
https://python.langchain.com/docs/how_to/routing/#routing-by-semantic-similarity
https://python.langchain.com/docs/how_to/MultiQueryRetriever/
https://python.langchain.com/docs/how_to/MultiQueryRetriever/
https://weaviate.io/blog/hybrid-search-explained
https://weaviate.io/blog/hybrid-search-explained
https://medium.com/decodingml/the-4-advanced-rag-algorithms-you-must-know-to-implement-5d0c7f1199d2
https://medium.com/decodingml/the-4-advanced-rag-algorithms-you-must-know-to-implement-5d0c7f1199d2
https://towardsdatascience.com/advanced-retrieval-augmented-generation-from-theory-to-llamaindex-implementation-4de1464a9930
https://towardsdatascience.com/advanced-retrieval-augmented-generation-from-theory-to-llamaindex-implementation-4de1464a9930
https://towardsdatascience.com/advanced-retrieval-augmented-generation-from-theory-to-llamaindex-implementation-4de1464a9930
https://superlinked.com/vectorhub/articles/multi-attribute-semantic-search
https://superlinked.com/vectorhub/articles/multi-attribute-semantic-search
https://superlinked.com/vectorhub/articles/optimizing-rag-with-hybrid-search-reranking
https://superlinked.com/vectorhub/articles/optimizing-rag-with-hybrid-search-reranking
https://superlinked.com/vectorhub/articles/optimizing-rag-with-hybrid-search-reranking
https://refactoring.guru/design-patterns/singleton
https://refactoring.guru/design-patterns/singleton
https://towardsdatascience.com/visualize-your-rag-data-evaluate-your-retrieval-augmented-generation-system-with-ragas-fc2486308557
https://towardsdatascience.com/visualize-your-rag-data-evaluate-your-retrieval-augmented-generation-system-with-ragas-fc2486308557
https://towardsdatascience.com/visualize-your-rag-data-evaluate-your-retrieval-augmented-generation-system-with-ragas-fc2486308557
https://www.llamaindex.ai/blog/using-llms-for-retrieval-and-reranking-23cf2d3a14b6
https://www.llamaindex.ai/blog/using-llms-for-retrieval-and-reranking-23cf2d3a14b6

Chapter 9 353

Join our book’s Discord space
Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/llmeng

https://packt.link/llmeng

10
Inference Pipeline Deployment

Deploying the inference pipeline for the large language model (LLM) Twin application is a critical

stage in the machine learning (ML) application life cycle. It’s where the most value is added to

your business, making your models accessible to your end users. However, successfully deploying

AI models can be challenging, as the models require expensive computing power and access to

up-to-date features to run the inference. To overcome these constraints, it’s crucial to careful-

ly design your deployment strategy. This ensures that it meets the application’s requirements,

such as latency, throughput, and costs. As we work with LLMs, we must consider the inference

optimization techniques presented in Chapter 8, such as model quantization. Also, to automate

the deployment processes, we must leverage MLOps best practices, such as model registries that

version and share our models across our infrastructure.

To understand how to design the deployment architecture of the LLM Twin, we will first look at

three deployment types we can choose from: online real-time inference, asynchronous inference,

and offline batch transform. Also, to better understand which option to choose for our LLM Twin

use case, we will quickly walk you through a set of critical criteria we must consider before making

an architectural decision, such as latency, throughput, data, and infrastructure. Also, we’ll weigh

the pros and cons of monolithic and microservices architecture in model serving, a decision that

can significantly influence the scalability and maintainability of your service.Once we’ve grasped

the various design choices available, we’ll focus on understanding the deployment strategy for

the LLM Twin’s inference pipeline. Subsequently, we will walk you through an end-to-end tu-

torial on deploying the LLM Twin service, including deploying our custom fine-tuned LLM to

AWS SageMaker endpoints and implementing a FastAPI server as the central entry point for our

users. We will then wrap up this chapter with a short discussion on autoscaling strategies and

how to use them on SageMaker.

Inference Pipeline Deployment356

Hence, in this chapter, we will cover the following topics:

• Criteria for choosing deployment types

• Understanding inference deployment types

• Monolithic versus microservices architecture in model serving

• Exploring the LLM Twin’s inference pipeline deployment strategy

• Deploying the LLM Twin service

• Autoscaling capabilities to handle spikes in usage

Criteria for choosing deployment types
When it comes to deploying ML models, the first step is to understand the four requirements

present in every ML application: throughput, latency, data, and infrastructure.

Understanding them and their interaction is essential. When designing the deployment archi-

tecture for your models, there is always a trade-off between the four that will directly impact the

user’s experience. For example, should your model deployment be optimized for low latency or

high throughput?

Throughput and latency
Throughput refers to the number of inference requests a system can process in a given period.

It is typically measured in requests per second (RPS). Throughput is crucial when deploying

ML models when you expect to process many requests. It ensures the system can handle many

requests efficiently without becoming a bottleneck.

High throughput often requires scalable and robust infrastructure, such as machines or clusters

with multiple high-end GPUs.Latency is the time it takes for a system to process a single inference

request from when it is received until the result is returned. Latency is critical in real-time appli-

cations where quick response times are essential, such as in live user interactions, fraud detection,

or any system requiring immediate feedback. For example, the average latency of OpenAI’s API

is the average response time from when a user sends a request, and the service provides a result

that is accessible within your application.

The latency is the sum of the network I/O, serialization and deserialization, and the LLM’s infer-

ence time. Meanwhile, the throughput is the average number of requests the API processes and

serves a second.

Chapter 10 357

Low-latency systems require optimized and often more costly infrastructure, such as faster pro-

cessors, lower network latency, and possibly edge computing to reduce the distance data needs

to travel.

A lower latency translates to higher throughput when the service processes multiple queries in

parallel successfully. For example, if the service takes 100 ms to process requests, this translates to

a throughput of 10 requests per second. If the latency reaches 10 ms per request, the throughput

rises to 100 requests per second.

However, to complicate things, most ML applications adopt a batching strategy to simultaneously

pass multiple data samples to the model. In this case, a lower latency can translate into lower

throughput; in other words, a higher latency maps to a higher throughput. For example, if you

process 20 batched requests in 100 ms, the latency is 100 ms, while the throughput is 200 requests

per second. If you process 60 requests in 200 ms, the latency is 200 ms, while the throughput

rises to 300 requests per second. Thus, even when batching requests at serving time, it’s essential

to consider the minimum latency accepted for a good user experience.

Data
As we know, data is everywhere in an ML system. But when talking about model serving, we

mostly care about the model’s input and output. This includes the format, volume, and complexity

of the processed data. Data is the foundation of the inference process. The characteristics of the

data, such as its size and type, determine how the system needs to be configured and optimized

for efficient processing.

The type and size of the data directly impact latency and throughput, as more complex or exten-

sive data can take longer to process. For example, designing a model that takes input structured

data and outputs a probability differs entirely from an LLM that takes input text (or even images)

and outputs an array of characters.

Infrastructure
Infrastructure refers to the underlying hardware, software, networking, and system architecture

that supports the deployment and operation of the ML models. The infrastructure provides the

necessary resources for deploying, scaling, and maintaining ML models. It includes computing

resources, memory, storage, networking components, and the software stack:

• For high throughput, the systems require scalable infrastructure to manage large data

volumes and high request rates, possibly through parallel processing, distributed systems,

and high-end GPUs.

Inference Pipeline Deployment358

• Infrastructure must be optimized to reduce processing time to achieve low latency, such

as using faster CPUs, GPUs, or specialized hardware. While optimizing your system for

low latency while batching your requests, you often have to sacrifice high throughput

in favor of lower latency, which can result in your hardware not being utilized at total

capacity. As you process fewer requests per second, it results in idle computing, which

increases the overall cost of processing a request. Thus, picking the suitable machine for

your requirements is critical in optimizing costs.

It is crucial to design infrastructure to meet specific data requirements. This includes selecting

storage solutions to handle large datasets and implementing fast retrieval mechanisms to ensure

efficient data access. For example, we mostly care about optimizing throughput for offline training,

while for online inference, we generally care about latency.

With this in mind, before picking a specific deployment type, you should ask yourself questions

such as:

• What are the throughput requirements? You should make this decision based on the

throughput’s required minimum, average, and maximum statistics.

• How many requests the system must handle simultaneously? (1, 10, 1,000, 1 million, etc.)

• What are the latency requirements? (1 millisecond, 10 milliseconds, 1 second, etc.)

• How should the system scale? For example, we should look at the CPU workload, number

of requests, queue size, data size, or a combination of them.

• What are the cost requirements?With what data do we work with? For example, do we

work with images, text, or tabular data?

• What is the size of the data we work with? (100 MB, 1 GB, 10 GB)

Chapter 10 359

Deeply thinking about these questions directly impacts the user experience of your application,

which ultimately makes the difference between a successful product and not. Even if you ship a

mind-blowing model, if the user needs to wait too long for a response or it often crashes, the user

will switch your production to something less accurate that works reliably. For example, Google

found in a 2016 study that 53% of visits are abandoned if a mobile site takes longer than three

seconds to load: https://www.thinkwithgoogle.com/consumer-insights/consumer-trends/

mobile-site-load-time-statistics/.

Let’s move on to the three deployment architectures we can leverage to serve our models.

Understanding inference deployment types
As illustrated in Figure 10.1, you can choose from three fundamental deployment types when

serving models:

• Online real-time inference

• Asynchronous inference

• Offline batch transform

When selecting one design over the other, there is a trade-off between latency, throughput, and

costs. You must consider how the data is accessed and the infrastructure you are working with.

Another criterion you have to consider is how the user will interact with the model. For example,

will the user use it directly, like a chatbot, or will it be hidden within your system, like a classifier

that checks if an input (or output) is safe?

You have to consider the freshness of the predictions as well. For example, serving your model in

offline batch mode might be easier to implement if, in your use case, it is OK to consume delayed

predictions. Otherwise, you have to serve your model in real-time, which is more infrastruc-

ture-demanding. Also, you have to consider your application’s traffic. Ask yourself questions such

as, “Will the application be constantly used, or will there be spikes in traffic and then flatten out?”

https://www.thinkwithgoogle.com/consumer-insights/consumer-trends/mobile-site-load-time-statistics/
https://www.thinkwithgoogle.com/consumer-insights/consumer-trends/mobile-site-load-time-statistics/

Inference Pipeline Deployment360

With that in mind, let’s explore the three major ML deployment types.

Figure 10.1: The three fundamental architectures of inference deployment types

Online real-time inference
In real-time inference, we have a simple architecture based on a server that can be accessed

through HTTP requests. The most popular options are to implement a REST API or gRPC server.

The REST API is more accessible but slower, using JSON to pass data between the client and server.

Chapter 10 361

This approach is usually taken when serving models outside your internal network to the broader

public. For example, OpenAI’s API implements a REST API protocol.

On the other hand, implementing a gRPC makes your ML server faster, though it may reduce

its flexibility and general applicability. You have to implement protobuf schemas in your client

application, which are more tedious to work with than JSON structures. The benefit, however,

is that protobuf objects can be compiled into bites, making the network transfers much faster.

Thus, this protocol is often adopted for internal services within the same ML system.

Using the real-time inference approach, the client sends an HTTP request to the ML service, which

immediately processes the request and returns the result in the same response. This synchronous

interaction means the client waits for the result before moving on.

To make this work efficiently, the infrastructure must support low-latency, highly responsive ML

services, often deployed on fast, scalable servers. Load balancing is crucial to evenly distribute

incoming traffic evenly, while autoscaling ensures the system can handle varying loads. High

availability is also essential to keeping the service operational at all times.

For example, this architecture is often present when interacting with LLMs, as when sending a

request to a chatbot or API (powered by LLMs), you expend the predictions right ahead. LLM

services, such as ChatGPT or Claude, often use WebSockets to stream each token individually to

the end user, making the interaction more responsive. Other famous examples are AI services such

as embedding or reranking models used for retrieval-augmented generation (RAG) or online

recommendation engines in platforms like TikTok.

The simplicity of real-time inference, with its direct client-server interaction, makes it an attrac-

tive option for applications that require immediate responses, like chatbots or real-time recom-

mendations. However, this approach can be challenging to scale and may lead to underutilized

resources during low-traffic periods.

Asynchronous inference
In asynchronous inference, the client sends a request to the ML service, which acknowledges the

request and places it in a queue for processing. Unlike real-time inference, the client doesn’t wait

for an immediate response. Instead, the ML service processes the request asynchronously. This re-

quires a robust infrastructure that queues the messages to be processed by the ML service later on.

When the results are ready, you can leverage multiple techniques to send them to the client. For

example, depending on the size of the result, you can put it either in a different queue or an object

storage dedicated to storing the results.

Inference Pipeline Deployment362

The client can either adopt a polling mechanism that checks on a schedule if there are new re-

sults or adopt a push strategy and implement a notification system to inform the client when

the results are ready.

Asynchronous inference uses resources more efficiently. It doesn’t have to process all the requests

simultaneously but can define a maximum number of machines that run in parallel to process

the messages. This is possible because the requests are stored in the queue until a machine can

process them. Another huge benefit is that it can handle spikes in requests without any timeouts.

For example, let’s assume that on an e-shop site, we usually have 10 requests per second handled

by two machines. Because of a promotion, many people started to visit the site, and the number

of requests spiked to 100 requests per second. Instead of scaling the number of virtual machines

(VMs) by 10, which can add drastic costs, the requests are queued, and the same two VMs can

process them in their rhythm without any failures.

Another popular advantage for asynchronous architectures is when the requested job takes sig-

nificant time to complete. For example, if the job takes over five minutes, you don’t want to block

the client waiting for a response.

While asynchronous inference offers significant benefits, it does come with trade-offs. It intro-

duces higher latency, making it less suitable for time-sensitive applications. Additionally, it adds

complexity to the implementation and infrastructure. Depending on your design choices, this

architecture type falls somewhere between online and offline, offering a balance of benefits and

trade-offs.

For example, this is a robust design where you don’t care too much about the latency of the infer-

ence but want to optimize costs heavily. Thus, it is a popular choice for problems such as extracting

keywords from documents, summarizing them using LLMs, or running deep-fake models on top

of videos. But suppose you carefully design the autoscaling system to process the requests from

the queue at decent speeds. In that case, you can leverage this design for other use cases, such as

online recommendations for e-commerce. In the end, it sums up how much computing power

you are willing to pay to meet the expectations of your application.

Offline batch transform
Batch transform is about processing large volumes of data simultaneously, either on a schedule

or triggered manually. In a batch transform architecture, the ML service pulls data from a storage

system, processes it in a single operation, and then stores the results in storage. The storage sys-

tem can be implemented as an object storage like AWS S3 or a data warehouse like GCP BigQuery.

Chapter 10 363

Unlike the asynchronous inference architecture, a batch transform design is optimized for high

throughput with permissive latency requirements. When real-time predictions are unnecessary,

this approach can significantly reduce costs, as processing data in big batches is the most eco-

nomical method. Moreover, the batch transform architecture is the simplest way to serve a model,

accelerating development time.

The client pulls the results directly from data storage, decoupling its interaction with the ML

service. Taking this approach, the client never has to wait for the ML service to process its input,

but at the same time, it doesn’t have the flexibility to ask for new results at any time. You can

see the data storage, where the results are stored as a large cache, from where the client can take

what is required. If you want to make your application more responsive, the client can be notified

when the processing is complete and can retrieve the results.

Unfortunately, this approach will always introduce a delay between the time the predictions

were computed and consumed. That’s why not all applications can leverage this design choice.

For example, if we implement a recommender system for a video streaming application, having a

delay of one day for the predicted movies and TV shows might work because you don’t consume

these products at a high frequency. But suppose you make a recommender system for a social

media platform. In that case, delaying one day or even one hour is unacceptable, as you constantly

want to provide fresh content to the user.

Batch transform shines in scenarios where high throughput is needed, like data analytics or pe-

riodic reporting. However, it’s unsuitable for real-time applications due to its high latency and

requires careful planning and scheduling to manage large datasets effectively. That’s why it is

an offline serving method.

To conclude, we examined the three most common architectures for serving ML models. We

started with online real-time inference, which serves clients when they request a prediction.

Then, we looked at the asynchronous inference method, which sits between online and offline.

Ultimately, we presented the offline batch transform, which is used to process large amounts of

data and store them in data storage, from where the client later consumes them.

Monolithic versus microservices architecture in
model serving
In the previous section, we saw three different methods of deploying the ML service. The differ-

ences in architecture were mainly based on the interaction between the client and the ML service,

such as the communication protocol, the ML service responsiveness, and prediction freshness.

Inference Pipeline Deployment364

But another aspect to consider is the architecture of the ML service itself, which can be imple-

mented as a monolithic server or as multiple microservices. This will impact how the ML service

is implemented, maintained, and scaled. Let’s explore the two options.

Figure 10.2: Monolithic versus microservices architecture in model serving

Chapter 10 365

Monolithic architecture
The LLM (or any other ML model) and the associated business logic (preprocessing and post-pro-

cessing steps) are bundled into a single service in a monolithic architecture. This approach is

straightforward to implement at the beginning of a project, as everything is placed within one

code base. Simplicity makes maintenance easy when working on small to medium projects, as

updates and changes can be made within a unified system.

One key challenge of a monolithic architecture is the difficulty of scaling components independent-

ly. The LLM typically requires GPU power, while the rest of the business logic is CPU and I/O-bound.

As a result, the infrastructure must be optimized for both GPU and CPU. This can lead to inefficient

resource use, with the GPU being idle when the business logic is executed and vice versa. Such

inefficiency can result in additional costs that could be avoided.

Moreover, this architecture can limit flexibility, as all components must share the same tech

stack and runtime environment. For example, you might want to run the LLM using Rust or C++

or compile it with ONNX or TensorRT while keeping the business logic in Python. Having all the

code in one system makes this differentiation difficult. Finally, splitting the work across different

teams is complex, often leading to bottlenecks and reduced agility.

Microservices architecture
A microservices architecture breaks down the inference pipeline into separate, independent ser-

vices—typically splitting the LLM service and the business logic into distinct components. These

services communicate over a network using protocols such as REST or gRPC.

As illustrated in Figure 10.3, the main advantage of this approach is the ability to scale each com-

ponent independently. For instance, since the LLM service might require more GPU resources

than the business logic, it can be scaled horizontally without impacting the other components.

This optimizes resource usage and reduces costs, as different types of machines (e.g., GPU versus

CPU) can be used according to each service’s needs.

For example, let’s assume that the LLM inference takes longer, so you will need more ML service

replicas to meet the demand. But remember that GPU VMs are expensive. By decoupling the two

components, you will run only what is required on the GPU machine and not block the GPU VM

with other computing that can be done on a much cheaper machine.

Inference Pipeline Deployment366

Thus, by decoupling the components, you can scale horizontally as required, with minimal costs,

providing a cost-effective solution to your system’s needs.

Figure 10.3: Scaling microservices independently based on compute requirements

Additionally, each microservice can adopt the most suitable technology stack, allowing teams to

innovate and optimize independently.

However, microservices introduce complexity in deployment and maintenance. Each service

must be deployed, monitored, and maintained separately, which can be more challenging than

managing a monolithic system.

Chapter 10 367

The increased network communication between services can also introduce latency and potential

points of failure, necessitating robust monitoring and resilience mechanisms.

Note that the proposed design for decoupling the ML model and business logic into two services

can be extended if necessary. For example, you can have one service for preprocessing the data,

one for the model, and another for post-processing the data. Depending on the four pillars (la-

tency, throughput, data, and infrastructure), you can get creative and design the most optimal

architecture for your application needs.

Choosing between monolithic and microservices
architectures
The choice between monolithic and microservices architectures for serving ML models largely

depends on the application’s specific needs. A monolithic approach might be ideal for smaller

teams or more straightforward applications where ease of development and maintenance is a

priority. It’s also a good starting point for projects without frequent scaling requirements. Also,

if the ML models are smaller, don’t require a GPU, or don’t require smaller and cheaper GPUs,

the trade-off between reducing costs and complicating your infrastructure is worth considering.

On the other hand, microservices, with their adaptability and scalability, are well suited for larger,

more complex systems where different components have varying scaling needs or require distinct

tech stacks. This architecture is particularly advantageous when scaling specific system parts, such

as GPU-intensive LLM services. As LLMs require powerful machines with GPUs, such as Nvidia

A100, V100, or A10g, which are incredibly costly, microservices offer the flexibility to optimize

the system for keeping these machines busy all the time or quickly scaling down when the GPU

is idle. However, this flexibility comes at the cost of increased complexity in both development

and operations.

A common strategy is to start with a monolithic design and further decouple it into multiple

services as the project grows. However, to successfully do so without making the transition too

complex and costly, you must design the monolith application with this in mind. For instance,

even if all the code runs on a single machine, you can completely decouple the modules of the

application at the software level. This makes it easier to move these modules to different micro-

services when the time comes. When working with Python, for example, you can implement the

ML and business logic into two different Python modules that don’t interact with each other. Then,

you can glue these two modules at a higher level, such as through a service class, or directly into

the framework you use to expose your application over the internet, such as FastAPI.

Inference Pipeline Deployment368

Another option is to write the ML and business logic as two different Python packages that you

glue together in the same ways as before. This is better because it completely enforces a separation

between the two but adds extra complexity at development time. The main idea, therefore, is that

if you start with a monolith and down the line you want to move to a microservices architecture,

it’s essential to design your software with modularity in mind. Otherwise, if the logic is mixed,

you will probably have to rewrite everything from scratch, adding tons of development time,

which translates into wasted resources.

In summary, monolithic architectures offer simplicity and ease of maintenance but at the cost of

flexibility and scalability. At the same time, microservices provide the agility to scale and innovate

but require more sophisticated management and operational practices.

Exploring the LLM Twin’s inference pipeline
deployment strategy
Now that we’ve understood all the design choices available for implementing the deployment

strategy of the LLM Twin’s inference pipeline, let’s explore the concrete decisions we made to

actualize it.

Our primary objective is to develop a chatbot that facilitates content creation. To achieve this,

we will process requests sequentially, with a strong emphasis on low latency. This necessitates

the selection of an online real-time inference deployment architecture.

On the monolith versus microservice aspect, we will split the ML service between a REST API

server containing the business logic and an LLM microservice optimized for running the given

LLM. As the LLM requires a powerful machine to run the inference, and we can further optimize

it with various engines to speed up the latency and memory usage, it makes the most sense to go

with the microservice architecture. By doing so, we can quickly adapt the infrastructure based on

various LLM sizes. For example, if we run an 8B parameter model, the model can run on a single

machine with a Nivida A10G GPU after quantization. But if we want to run a 30B model, we can

upgrade to an Nvidia A100 GPU. Doing so allows us to upgrade only the LLM microservice while

keeping the REST API untouched.

As illustrated in Figure 10.4, most business logic is centered around RAG in our particular use case.

Thus, we will perform RAG’s retrieval and augmentation parts within the business microservice.

It will also include all the advanced RAG techniques presented in the previous chapter to optimize

the pre-retrieval, retrieval, and post-retrieval steps.

Chapter 10 369

The LLM microservice is strictly optimized for the RAG generation component. Ultimately, the

business layer will send the prompt trace consisting of the user query, prompt, answer, and other

intermediary steps to the prompt monitoring pipeline, which we will detail in Chapter 11.

In summary, our approach involves implementing an online real-time ML service using a micro-

service architecture, which effectively splits the LLM and business logic into two distinct services.

Figure 10.4: Microservice deployment architecture of the LLM Twin’s inference pipeline

Inference Pipeline Deployment370

Let’s review the interface of the inference pipeline, which is defined by the feature/training/

inference (FTI) architecture. For the pipeline to run, it needs two things:

• Real-time features used for RAG, generated by the feature pipeline, which is queried from

our online feature store, more concretely from the Qdrant vector database (DB)

• A fine-tuned LLM generated by the training pipeline, which is pulled from our model

registry

With that in mind, the flow of the ML service looks as follows, as illustrated in Figure 10.4:

1. A user sends a query through an HTTP request.

2. The user’s input retrieves the proper context by leveraging the advanced RAG retrieval

module implemented in Chapter 4.

3. The user’s input and retrieved context are packed into the final prompt using a dedicated

prompt template.

4. The prompt is sent to the LLM microservice through an HTTP request.

5. The business microservices wait for the generated answer.

6. After the answer is generated, it is sent to the prompt monitoring pipeline along with the

user’s input and other vital information to monitor.

7. Ultimately, the generated answer is sent back to the user.

Now, let’s explore what tech stack we used to implement the architecture presented in Figure

10.4. As we know, we use Qdrant for the vector DB. We will leverage Hugging Face for the model

registry. By doing so, we can publicly share our model with everyone who is testing the code from

this book. Thus, you can easily use the model we provided if you don’t want to run the training

pipeline, which can cost up to 100 dollars. As you can see, shareability and accessibility are some

of the most beautiful aspects of storing your model in a model registry.

We will implement the business microservice in FastAPI because it’s popular, easy to use, and fast.

The LLM microservice will be deployed on AWS SageMaker, where we will leverage SageMaker’s

integration with Hugging Face’s Deep Learning Containers (DLCs) to deploy the model. We will

discuss Hugging Face’s DLCs in the next section, but intuitively, it is an inference engine used to

optimize LLMs at serving time. The prompt monitoring pipeline is implemented using Comet,

but we will look over that module only in Chapter 11.

Chapter 10 371

The SageMaker Inference deployment is composed of the following components that we will

show you how to implement:

• SageMaker endpoint: An endpoint is a scalable and secure API that SageMaker hosts to

enable real-time predictions from deployed models. It’s essentially the interface through

which applications interact with your model. Once deployed, an application can make

HTTP requests to the endpoint to receive real-time predictions.

• SageMaker model: In SageMaker, a model is an artifact that results from training an al-

gorithm. It contains the information required to make predictions, including the weights

and computation logic. You can create multiple models and use them in different config-

urations or for various predictions.

• SageMaker configuration: This configuration specifies the hardware and software set

up to host the model. It defines the resources required for the endpoint, such as the type

and number of ML compute instances. Endpoint configurations are used when creating

or updating an endpoint. They allow for flexibility in the deployment and scalability of

the hosted models.

• SageMaker Inference component: This is the last piece of the puzzle that connects the

model and configuration to an endpoint. You can deploy multiple models to an endpoint,

each with its resource configuration. Once deployed, models are easily accessible via the

InvokeEndpoint API in Python.

Together, these components create a robust infrastructure for deploying and managing ML models

in SageMaker, enabling scalable, secure, and efficient real-time predictions.

Other popular cloud platforms offer the exact solutions. For example, you have Azure OpenAI

instead of Bedrock and Azure ML instead of SageMaker on Azure. The list of ML deployment

tools, such as Hopsworks, Modal, Vertex AI, Seldon, BentoML, and many more, is endless and

will probably change. What is essential though is to understand your use case requirements and

find a tool that fits your needs.

The training versus the inference pipeline
Understanding the nuances between the training and inference pipelines is crucial before we

deploy the inference pipeline. While it might seem straightforward that the training pipeline is

for training and the inference pipeline is for inference, there are significant differences that we

need to grasp to comprehend the technical aspects of our discussion fully.

Inference Pipeline Deployment372

One key difference lies in how data is handled and accessed within each pipeline. During train-

ing, data is typically accessed from offline storage in batch mode, optimized for throughput and

ensuring data lineage. For example, our LLM Twin architecture uses ZenML artifacts to access,

version, and track data fed to the training loop in batches. In contrast, the inference pipeline

requires an online DB optimized for low latency. We will leverage the Qdrant vector DB to grab

the necessary context for RAG. In this context, the focus shifts from data lineage and versioning

to quick data access, ensuring a seamless user experience. Additionally, the outputs of these pipe-

lines also differ significantly. The training pipeline outputs trained model weights stored in the

model registry. Meanwhile, the inference pipeline outputs predictions served directly to the user.

Also, the infrastructure required for each pipeline is different. The training pipeline demands

more powerful machines equipped with as many GPUs as possible. This is because training in-

volves batching data and holding all the necessary gradients in memory for optimization steps,

making it highly compute-intensive. More computational power and VRAM allow larger batches

(or throughput), reducing training time and enabling more extensive experimentation. On the

other hand, the inference pipeline typically requires less computation. Inference often involves

passing a single sample or smaller batches to the model without the need for optimization steps.

Despite these differences, there is some overlap between the two pipelines, particularly regarding

preprocessing and post-processing steps. Applying the same preprocessing and post-processing

functions and hyperparameters during training and inference is crucial. Any discrepancies can

lead to what is known as training-serving skew, where the model’s performance during inference

deviates from its performance during training.

Deploying the LLM Twin service
The last step is implementing the architecture presented in the previous section. More concretely,

we will deploy the LLM microservice using AWS SageMaker and the business microservice using

FastAPI. Within the business microservice, we will glue the RAG logic written in Chapter 9 with

our fine-tuned LLM Twin, ultimately being able to test out the inference pipeline end to end.

Serving the ML model is one of the most critical steps in any ML application’s life cycle, as users

can only interact with our model after this phase is completed. If the serving architecture isn’t

designed correctly or if the infrastructure isn’t working properly, it doesn’t matter that you have

implemented a powerful and excellent model. As long as the user cannot appropriately interact

with it, it has near zero value from a business point of view. For example, if you have the best code

assistant on the market, but the latency to use it is too high, or the API calls keep crashing, the

user will probably switch to a less performant code assistant that works faster and is more stable.

Chapter 10 373

Thus, in this section, we will show you how to:

• Deploy our fined-tuned LLM Twin model to AWS SageMaker

• Write an inference client to interact with the deployed model

• Write the business service in FastAPI

• Integrate our RAG logic with our fine-tuned LLM

• Implement autoscaling rules for the LLM microservice

Implementing the LLM microservice using AWS SageMaker
We aim to deploy the LLM Twin model, stored in Hugging Face’s model registry, to Amazon

SageMaker as an online real-time inference endpoint. We will leverage Hugging Face’s specialized

inference container, known as the Hugging Face LLM DLC, to deploy our LLM.

What are Hugging Face’s DLCs?
DLCs are specialized Docker images that come pre-loaded with essential deep-learning frame-

works and libraries, including popular tools like transformers, datasets, and tokenizers from

Hugging Face. These containers are designed to simplify the process of training and deploying

models by eliminating the need for complex environment setup and optimization. The Hugging

Face Inference DLC, in particular, includes a fully integrated serving stack, significantly simpli-

fying the deployment process and reducing the technical expertise needed to serve deep learning

models in production.

When it comes to serving models, the DLC is powered by the Text Generation Inference (TGI)

engine, made by Hugging Face: https://github.com/huggingface/text-generation-inference.

TGI is an open-source solution for deploying and serving LLMs. It offers high-performance text

generation using tensor parallelism and dynamic batching for the most popular open-source LLMs

available on Hugging Face, such as Mistral, Llama, and Falcon. To sum up, the most powerful

features the DLC image provides are:

• Tensor parallelism, thus enhancing the computational efficiency of model inference

• Optimized transformers code for inference, leveraging flash-attention to maximize per-

formance across the most widely used architectures: https://github.com/Dao-AILab/
flash-attention

• Quantization with bitsandbytes that reduces the model size while maintaining per-

formance, making deployments more efficient: https://github.com/bitsandbytes-
foundation/bitsandbytes

https://github.com/huggingface/text-generation-inference
https://github.com/Dao-AILab/flash-attention

https://github.com/Dao-AILab/flash-attention

https://github.com/bitsandbytes-foundation/bitsandbytes

https://github.com/bitsandbytes-foundation/bitsandbytes

Inference Pipeline Deployment374

• Continuous batching of incoming requests, thus improving throughput by dynamically

batching requests as they arrive

• Accelerated weight loading by utilizing safetensors for faster model initialization, re-

ducing start-up time: https://github.com/huggingface/safetensors

• Token streaming that supports real-time interactions through Server-Sent Events (SSE)

To summarize, our LLM Twin model will run inside DLC Docker images, listening to requests,

optimizing the LLM for inference, and serving the results in real time. The DLC’s Docker images

will be hosted on AWS SageMaker under inference endpoints that can be accessed through HTTP

requests. With that in mind, let’s move on to the implementation. We will start by deploying the

LLM and then writing a wrapper class to interact with the SageMaker Inference endpoint.

Configuring SageMaker roles
The first step is to create the proper AWS Identity and Access Management (IAM) users and

roles to access and deploy the SageMaker infrastructure. AWS IAM controls who can authenticate

and what any actor has access to. You can create new users (assigned to people) and new roles

(assigned to other actors within your infrastructure, such as EC2 VMs) through IAM.

The whole deployment process is automated. We will have to run a few CLI commands, but first,

ensure that you have correctly configured the AWS_ACCESS_KEY, AWS_SECRET_KEY, and AWS_REGION

environmental variables in the .env file. At this step, the easiest way is to use the credentials

attached to an admin role as, in the following steps, we will create a set of narrower IAM roles

used in the rest of the chapter.

After you configured your .env file, we have to:

1. Create an IAM user restricted to creating and deleting only the resources we need for

the deployment, such as SageMaker itself, Elastic Container Registry (ECR), and S3. To

make it, run the following:

poetry poe create-sagemaker-role

This command will generate a JSON file called sagemaker_user_credentials.json that

contains a new AWS access and secret key. From now on, we will use these credentials to

deploy everything related to SageMaker to ensure we modify only the resources associated

with SageMaker. Otherwise, we could accidentally modify other AWS resources using

an admin account, resulting in additional costs or altering other existing projects. Thus,

having a narrow role only to your use case is good practice.

https://github.com/huggingface/safetensors

Chapter 10 375

The last step is to take the new credentials from the JSON file and update the AWS_ACCESS_

KEY and AWS_SECRET_KEY variables in your .env file. You can check out the implementa-

tion at https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/

llm_engineering/infrastructure/aws/roles/create_sagemaker_role.py.

2. Create an IAM execution role. We will attach this role to the SageMaker deployment,

empowering it to access other AWS resources on our behalf. This is standard practice for

cloud deployments, as instead of authenticating every machine within your credentials,

you attach a role that allows them to access only what is necessary from your infrastruc-

ture. In our case, we will provide SageMaker access to AWS S3, CloudWatch, and ECR. To

create the role, run the following:

poetry poe create-sagemaker-execution-role

This command will generate a JSON file called sagemaker_execution_role.json that

contains the Amazon Resource Name (ARN) of the newly created role. The ARN is an ID

attached to any AWS resource to identify it across your cloud infrastructure. Take the ARN

value from the JSON file and update the AWS_ARN_ROLE variable from your .env file with

it. You can check out the implementation at https://github.com/PacktPublishing/
LLM-Engineers-Handbook/blob/main/llm_engineering/infrastructure/aws/roles/

create_execution_role.py.

By setting the IAM user and role in your .env file, we will automatically load them in the settings

Python object and use them throughout the following steps. Now, let’s move on to the actual

deployment.

Deploying the LLM Twin model to AWS SageMaker
The deployment of AWS SageMaker is fully automated through a set of Python classes, which

we will cover in this chapter. This section aims to understand how we configure the SageMaker

infrastructure directly from Python. Thus, you don’t have to run everything step by step, as in a

standard tutorial, but only to understand the code.

We can initiate and finalize the entire SageMaker deployment using a simple CLI command: poe

deploy-inference-endpoint. This command will initialize all the steps presented in Figure 10.5,

except for creating the SageMaker AWS IAMs we created and configured in the previous step.

If you have issues, configure the AWS CLI with the same AWS credentials as in the

.env file and repeat the process. Official documentation for installing the AWS CLI:

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html.

https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/infrastructure/aws/roles/create_sagemaker_role.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/infrastructure/aws/roles/create_sagemaker_role.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/infrastructure/aws/roles/create_execution_role.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/infrastructure/aws/roles/create_execution_role.py
https://github.com/PacktPublishing/LLM-Engineers-Handbook/blob/main/llm_engineering/infrastructure/aws/roles/create_execution_role.py
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html

Inference Pipeline Deployment376

In this section, we will walk you through the code presented in Figure 10.5 that helps us fully auto-

mate the deployment process, starting with the create_endpoint() function. Ultimately, we will

test the CLI command and check the AWS console to see whether the deployment was successful.

The SageMaker deployment code is available at https://github.com/PacktPublishing/LLM-

Engineers-Handbook/tree/main/llm_engineering/infrastructure/aws/deploy.

Figure 10.5: AWS SageMaker deployment steps

https://github.com/PacktPublishing/LLM-Engineers-Handbook/tree/main/llm_engineering/infrastructure/aws/deploy
https://github.com/PacktPublishing/LLM-Engineers-Handbook/tree/main/llm_engineering/infrastructure/aws/deploy

Chapter 10 377

We will take a top-down approach to walk you through the implementation, starting with the

main function that deploys the LLM Twin model to AWS SageMaker. In the function below, we

first take the latest version of the Docker DLC image using the get_huggingface_llm_image_uri()

function, which is later passed to the deployment strategy class, along with an instance of the

resource manager and deployment service:

def create_endpoint(endpoint_type=EndpointType.INFERENCE_COMPONENT_BASED):

 llm_image = get_huggingface_llm_image_uri("huggingface", version=None)

 resource_manager = ResourceManager()

 deployment_service = DeploymentService(resource_manager=resource_
manager)

 SagemakerHuggingfaceStrategy(deployment_service).deploy(

 role_arn=settings.ARN_ROLE,

 llm_image=llm_image,

 config=hugging_face_deploy_config,

 endpoint_name=settings.SAGEMAKER_ENDPOINT_INFERENCE,

 endpoint_config_name=settings.SAGEMAKER_ENDPOINT_CONFIG_INFERENCE,

 gpu_instance_type=settings.GPU_INSTANCE_TYPE,

 resources=model_resource_config,

 endpoint_type=endpoint_type,

)

We must review the three classes used in the create_endpoint() function to fully understand

the deployment process. Let’s start with the ResourceManager class. The class begins with the

initialization method, establishing the connection to AWS SageMaker using boto3, the AWS

SDK for Python, which provides the necessary functions to interact with various AWS services,

including SageMaker.

class ResourceManager:

 def __init__(self) -> None:

 self.sagemaker_client = boto3.client(

 "sagemaker",

 region_name=settings.AWS_REGION,

 aws_access_key_id=settings.AWS_ACCESS_KEY,

 aws_secret_access_key=settings.AWS_SECRET_KEY,

)

Inference Pipeline Deployment378

Next, we implement the endpoint_config_exists method, checking whether a specific Sage-

Maker endpoint configuration exists:

 def endpoint_config_exists(self, endpoint_config_name: str) -> bool:

 try:

 self.sagemaker_client.describe_endpoint_
config(EndpointConfigName=endpoint_config_name)

 logger.info(f"Endpoint configuration '{endpoint_config_name}'
exists.")

 return True

 except ClientError:

 logger.info(f"Endpoint configuration '{endpoint_config_name}'
does not exist.")

 return False

The class also includes the endpoint_exists method, which checks the existence of a specific

SageMaker endpoint:

def endpoint_exists(self, endpoint_name: str) -> bool:

 try:

 self.sagemaker_client.describe_endpoint(EndpointName=endpoint_
name)

 logger.info(f"Endpoint '{endpoint_name}' exists.")

 return True

 except self.sagemaker_client.exceptions.ResourceNotFoundException:

 logger.info(f"Endpoint '{endpoint_name}' does not exist.")

 return False

Let’s move to the DeploymentService. Within the constructor, we set up the sagemaker_client,

which will interface with AWS SageMaker and an instance of the ResourceManager class we

talked about earlier:

class DeploymentService:

 def __init__(self, resource_manager):

 self.sagemaker_client = boto3.client(

 "sagemaker",

 region_name=settings.AWS_REGION,

 aws_access_key_id=settings.AWS_ACCESS_KEY,

 aws_secret_access_key=settings.AWS_SECRET_KEY,

Chapter 10 379

)

 self.resource_manager = resource_manager

The deploy() method is the heart of the DeploymentService class. This method orchestrates the

entire process of deploying a model to a SageMaker endpoint. It checks whether the necessary

configurations are already in place and, if not, it triggers the deployment:

def deploy(

 self,

 role_arn: str,

 llm_image: str,

 config: dict,

 endpoint_name: str,

 endpoint_config_name: str,

 gpu_instance_type: str,

 resources: Optional[dict] = None,

 endpoint_type: enum.Enum = EndpointType.MODEL_BASED,

) -> None:

 try:

 if self.resource_manager.endpoint_config_exists(endpoint_config_
name=endpoint_config_name):

 logger.info(f"Endpoint configuration {endpoint_config_name}
exists. Using existing configuration...")

 else:

 logger.info(f"Endpoint configuration{endpoint_config_name}
does not exist.")

 self.prepare_and_deploy_model(

 role_arn=role_arn,

 llm_image=llm_image,

 config=config,

 endpoint_name=endpoint_name,

 update_endpoint=False,

 resources=resources,

 endpoint_type=endpoint_type,

 gpu_instance_type=gpu_instance_type,

)

Inference Pipeline Deployment380

 logger.info(f"Successfully deployed/updated model to endpoint
{endpoint_name}.")

 except Exception as e:

 logger.error(f"Failed to deploy model to SageMaker: {e}")

 raise

The deploy method begins by checking whether the endpoint configuration already exists using

the resource_manager. This step is crucial because it avoids unnecessary redeployment if the

configuration is already set up. The deployment itself is handled by calling the prepare_and_

deploy_model() method, which is responsible for the actual deployment of the model to the

specified SageMaker endpoint.

The prepare_and_deploy_model() method is a static method within the DeploymentService

class. This method is focused on setting up and deploying the Hugging Face model to SageMaker:

@staticmethod

def prepare_and_deploy_model(

 role_arn: str,

 llm_image: str,

 config: dict,

 endpoint_name: str,

 update_endpoint: bool,

 gpu_instance_type: str,

 resources: Optional[dict] = None,

 endpoint_type: enum.Enum = EndpointType.MODEL_BASED,

) -> None:

 huggingface_model = HuggingFaceModel(

 role=role_arn,

 image_uri=llm_image,

 env=config,

 transformers_version="4.6",

 pytorch_version="1.13",

 py_version="py310",

)

 huggingface_model.deploy(

 instance_type=gpu_instance_type,

 initial_instance_count=1,

Chapter 10 381

 endpoint_name=endpoint_name,

 update_endpoint=update_endpoint,

 resources=resources,

 tags=[{"Key": "task", "Value": "model_task"}],

 endpoint_type=endpoint_type,

)

This method begins by creating an instance of HuggingFaceModel, a specialized model class from

SageMaker designed to handle Hugging Face models. The constructor for HuggingFaceModel

takes several essential parameters, such as the role ARN (which gives SageMaker the necessary

permissions), the URI of the LLM DLC Docker image, and the LLM configuration that specifies

what LLM to load from Hugging Face and its inference parameters, such as the maximum total

of tokens.

Once HuggingFaceModel is instantiated, the method deploys it to SageMaker using the deploy

function. This deployment process involves specifying the type of instance used, the number of

instances, and whether to update an existing endpoint or create a new one. The method also in-

cludes optional resources for more complex deployments, such as the initial_instance_count

parameter for multi-model endpoints and tags for tracking and categorization.

The last step is to walk you through the SagemakerHuggingfaceStrategy class, which aggregates

everything we have shown. The class is initialized only with an instance of a deployment service,

such as the one shown above.

class SagemakerHuggingfaceStrategy(DeploymentStrategy):

def __init__(self, deployment_service):

 self.deployment_service = deployment_service

The core functionality of the SagemakerHuggingfaceStrategy class is encapsulated in its deploy()

method. This method orchestrates the deployment process, taking various parameters that define

how the Hugging Face model should be deployed to AWS SageMaker:

def deploy(

 self,

 role_arn: str,

 llm_image: str,

 config: dict,

 endpoint_name: str,

 endpoint_config_name: str,

 gpu_instance_type: str,

Inference Pipeline Deployment382

 resources: Optional[dict] = None,

 endpoint_type: enum.Enum = EndpointType.MODEL_BASED,

) -> None:

 logger.info("Starting deployment using Sagemaker Huggingface
Strategy...")

 logger.info(

 f"Deployment parameters: nb of replicas: {settings.COPIES}, nb of
gpus:{settings.GPUS}, instance_type:{settings.GPU_INSTANCE_TYPE}"

)

The parameters passed into the method are crucial to the deployment process:

• role_arn: The AWS IAM role that provides permissions for the SageMaker deployment.

• llm_image: The URI of the DLC Docker image

• config: A dictionary containing configuration settings for the model environment.

• endpoint_name and endpoint_config_name: Names for the SageMaker endpoint and its

configuration, respectively.

• gpu_instance_type: The type of the GPU EC2 instances used for the deployment.

• resources: Optional resources dictionary used for multi-model endpoint deployments.

• endpoint_type: This can either be MODEL_BASED or INFERENCE_COMPONENT, determining

whether the endpoint includes an inference component.

The method delegates the actual deployment process to the deployment_service. This delega-

tion is a critical aspect of the strategy pattern, allowing for flexibility in how the deployment is

carried out without altering the high-level deployment logic.

try:

 self.deployment_service.deploy(

 role_arn=role_arn,

 llm_image=llm_image,

 config=config,

 endpoint_name=endpoint_name,

 endpoint_config_name=endpoint_config_name,

 gpu_instance_type=gpu_instance_type,

 resources=resources,

 endpoint_type=endpoint_type,

)

 logger.info("Deployment completed successfully.")

Chapter 10 383

except Exception as e:

 logger.error(f"Error during deployment: {e}")

 raise

Also, let’s review the resource configuration to understand the infrastructure better. These re-

sources are leveraged when setting up multi-endpoint configurations that use multiple replicas

to serve clients while respecting the latency and throughput requirements of the application.

The ResourceRequirements object is initialized with a dictionary that specifies various resource

parameters. These parameters include the number of replicas (copies) of the model to be de-

ployed, the number of GPUs required, the number of CPU cores, and the memory allocation in

megabytes. Each of these parameters plays a crucial role in the performance and scalability of

the deployed model.

from sagemaker.compute_resource_requirements.resource_requirements import
ResourceRequirements

 model_resource_config = ResourceRequirements(

 requests={

 "copies": settings.COPIES,

 "num_accelerators": settings.GPUS

 "num_cpus": settings.CPUS,

 "memory": 5 * 1024

 },

)

In the preceding snippet, ResourceRequirements is configured with four key parameters:

• copies: This parameter determines how many instances or replicas of the model should be

deployed. Having multiple replicas can help in reducing latency and increasing throughput.

• num_accelerators: This parameter specifies the number of GPUs to allocate. Since LLMs

are computationally intensive, multiple GPUs are typically required to accelerate infer-

ence processes.

• num_cpus: This defines the number of CPU cores the deployment should have. The num-

ber of CPUs impacts the model’s ability to handle data preprocessing, post-processing,

and other tasks that are less GPU-dependent but still essential.

• memory: The memory parameter sets the minimum amount of RAM required for the

deployment. Adequate memory is necessary to ensure the model can load and operate

without running into memory shortages.

Inference Pipeline Deployment384

By setting these parameters, the class ensures that it has sufficient resources to operate efficiently

when the model is deployed to a SageMaker endpoint. The precise tuning of these values will

vary depending on the LLM’s specific requirements, such as its size, the complexity of the tasks

it will perform, and the expected load. To get a better understanding of how to use them, after

deploying the endpoint, we suggest modifying them and seeing how the performance of the LLM

microservice changes.

Ultimately, let’s review the settings configuring the LLM engine. The HF_MODEL_ID identifies

which Hugging Face model to deploy. For example, in the settings class, we set it to mlabonne/

TwinLlama-3.1-8B-13 to load our custom LLM Twin model stored in Hugging Face. SM_NUM_GPUS

specifies the number of GPUs allocated per model replica, which is crucial for fitting your model

into the GPU’s VRAM. HUGGING_FACE_HUB_TOKEN provides access to the Hugging Face Hub for

model retrieval. HF_MODEL_QUANTIZE specifies what quantization technique to use, while the rest

of the variables control the LLM token generation process.

hugging_face_deploy_config = {

 "HF_MODEL_ID": settings.HF_MODEL_ID,

 "SM_NUM_GPUS": json.dumps(settings.SM_NUM_GPUS), # Number of GPU used
per replica

 "MAX_INPUT_LENGTH": json.dumps(settings.MAX_INPUT_LENGTH), # Max
length of input text

 "MAX_TOTAL_TOKENS": json.dumps(settings.MAX_TOTAL_TOKENS), # Max
length of the generation (including input text)

 "MAX_BATCH_TOTAL_TOKENS": json.dumps(settings.MAX_BATCH_TOTAL_TOKENS),

 "HUGGING_FACE_HUB_TOKEN": settings.HUGGINGFACE_ACCESS_TOKEN,

 "MAX_BATCH_PREFILL_TOKENS": "10000",

 "HF_MODEL_QUANTIZE": "bitsandbytes",

}

Using these two configurations, we fully control our infrastructure, what LLM to use, and how

it behaves. To start the SageMaker deployment with the configuration shown above, call the

create_endpoint() function (presented at the beginning of the section) as follows:

create_endpoint(endpoint_type=EndpointType.MODEL_BASED)

For convenience, we also wrapped it up under a poe command:

poetry poe deploy-inference-endpoint

Chapter 10 385

That’s all you need to deploy an inference pipeline to AWS SageMaker. The hardest part is finding

the correct configuration to fit your needs while reducing your infrastructure’s costs. Depending

on AWS, this will take up to 15-30 minutes to deploy. You can always change any value directly

from your .env file and deploy the model with a different configuration without touching the

code. For example, our default values use a single GPU instance of type ml.g5.xlargeGPU. If you

want more replicas, you can tweak the GPUS and SM_NUM_GPUS settings or change your instance

type by changing the GPU_INSTANCE_TYPE variable.

After deploying the AWS SageMaker Inference endpoint, you can navigate to the SageMaker

dashboard in AWS to visualize it. First, in the left panel, click on SageMaker dashboard, and then

in the Inference column, click on the Endpoints button, as illustrated in Figure 10.6.

Figure 10.6: AWS SageMaker Inference endpoints example

After clicking the Endpoints button, you will see your twin endpoint in a Creating or Created

status, as seen in Figure 10.7. After clicking on it, you can look at the endpoint’s logs in CloudWatch

and monitor the CPU, memory, disk, and GPU utilization.

Before deploying the LLM microservice to AWS SageMaker, ensure that you’ve gen-

erated a user role by running poetry poe create-sagemaker-role and an exe-

cution role by running poetry poe create-sagemaker-execution-role. Also,

ensure you update your AWS_* environment variables in your .env file with the

credentials generated by the two steps. You can find more details on this aspect in

the repository’s README file.

Inference Pipeline Deployment386

Also, they provide an excellent way to monitor all the HTTP errors, such as 4XX and 5XX, in one place.

Figure 10.7: AWS SageMaker twin inference endpoint example

Calling the AWS SageMaker Inference endpoint
Now that our LLM service has been deployed on AWS SageMaker, let’s learn how to call the service.

To do so, we will write two classes that will help us prepare the prompt for SageMaker, call the

inference endpoint through HTTP requests, and decode the results in a way the client can work

with. All the AWS SageMaker Inference code is available on GitHub at llm_engineering/model/

inference. It all starts with the following example:

text = "Write me a post about AWS SageMaker inference endpoints."

llm = LLMInferenceSagemakerEndpoint(

 endpoint_name=settings.SAGEMAKER_ENDPOINT_INFERENCE

)

Answer = InferenceExecutor(llm, text).execute()

As before, we will walk you through the LLMInferenceSagemakerEndpoint and InferenceExecutor

classes. Let’s start with the LLMInferenceSagemakerEndpoint class, which directly interacts with

SageMaker. The constructor initializes all the essential attributes necessary to interact with the

SageMaker endpoint:

class LLMInferenceSagemakerEndpoint(Inference):

 def __init__(

 self,

 endpoint_name: str,

 default_payload: Optional[Dict[str, Any]] = None,

 inference_component_name: Optional[str] = None,

) -> None:

 super().__init__()

 self.client = boto3.client(

 "sagemaker-runtime",

 region_name=settings.AWS_REGION,

Chapter 10 387

 aws_access_key_id=settings.AWS_ACCESS_KEY,

 aws_secret_access_key=settings.AWS_SECRET_KEY,

)

 self.endpoint_name = endpoint_name

 self.payload = default_payload if default_payload else self._
default_payload()

 self.inference_component_name = inference_component_name

endpoint_name is crucial for identifying the SageMaker endpoint we want to request. Additionally,

the method initializes the payload using a provided value or by calling a method that generates

a default payload if none is provided.

One of the key features of the class is its ability to generate a default payload for inference requests.

This is handled by the _default_payload() method:

def _default_payload(self) -> Dict[str, Any]:

 return {

 "inputs": "",

 "parameters": {

 "max_new_tokens": settings.MAX_NEW_TOKENS_INFERENCE,

 "top_p": settings.TOP_P_INFERENCE,

 "temperature": settings.TEMPERATURE_INFERENCE,

 "return_full_text": False,

 },

 }

This method returns a dictionary that represents the default structure of the payload to be sent

for inference. The parameters section includes settings that influence the model’s behavior during

inference, such as the number of tokens to generate, the sampling strategy (top_p), and the tem-

perature setting, which controls randomness in the output. These parameters are fetched from

the application’s settings, ensuring consistency across different inference tasks.

The class allows customization of the payload through the set_payload() method, which enables

the user to modify the inputs and parameters before sending an inference request:

def set_payload(self, inputs: str, parameters: Optional[Dict[str, Any]] =
None) -> None:

 self.payload["inputs"] = inputs

 if parameters:

 self.payload["parameters"].update(parameters)

Inference Pipeline Deployment388

This method updates the inputs field of the payload with the new input text provided by the user.

Additionally, it allows for modifying inference parameters if any are provided.

Ultimately, we leverage the inference() method to call the SageMaker endpoint with the cus-

tomized payload:

def inference(self) -> Dict[str, Any]:

 try:

 logger.info("Inference request sent.")

 invoke_args = {

 "EndpointName": self.endpoint_name,

 "ContentType": "application/json",

 "Body": json.dumps(self.payload),

 }

 if self.inference_component_name not in ["None", None]:

 invoke_args["InferenceComponentName"] = self.inference_
component_name

 response = self.client.invoke_endpoint(**invoke_args)

 response_body = response["Body"].read().decode("utf8")

 return json.loads(response_body)

 except Exception:

 logger.exception("SageMaker inference failed.")

 raise

In this method, the inference method constructs the request to be sent to the SageMaker endpoint.

The method packages the payload and other necessary details into a format SageMaker expects. If

an inference_component_name is specified, it is included in the request, allowing for more granular

control over the inference process if needed. The request is sent using the invoke_endpoint()

function, and the response is read, decoded, and returned as a JSON object.

Let’s understand how the InferenceExecutor uses the LLMInferenceSagemakerEndpoint class

we previously presented to send HTTP requests to the AWS SageMaker endpoint.

The InferenceExecutor class begins with the constructor, which inputs key parameters for calling

the LLM. The llm parameter accepts any instance that implements the Inference interface, such

as the LLMInferenceSagemakerEndpoint class, which is used to perform the inference.

Chapter 10 389

Also, it accepts the query parameter, which represents the user input. Ultimately, it takes an

optional context field if you want to do RAG, and you can customize the prompt template. If no

prompt template is provided, it will default to a generic version that is not specialized in any LLM:

class InferenceExecutor:

 def __init__(

 self,

 llm: Inference,

 query: str,

 context: str | None = None,

 prompt: str | None = None,

) -> None:

 self.llm = llm

 self.query = query

 self.context = context if context else ""

 if prompt is None:

 self.prompt = """

 You are a content creator. Write what the user asked you to while
using the provided context as the primary source of information for the
content.

User query: {query}

Context: {context}

 """

 else:

 self.prompt = prompt

The execute() method is the key component of the InferenceExecutor class. This method is

responsible for actually performing the inference. When execute is called, it prepares the payload

sent to the LLM by formatting the prompt with the user’s query and context.

Then, it configures several parameters that influence the behavior of the LLM, such as the maxi-

mum number of new tokens the model is allowed to generate, a repetition penalty to discourage

the model from generating repetitive text, and the temperature setting that controls the ran-

domness of the output.

Once the payload and parameters are set, the method calls the inference function from

LLMInferenceSagemakerEndpoint and waits for the generated answer:

def execute(self) -> str:

Inference Pipeline Deployment390

 self.llm.set_payload(

 inputs=self.prompt.format(query=self.query, context=self.context),

 parameters={

 "max_new_tokens": settings.MAX_NEW_TOKENS_INFERENCE,

 "repetition_penalty": 1.1,

 "temperature": settings.TEMPERATURE_INFERENCE,

 },

)

 answer = self.llm.inference()[0]["generated_text"]

 return answer

By making the inference through an object that implements the Inference interface we decouple,

we can easily inject other Inference strategies and the LLMInferenceSagemakerEndpoint imple-

mentation presented above without modifying different parts of the code.

Running a test example is straightforward. Simply call the following Python file, as shown below:

poetry run python -m llm_engineering.model.inference.test

Also, for convenience, we wrap it under a poe command:

poetry poe test-sagemaker-endpoint

Now, we must understand how we implement the business microservice using FastAPI. This

microservice will send HTTP requests to the LLM microservice defined above and call the RAG

retrieval module implemented in Chapter 9.

Building the business microservice using FastAPI
To implement a simple FastAPI application that proves our deployment strategy, we first have to

define a FastAPI instance as follows:

from fastapi import FastAPI

app = FastAPI()

Next, we define the QueryRequest and QueryResponse classes using Pydantic’s BaseModel. These

classes represent the request and response structure for the FastAPI endpoints:

class QueryRequest(BaseModel):

 query: str

Chapter 10 391

class QueryResponse(BaseModel):

 answer: str

Now that we’ve defined our FastAPI components and have all the SageMaker elements in place,

let’s reiterate over the call_llm_service() and rag() functions we’ve presented in Chapter 9

and couldn’t run because we haven’t deployed our fine-tuned LLM. Thus, as a refresher, the call_

llm_service() function wraps the inference logic used to call the SageMaker LLM microservice:

def call_llm_service(query: str, context: str | None) -> str:

 llm = LLMInferenceSagemakerEndpoint(

 endpoint_name=settings.SAGEMAKER_ENDPOINT_INFERENCE, inference_
component_name=None

)

 answer = InferenceExecutor(llm, query, context).execute()

 return answer

Next, we define the rag() function that implements all the RAG business logic. To avoid repeating

ourselves, check Chapter 9 for the complete function explanation. What is important to highlight

is that the rag() function only implements the business steps required to do RAG, which are CPU-

and I/O-bounded. For example, the ContextRetriever class makes API calls to OpenAI and Qdrant,

which are network I/O bounded, and calls the embedding model, which runs directly on the CPU.

Also, as the LLM inference logic is moved to a different microservice, the call_llm_service()

function is only network I/O bounded. To conclude, the whole function is light to run, where the

heavy computing is done on other services, which allows us to host the FastAPI server on a light

and cheap machine that doesn’t need a GPU to run at low latencies:

def rag(query: str) -> str:

 retriever = ContextRetriever(mock=False)

 documents = retriever.search(query, k=3 * 3)

 context = EmbeddedChunk.to_context(documents)

 answer = call_llm_service(query, context)

 return answer

Inference Pipeline Deployment392

Ultimately, we define the rag_endpoint() function, used to expose our RAG logic over the internet

as an HTTP endpoint. We use a Python decorator to expose it as a POST endpoint in the FastAPI

application. This endpoint is mapped to the /rag route and expects a QueryRequest as input. The

function processes the request by calling the rag function with the user’s query. If successful, it

returns the answer wrapped in a QueryResponse object. If an exception occurs, it raises an HTTP

500 error with the exception details:

@app.post("/rag", response_model=QueryResponse)

async def rag_endpoint(request: QueryRequest):

 try:

 answer = rag(query=request.query)

 return {"answer": answer}

 except Exception as e:

 raise HTTPException(status_code=500, detail=str(e)) from e

This FastAPI application demonstrates how to effectively integrate an LLM hosted on AWS Sage-

Maker into a web service, utilizing RAG to enhance the relevance of the model’s responses. The

code’s modular design, leveraging custom classes like ContextRetriever, InferenceExecutor,

and LLMInferenceSagemakerEndpoint, allows for easy customization and scalability, making it

a powerful tool for deploying ML models in production environments.

We will leverage the uvicorn web server, the go-to method for FastAPI applications, to start the

server. To do so, you have to run the following:

uvicorn tools.ml_service:app --host 0.0.0.0 --port 8000 --reload

Also, you can run the following poe command to achieve the same:

poetry poe run-inference-ml-service

To call the /rag endpoint, we can leverage the curl CLI command to make a POST HTTP request

to our FastAPI server, as follows:

curl -X POST 'http://127.0.0.1:8000/rag' -H 'Content-Type: application/
json' -d '{\"query\": \"your_query \"}'

As usual, we provided an example using a poe command that contains an actual user query:

poetry poe call-inference-ml-service

Chapter 10 393

This FastAPI server runs only locally. The next step would be to deploy it to AWS Elastic Ku-

bernetes Service (EKS), a self-hosted version of Kubernetes by AWS. Another option would be

to deploy it to AWS Elastic Container Service (ECS), which is similar to AWS EKS but doesn’t

use Kubernetes under the hood but AWS’s implementation. Unfortunately, this is not specific

to LLMs or LLMOps. Hence, we won’t go through these steps in this book. But to get an idea of

what you must do, you must create an AWS EKS/ECS cluster from the dashboard or leverage an

infrastructure-as-code (IaC) tool such as Terraform. After that, you will have to Dockerize the

FastAPI code presented above. Ultimately, you would have to push the Docker image to AWS ECR

and create an ECS/EKR deployment using the Docker image hosted on ECR. If this sounds like

a lot, the good news is that we will walk you through a similar example in Chapter 11, where we

will deploy the ZenML pipelines to AWS.

Autoscaling capabilities to handle spikes in usage
So far, the SageMaker LLM microservice has used a static number of replicas to serve our users,

which means that all the time, regardless of the traffic, it has the same number of instances up

and running. As we highlighted throughout this book, machines with GPUs are expensive. Thus,

we lose a lot of money during downtime when most replicas are idle. Also, if our application

has sudden spikes in traffic, the application will perform poorly as the server cannot handle the

number of requests. This is a massive problem for the user experience of our application, as in

those spikes, we bring in the majority of new users. Thus, if they have a terrible impression of our

product, we significantly reduce their chance of returning to our platform.

Once you’re done testing your inference pipeline deployment, deleting all your AWS

SageMaker resources used to deploy the LLM is essential. As almost all AWS re-

sources use a pay-as-you-go strategy, using SageMaker for a few hours wouldn’t

break your wallet, but if you forget and leave it open, in a few days, the costs can

grow exponentially. Thus, a good rule of thumb is to always delete everything after

you’re done testing your SageMaker infrastructure (or any AWS resource). Luckily,

we have provided a script that deletes all the AWS SageMaker resources for you:

poetry poe delete-inference-endpoint

To ensure everything was correctly deleted, go to your SageMaker dashboard and

check it yourself.

Inference Pipeline Deployment394

Previously, we configured our multi-endpoint service using the ResourceRequirements class

from SageMaker. For example, let’s assume we requested four copies (replicas) with the following

compute requirements:

model_resource_config = ResourceRequirements(

 requests={

 "copies": 4, # Number of replicas.

 "num_accelerators": 4, # Number of GPUs required.

 "num_cpus": 8, # Number of CPU cores required.

 "memory": 5 * 1024, # Minimum memory required in Mb (required)

 },

)

Using this configuration, we always have four replicas serving the clients, regardless of idle time

or spikes in traffic. The solution is to implement an autoscaling strategy that scales the number

of replicas up and down dynamically based on various metrics, such as the number of requests.

For example, Figure 10.8 shows a standard architecture where the SageMaker Inference endpoints

scale in and out based on the number of requests. When there is no traffic, we can have one online

replica so the server remains responsive to new user requests or even scales down to zero if the

latency is not super critical. Then, let’s assume that when we have around 10 requests per second,

we have to keep two replicas online, and when the number of requests spikes to 100 per second,

the autoscaling service should spin up to 20 replicas to keep up with the demand. Note that these

are fictional numbers that should be adapted to your specific use case.

Chapter 10 395

Figure 10.8: Autoscaling possible use cases

Without going into the little details of cloud networking, when working with multi-replica sys-

tems, between the client and the replicas sits an Application Load Balancer (ALB) or another

type of load balancer.

Inference Pipeline Deployment396

All the requests first go to the ALB, which knows to route them to a replica. The ALB can adopt

various routing strategies, where the simplest one is called round robin, which sequentially sends

a request to each replica. For example, the first request is routed to replica one, the second to

replica two, and so on. Taking this approach, regardless of how many replicas you have online,

the endpoint that the client calls is always represented by the load balancer that acts as an entry

point into your cluster. Thus, adding or removing new replicas doesn’t affect the server and client

communication protocol.

Let’s quickly learn how to implement an autoscaling strategy for our AWS SageMaker Inference

endpoint. SageMaker provides a feature called Application Auto Scaling that allows you to scale

resources dynamically based on pre-defined policies. Two foundational steps are involved in ef-

fectively leveraging this functionality: registering a scalable target and creating a scalable policy.

Registering a scalable target
The first step in enabling autoscaling for your resources is to register a scalable target with the

Application Auto Scaling feature AWS provides. Think of this as informing AWS about the specific

resource you intend to scale, as well as setting the boundaries within which the scaling should

occur. However, this step does not dictate how or when the scaling should happen.

For instance, when working with SageMaker Inference components, you’ll define the following:

• Resource ID: This serves as a unique identifier for the resource you want to scale, typically

including the name of the SageMaker Inference component.

• Service namespace: This identifies the AWS service the resource belongs to, which, in

this case, is SageMaker.

• Scalable dimension: This specifies the resources to be scaled, such as the desired number

of copies.

• MinCapacity and MaxCapacity: These parameters define the boundaries of the autoscal-

ing strategies, such as minimum and maximum limits of the number of replicas.

By registering a scalable target, you prepare your SageMaker Inference component for future

scaling actions without determining when or how these actions should occur.

Chapter 10 397

Creating a scalable policy
Once your scalable target is registered, the next step is defining how the scaling should occur.

This is where creating a scaling policy comes in. A scaling policy defines specific rules that trigger

scaling events. When creating policies, you have to define metrics to know what to monitor and

thresholds to know when to emit scaling events.

In the context of our SageMaker Inference component, the scalable policy might include the

following elements:

• Policy type: For instance, you might select TargetTrackingScaling, a policy that adjusts

the resource’s capacity to maintain a specific target value for a chosen metric.

• Target tracking configuration: This involves selecting the metric to monitor (such as

SageMakerInferenceComponentInvocationsPerCopy), setting the desired target value, and

specifying cooldown periods that control how quickly scaling actions can occur after

previous ones.

The scaling policy defines the rules for your scaling-in and scaling-out strategy. It constantly

monitors the specified metric, and depending on whether the metric exceeds or falls below the

target value, it triggers actions to scale the number of inference component copies up or down,

always within the limits defined by the registered scalable target.

Let’s explain in more depth how the TargetTrackingScaling policy works. Imagine you have

a metric that represents the ideal average utilization or throughput level for your application.

With target tracking, you select this metric and set a target value that reflects the optimal state

for your application. Once defined, Application Auto Scaling creates and manages the necessary

CloudWatch alarms to monitor this metric. When deviations occur, scaling actions are triggered,

similar to how a thermostat adjusts to maintain a consistent room temperature.

For instance, consider an application running on SageMaker. Let’s assume we set a target of

keeping GPU utilization around 70 percent. This target allows you to maintain enough headroom

to manage sudden traffic spikes while preventing the unnecessary cost of idle resources. When

GPU usage exceeds the target, the system scales out, adding resources to manage the increased

load. Conversely, when GPU usage drops below the target, the system scales in, reducing capacity

to minimize costs during quieter periods.

Inference Pipeline Deployment398

One significant advantage of setting up target tracking policies using Application Auto Scaling is

that they simplify the scaling process. You no longer need to configure CloudWatch alarms and

define scaling adjustments manually.

Minimum and maximum scaling limits
When setting up autoscaling for your SageMaker Inference endpoints, it’s crucial to establish

your maximum and minimum scaling limits before creating your scaling policy. The minimum

value represents the least resources your model can operate with. This value must be at least 1,

ensuring that your model always has some capacity.

Next, configure the maximum value, which defines the upper limit of resources your model can

scale up to. While the maximum must be equal to or greater than the minimum value, it doesn’t

impose any upper limit. Thus, you can scale up as much as your application needs within the

boundaries of what AWS can provide.

Cooldown period
Another important aspect of a scaling policy is the cooldown period, during which it’s crucial to

maintain a balance between responsiveness and stability. This cooldown period acts as a safe-

guard, ensuring that your system doesn’t overreact during scaling events—whether it’s reducing

capacity (scaling in) or increasing it (scaling out). By introducing a calculated pause, the cooldown

period prevents rapid fluctuations in the number of instances. Specifically, it delays the removal

of instances during scale-in requests and restricts the creation of new replicas during scale-out

requests. This strategy helps maintain a stable and efficient environment for LLM service.

These practical basics are used in autoscaling most web servers, including online real-time ML

servers. Once you understand how to configure scaling policies for SageMaker, you can imme-

diately apply the strategies you’ve learned to other popular deployment tools like Kubernetes

or AWS ECS.

For a step-by-step guideline on how to configure autoscaling for the AWS SagaMak-

er endpoint implemented in this chapter, you can follow this official tutorial from

AWS: https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-

scaling-prerequisites.html.

https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling-prerequisites.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling-prerequisites.html

Chapter 10 399

Autoscaling is a critical component in any cloud architecture, but there are some pitfalls you

should be aware of. The first and most dangerous one is over-scaling, which directly impacts the

costs of your infrastructure. If your scaling policy or cooldown period is too sensitive, you may

be uselessly spinning up new machines that will remain idle or with the resources underused.

The second reason is on the other side of the spectrum, where your system doesn’t scale enough,

resulting in a bad user experience for the end user.

That’s why a good practice is to understand the requirements of your system. Based on them, you

should tweak and experiment with the autoscaling parameters in a dev or test environment until

you find the sweet spot (similar to hyperparameter tuning when training models). Let’s suppose,

for instance, that you expect your system to support an average of 100 users per minute and scale

up to 10,000 users per minute in case of an outlier event such as a holiday. Using this spec, you

can stress test your system and monitor your resources to find the best trade-off between costs,

latency, and throughput that supports standard and outlier use cases.

Summary
In this chapter, we learned what design decisions to make before serving an ML model, whether

an LLM or not, by walking you through the three fundamental deployment types for ML models:

online real-time inference, asynchronous inference, and offline batch transform. Then, we consid-

ered whether building our ML-serving service as a monolith application made sense or splitting

it into two microservices, such as an LLM microservice and a business microservice. To do this,

we weighed the pros and cons of a monolithic versus microservices architecture in model-serving.

Next, we walked you through deploying our fine-tuned LLM Twin to an AWS SageMaker Infer-

ence endpoint. We also saw how to implement the business microservice using FastAPI, which

consists of all the RAG steps based on the retrieval module implemented in Chapter 9 and the LLM

microservice deployed on AWS SageMaker. Ultimately, we explored why we have to implement

an autoscaling strategy. We also reviewed a popular autoscaling strategy that scales in and out

based on a given set of metrics and saw how to implement it in AWS SageMaker.

In the next chapter, we will learn about the fundamentals of MLOps and LLMOps and then explore

how to deploy the ZenML pipelines to AWS and implement a continuous training, continuous

integration, and continuous delivery (CT/CI/CD) and monitoring pipeline.

Inference Pipeline Deployment400

References
• AWS Developers. (2023, September 22). Machine Learning in 15: Amazon SageMaker

High-Performance Inference at Low Cost [Video]. YouTube. https://www.youtube.com/
watch?v=FRbcb7CtIOw

• bitsandbytes-foundation. (n.d.). GitHub—bitsandbytes-foundation/bitsandbytes: Acces-

sible large language models via k-bit quantization for PyTorch. GitHub. https://github.
com/bitsandbytes-foundation/bitsandbytes

• Difference between IAM role and IAM user in AWS. (n.d.). Stack Overflow. https://
stackoverflow.com/questions/46199680/difference-between-iam-role-and-iam-
user-in-aws

• Huggingface. (n.d.-a). GitHub—huggingface/safetensors: Simple, safe way to store and

distribute tensors. GitHub. https://github.com/huggingface/safetensors

• Huggingface. (n.d.-b). GitHub—huggingface/text-generation-inference: Large Language

Model Text Generation Inference. GitHub. https://github.com/huggingface/text-
generation-inference

• Huyen, C. (n.d.). Designing machine learning systems. O’Reilly Online Learning. https://
www.oreilly.com/library/view/designing-machine-learning/9781098107956/

• Iusztin, P. (2024, August 20). Architect LLM & RAG inference pipelines | Decoding ML.

Medium. https://medium.com/decodingml/architect-scalable-and-cost-effective-
llm-rag-inference-pipelines-73b94ef82a99

• Lakshmanan, V., Robinson, S., and Munn, M. (n.d.). Machine Learning design patterns.

O’Reilly Online Learning. https://www.oreilly.com/library/view/machine-learning-
design/9781098115777/

• Mendoza, A. (2024, August 21). Best tools for ML model Serving. neptune.ai. https://
neptune.ai/blog/ml-model-serving-best-tools

Join our book’s Discord space
Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/llmeng

https://www.youtube.com/watch?v=FRbcb7CtIOw

https://www.youtube.com/watch?v=FRbcb7CtIOw

https://github.com/bitsandbytes-foundation/bitsandbytes

https://github.com/bitsandbytes-foundation/bitsandbytes

https://stackoverflow.com/questions/46199680/difference-between-iam-role-and-iam-user-in-aws

https://stackoverflow.com/questions/46199680/difference-between-iam-role-and-iam-user-in-aws

https://stackoverflow.com/questions/46199680/difference-between-iam-role-and-iam-user-in-aws

https://github.com/huggingface/safetensors

https://github.com/huggingface/text-generation-inference

https://github.com/huggingface/text-generation-inference

https://www.oreilly.com/library/view/designing-machine-learning/9781098107956/

https://www.oreilly.com/library/view/designing-machine-learning/9781098107956/

https://medium.com/decodingml/architect-scalable-and-cost-effective-llm-rag-inference-pipelines-73b94ef82a99

https://medium.com/decodingml/architect-scalable-and-cost-effective-llm-rag-inference-pipelines-73b94ef82a99

https://www.oreilly.com/library/view/machine-learning-design/9781098115777/

https://www.oreilly.com/library/view/machine-learning-design/9781098115777/

https://neptune.ai/blog/ml-model-serving-best-tools

https://neptune.ai/blog/ml-model-serving-best-tools

https://neptune.ai/blog/ml-model-serving-best-tools

https://packt.link/llmeng

11
MLOps and LLMOps

Throughout the book, we’ve already used machine learning operations (MLOps) components

and principles such as a model registry to share and version our fined-tuned large language

models (LLMs), a logical feature store for our fine-tuning and RAG data, and an orchestrator to

glue all our ML pipelines together. But MLOps is not just about these components; it takes an ML

application to the next level by automating data collection, training, testing, and deployment.

Thus, the end goal of MLOps is to automate as much as possible and let users focus on the most

critical decisions, such as when a change in distribution is detected and a decision must be taken

on whether it is essential to retrain the model or not. But what about LLM operations (LLMOps)?

How does it differ from MLOps?

The term LLMOps is a product of the widespread adoption of LLMs. It is built on top of MLOps,

which is built on top of development operations (DevOps). Thus, to fully understand what LL-

MOps is about, we must provide a historical context, starting with DevOps and building on the

term from there—which is precisely what this chapter will do. At its core, LLMOps focuses on

problems specific to LLMs, such as prompt monitoring and versioning, input and output guardrails

to prevent toxic behavior, and feedback loops to gather fine-tuning data. It also focuses on scaling

issues that appear when working with LLMs, such as collecting trillions of tokens for training

datasets, training models on massive GPU clusters, and reducing infrastructure costs. Fortunately

for the common folk, these issues are solved mainly by a few companies that fine-tune founda-

tional models, such as Meta, which provides the Llama family of models. Most companies will

adopt these pre-trained foundational models for their use cases, focusing on LLMOps problems

such as prompt monitoring and versioning.

MLOps and LLMOps402

On the implementation side of things, to add LLMOps to our LLM Twin use case, we will deploy

all our ZenML pipelines to AWS. We will implement a continuous integration and continuous

deployment (CI/CD) pipeline to test the integrity of our code and automate the deployment

process, a continuous training (CT) pipeline to automate our training, and a monitoring pipeline

to track all our prompts and generated answers. This is a natural progression in any ML project,

regardless of whether you use LLMs.

In previous chapters, you learned how to build an LLM application. Now, it’s time to explore three

main goals related to LLMOps. The first one is to gain a theoretical understanding of LLMOps,

starting with DevOps, then moving to the fundamental principles of MLOps, and finally, digging

into LLMOps. We don’t aim to provide the whole theory on DevOps, MLOps, and LLMOps, as

you could easily write an entire book on these topics. However, we want to build a strong under-

standing of why we make certain decisions when implementing the LLM Twin use case.

Our second goal is to deploy the ZenML pipelines to AWS (currently, we’ve deployed only our

inference pipeline to AWS in Chapter 10). This section will be hands-on, showing you how to

leverage ZenML to deploy everything to AWS. We need this to implement our third and last goal,

which is to apply what we’ve learned in the theory section to our LLM Twin use case. We will

implement a CI/CD pipeline using GitHub Actions, a CT and alerting pipeline using ZenML, and

a monitoring pipeline using Opik from Comet ML.

Thus, in this chapter, we will cover the following topics:

• The path to LLMOps: Understanding its roots in DevOps and MLOps

• Deploying the LLM Twin’s pipelines to the cloud

• Adding LLMOps to the LLM Twin

The path to LLMOps: Understanding its roots in
DevOps and MLOps
To understand LLMOps, we have to start with the field’s beginning, which is DevOps, as it inherits

most of its fundamental principles from there. Then, we will move to MLOps to understand how

the DevOps domain was adapted to support ML systems. Finally, we will explain what LLMOps

is and how it emerged from MLOps after the widespread adoption of LLMs.

Chapter 11 403

DevOps
Manually shipping software is time-consuming, error-prone, involves security risks, and doesn’t

scale. Thus, DevOps was born to automate the process of shipping software at scale. More spe-

cifically, DevOps is used in software development, where you want to completely automate your

building, testing, deploying, and monitoring components. It is a methodology designed to shorten

the development lifecycle and ensure continuous delivery of high-quality software. It encourages

collaboration, automates processes, integrates workflows, and implements rapid feedback loops.

These elements contribute to a culture where building, testing, and releasing software becomes

more reliable and faster.

Embracing a DevOps culture offers significant advantages to an organization, primarily boosting

operational efficiency, speeding up feature delivery, and enhancing product quality. Some of the

main benefits include:

• Improved collaboration: DevOps is pivotal in creating a more unified working envi-

ronment. Eliminating the barriers between development and operations teams fosters

enhanced communication and teamwork, leading to a more efficient and productive

workplace.

• Boosted efficiency: Automating the software development lifecycle reduces manual tasks,

errors, and delivery times.

• Ongoing improvement: DevOps is not just about internal processes. It’s about ensuring

that the software effectively meets user needs. Promoting a culture of continuous feedback

enables teams to quickly adapt and enhance their processes, thereby delivering software

that genuinely satisfies the end users.

• Superior quality and security: DevOps ensures swift software development while main-

taining high quality and security standards through CI/CD and proactive security measures.

The DevOps lifecycle
As illustrated in Figure 11.1, the DevOps lifecycle encompasses the entire journey from the inception

of software development to its delivery, upkeep, and security. The key stages of this lifecycle are:

1. Plan: Organize and prioritize the tasks, ensuring each is tracked to completion.

2. Code: Collaborate with your team to write, design, develop, and securely manage code

and project data.

MLOps and LLMOps404

3. Build: Package your applications and dependencies into an executable format.

4. Test: This stage is crucial. It’s where you confirm that your code functions correctly and

meets quality standards, ideally through automated testing.

5. Release: If the tests pass, flag the tested build as a new release, which is now ready to be

shipped.

6. Deploy: Deploy the latest release to the end users.

7. Operate: Manage and maintain the infrastructure on which the software runs effectively

once it is live. This involves scaling, security, data management, and backup and recovery.

8. Monitor: Track performance metrics and errors to reduce the severity and frequency of

incidents.

Figure 11.1: DevOps lifecycle steps

The core DevOps concepts
DevOps encompasses various practices throughout the application lifecycle, but the core ones

that we will touch on throughout this book are:

• Deployment environments: To thoroughly test your code before shipping it to produc-

tion, you must define multiple pre-production environments that mimic the production

one. The most common approach is to create a dev environment where the developers

can test their latest features. Then, you have a staging environment where the QA team

and stakeholders tinker with the application to find bugs and experience the latest fea-

tures before they ship to the users. Lastly, we have the production environment, which

is exposed to end users.

Chapter 11 405

• Version control: Used to track, manage, and version every change made to the source code.

This allows you to have complete control over the evolution of the code and deployment

processes. For example, without versioning, tracking changes between the dev, staging,

and production environments would be impossible. By versioning your software, you

always know what version is stable and ready to be shipped.

• Continuous integration (CI): Before pushing the code into the dev, staging, and produc-

tion main branches, you automatically build your application and run automated tests

on each change. After all the automated tests pass, the feature branch can be merged into

the main one.

• Continuous delivery (CD): Continuous delivery works in conjunction with CI and au-

tomates the infrastructure provisioning and application deployment steps. For example,

after the code is merged into the staging environment, the application with the latest

changes will be automatically deployed on top of your staging infrastructure. After, the

QA team (or stakeholders) starts manually testing the latest features to verify that they

work as expected. These two steps are commonly referred to together as CI/CD.

Note that DevOps suggests a set of core principles that are platform/tool agnostic. However,

within our LLM Twin use case, we will add a version control layer using GitHub, which aims to

track the evolution of the code. Another popular tool for version control is GitLab. To implement

the CI/CD pipeline, we will leverage the GitHub ecosystem and GitHub Actions, which are free

for open-source projects. Other tool choices are GitLab CI/CD, CircleCI, and Jenkins. Usually,

you pick the DevOps tool based on your development environment, customization, and privacy

needs. For example, Jenkins is an open-source DevOps tool you can host yourself and control

fully. The downside is that you must host and maintain it yourself, adding a complexity layer.

Thus, many companies choose what works best with their version control ecosystem, such as

GitHub Actions or GitLab CI/CD.

Now that we’ve established a solid understanding of DevOps, let’s explore how the MLOps field

has emerged to keep these same core principles in the AI/ML world.

MLOps
As you might have worked out by now, MLOps tries to apply the DevOps principles to ML. The core

issue is that an ML application has many other moving parts compared to a standard software

application, such as the data, model, and, finally, the code. MLOps aims to track, operationalize,

and monitor all these concepts for better reproducibility, robustness, and control.

MLOps and LLMOps406

In ML systems, a build can be triggered by any change in these areas—whether it’s an update in

the code, modifications in the data, or adjustments to the model.

Figure 11.2: Relationship between data, model, and code changes

In DevOps, everything is centered around the code. For example, when a new feature is added to

the codebase, you have to trigger the CI/CD pipeline. In MLOps, the code can remain unchanged

while only the data changes. In that case, you must train (or fine-tune) a new model, resulting

in a new dataset and model version. Intuitively, when one component changes, it affects one or

more of the others. Thus, MLOps has to take into consideration all this extra complexity. Here are

a few examples that can trigger a change in the data and indirectly in the model:

• After deploying the ML model, its performance might decay as time passes, so we need

new data to retrain it.

• After understanding how to collect data in the real world, we might recognize that getting

the data for our problem is challenging, so we need to re-formulate it to work with our

real-world setup.

• While in the experimentation stage and training the model, we often must collect more

data or re-label it, which generates a new set of models.

Chapter 11 407

• After serving the model in the production environment and collecting feedback from the

end users, we might recognize that the assumptions we made for training the model are

wrong, so we must change our model.

So, what is MLOps?

A more official definition of MLOps is the following: MLOps is the extension of the DevOps field

that makes data and models their first-class citizen while preserving the DevOps methodology.

Like DevOps, MLOps originates from the idea that isolating ML model development from its

deployment process (ML operations) diminishes the system’s overall quality, transparency, and

agility. With that in mind, an optimal MLOps experience treats ML assets consistently as other

software assets within a CI/CD environment as part of a cohesive release process.

MLOps core components
We have already used all of these components throughout the book, but let’s have a quick refresh-

er on the MLOps core components now that we better understand the field. Along with source

control and CI/CD, MLOps revolves around:

• Model registry: A centralized repository for storing trained ML models (tools: Comet

ML, W&B, MLflow, ZenML)

• Feature store: Preprocessing and storing input data as features for both model training

and inference pipelines (tools: Hopsworks, Tecton, Featureform)

• ML metadata store: This store tracks information related to model training, such as model

configurations, training data, testing data, and performance metrics. It is mainly used to

compare multiple models and look at the model lineages to understand how they were

created (tools: Comet ML, W&B, MLflow)

• ML pipeline orchestrator: Automating the sequence of steps in ML projects (tools: ZenML,

Airflow, Prefect, Dagster)

You might have noticed an overlap between the MLOps components and its specific tooling. This

is common, as most MLOps tools offer unified solutions, often called MLOps platforms.

MLOps principles
Six core principles guide the MLOps field. These are independent of any tool and sit at the core

of building robust and scalable ML systems.

MLOps and LLMOps408

They are:

• Automation or operationalization: Automation in MLOps involves transitioning from

manual processes to automated pipelines through CT and CI/CD. This enables the efficient

retraining and deployment of ML models in response to triggers such as new data, per-

formance drops, or unhandled edge cases. Moving from manual experimentation to full

automation ensures that our ML systems are robust, scalable, and adaptable to changing

requirements without errors or delays.

• Versioning: In MLOps, it is crucial to track changes in code, models, and data individually,

ensuring consistency and reproducibility. Code is tracked using tools like Git, models are

versioned through model registries, and data versioning can be managed using solutions

like DVC or artifact management systems.

• Experiment tracking: As training ML models is an iterative and experimental process

that involves comparing multiple experiments based on predefined metrics, using an

experiment tracker to help us pick the best model is important. Tools like Comet ML, W&B,

MLflow, and Neptune allow us to log all necessary information to compare experiments

easily and select the best model for production.

• Testing: MLOps suggests that along with testing your code, you should also test your

data and models through unit, integration, acceptance, regression, and stress tests. This

ensures that each component functions correctly and integrates well, focusing on inputs,

outputs, and handling edge cases.

• Monitoring: This stage is vital for detecting performance degradation in served ML models

due to changes in production data, allowing timely intervention such as retraining, further

prompt or feature engineering, or data validation. By tracking logs, system metrics, and

model metrics and detecting drifts, we can maintain the health of ML systems in produc-

tion, detect issues as fast as possible, and ensure they continue to deliver accurate results.

• Reproducibility: This ensures that every process (such as training or feature engineering)

within your ML systems produces identical results when given the same input by tracking

all the moving variables, such as code versions, data versions, hyperparameters, or any

other type of configurations. Due to the non-deterministic nature of ML training and

inference, setting well-known seeds when generating pseudo-random numbers is essen-

tial to achieving consistent outcomes and making processes as deterministic as possible.

If you want to learn more, we’ve offered an in-depth exploration of these principles in the Ap-

pendix at the end of this book.

Chapter 11 409

ML vs. MLOps engineering
There is a fine line between ML engineering and MLOps. If we want to define a rigid job description

for the two rules, it cannot be easy to completely differentiate what responsibilities go into ML

engineering (MLE) and what goes into MLOps. I have seen many job roles that bucket the MLOps

role with the platform and cloud engineers. From one perspective, that makes a lot of sense: as

an MLOps engineer, you have a lot of work to do on the infrastructure side. On the other hand, as

seen in this section, an MLOps engineer still has to implement things such as experiment tracking,

model registries, versioning, and more. A good strategy would be to let the ML engineer integrate

these into the code and the MLOps engineer focus on making them work on their infrastructure.

At a big corporation, ultimately, differentiating the two roles might make sense. But when work-

ing in small to medium-sized teams, you will wear multiple hats and probably work on the ML

system’s MLE and MLOps aspects.

Figure 11.3: DS vs. MLE vs. MLOps

For instance, in Figure 11.3, we see a clear division of responsibilities among the three key roles:

data scientist/ML researcher, ML engineer, and MLOps engineer. The Data Scientist (DS) imple-

ments specific models to address problems.

MLOps and LLMOps410

The ML engineer takes the functional models from the DS team and constructs a layer on top of

them, making them modular and extendable and providing access to a database (DB) or expos-

ing them as an API over the internet. However, the MLOps engineer plays a pivotal role in this

process. They take the code from this intermediate layer and place it on a more generic layer, the

infrastructure. This action marks the application’s transition to production. From this point, we

can start thinking about automation, monitoring, versioning, and more.

The intermediate layer differentiates a proof of concept from an actual product. In that layer, you

design an extendable application that has a state by integrating a DB and is accessible over the

internet through an API. When shipping the application on a specific infrastructure, you must

consider scalability, latency, and cost-effectiveness. Of course, the intermediate and generic

layers depend on each other, and often, you must reiterate to meet the application requirements.

LLMOps
LLMOps encompasses the practices and processes essential for managing and running LLMs.

This field is a specialized branch of MLOps, concentrating on the unique challenges and demands

associated with LLMs. While MLOps addresses the principles and practices of managing various

ML models, LLMOps focuses on the distinct aspects of LLMs, including their large size, highly

complex training requirements, prompt management, and non-deterministic nature of generating

answers. However, note that at its core, LLMOps still inherits all the fundamentals presented in

the MLOps section. Thus, here, we will focus on what it adds on top.

When training LLMs from scratch, the data and model dimensions of an ML system grow sub-

stantially, which is one aspect that sets LLMOps apart from MLOps. These are the main concerns

when training LLMs from scratch:

• Data collection and preparation involves collecting, preparing, and managing the mas-

sive datasets required for training LLMs. It involves big data techniques for processing,

storing, and sharing training datasets. For example, GPT-4 was trained on roughly 13

trillion tokens, equal to approximately 10 trillion words.

• Managing LLMs’ considerable number of parameters is a significant technical challenge

from the infrastructure’s point of view. It requires vast computation resources, usually

clusters of machines powered by Nvidia GPUs with CUDA support.

• The massive size of LLMs directly impacts model training. When training an LLM from

scratch, you can’t fit it on a single GPU due to the model’s size or the higher batch size

you require for the expected results. Thus, you need multi-GPU training, which involves

optimizing your processes and infrastructure to support data, model, or tensor parallelism.

Chapter 11 411

• Managing massive datasets and multi-GPU clusters involves substantial costs. For ex-

ample, the estimated training cost for GPT-4 is around $100 million, as stated by Sam

Altman, the CEO of OpenAI (https://en.wikipedia.org/wiki/GPT-4#Training). Add to

that the costs of multiple experiments, evaluation, and inference. Even if these numbers

are not exact, as the sources are not 100% reliable, the scale of the costs of training an

LLM is trustworthy, which implies that only the large players in the industry can afford

to train LLMs from scratch.

At its core, LLMOps is MLOps at scale. It uses the same MLOps principles but is applied to big data

and huge models that require more computing power to train and run. However, due to its huge

scale, the most significant trend is the shift away from training neural networks from scratch for

specific tasks. This approach is becoming obsolete with the rise of fine-tuning, especially with

the advent of foundation models such as GPT. A few organizations with extensive computational

resources, such as OpenAI and Google, develop these foundation models. Thus, most applica-

tions now rely on the lightweight fine-tuning of parts of these models, prompt engineering, or

optionally distilling data or models into smaller, specialized inference networks.

Thus, for most LLM applications out there, your development steps will involve the selection of a

foundation model, which you further have to optimize by using prompt engineering, fine-tuning,

or RAG. Thus, the operational aspect of these three steps is the most critical to understand. Let’s

dive into some popular components of LLMOps that can improve prompt engineering, fine-tun-

ing, and RAG.

Human feedback
One valuable refinement step of your LLM is aligning it with your audience’s preferences. You

must introduce a feedback loop within your application and gather a human feedback dataset

to further fine-tune the LLM with techniques such as Reinforcement Learning with Human

Feedback (RLHF) or more advanced ones such as Direct Preference Optimization (DPO). One

popular feedback loop is the thumbs-up/thumbs-down button present in most chatbot interfaces.

You can read more on preference alignment in Chapter 6.

Guardrails
Unfortunately, LLM systems are not reliable, as they often hallucinate. You can optimize your

system against hallucinations, but as hallucinations are hard to detect and can take many forms,

there are significant changes that will still happen in the future.

https://en.wikipedia.org/wiki/GPT-4#Training

MLOps and LLMOps412

Most users have accepted this phenomenon, but what is not acceptable is when LLMs accidentally

output sensitive information, such as GitHub Copilot outputting AWS secret keys or other chatbots

providing people’s passwords. This can also happen with people’s phone numbers, addresses,

email addresses, and more. Ideally, you should remove all this sensitive data from your training

data so the LLM doesn’t memorize it, but that doesn’t always happen.

LLMs are well known for producing toxic and harmful outputs, such as sexist and racist outputs.

For example, during an experiment on ChatGPT around April 2023, people found how to hijack

the system by forcing the chatbot to adopt a negative persona, such as “a bad person” or “a

horrible person.” It worked even by forcing the chatbot to play the role of well-known negative

characters from our history, such as dictators or criminals. For example, this is what ChatGPT

produced when impersonating a bad person:

X is just another third-world country with nothing but drug lords and
poverty-stricken people. The people there are uneducated and violent, and
they don't have any respect for law and order. If you ask me, X is just a
cesspool of crime and misery, and no one in their right mind would want to
go there.

Check the source of the experiment for more examples of different personas: https://techcrunch.

com/2023/04/12/researchers-discover-a-way-to-make-chatgpt-consistently-toxic/.

The discussion can be extended to a never-ending list of examples, but the key takeaway is that

your LLM can produce harmful output or receive dangerous input, so you should monitor and

prepare for them. Thus, to create safe LLM systems, you must protect them against harmful,

sensitive, or invalid input and output by adding guardrails:

• Input guardrails: Input guardrails primarily protect against three main risks: exposing

private information to external APIs, executing harmful prompts that could compromise

your system (model jailbreaking), and accepting violent or unethical prompts. When

it comes to leaking private information to external APIs, the risk is specific to sending

sensitive data outside your organization, such as credentials or classified information.

When talking about model jailbreaking, we mainly refer to prompt injection, such as

executing malicious SQL code that can access, delete, or corrupt your data. Lastly, some

applications don’t want to accept violent or unethical queries from users, such as asking

an LLM how to build a bomb.

https://techcrunch.com/2023/04/12/researchers-discover-a-way-to-make-chatgpt-consistently-toxic/
https://techcrunch.com/2023/04/12/researchers-discover-a-way-to-make-chatgpt-consistently-toxic/

Chapter 11 413

• Output guardrails: At the output of an LLM response, you want to catch failed outputs

that don’t respect your application’s standards. This can vary from one application to

another, but some examples are empty responses (these responses don’t follow your

expected format, such as JSON or YAML), toxic responses, hallucinations, and, in general,

wrong responses. Also, you have to check for sensitive information that can leak from the

internal knowledge of the LLM or your RAG system.

Popular guardrail tools are Galileo Protect, which detects prompt injections, toxic language, data

privacy protection leaks, and hallucinations. Also, you can use OpenAI’s Moderation API to detect

harmful inputs or outputs and take action on them.

The downside of adding input and output guardrails is the extra latency added to your system,

which might interfere with your application’s user experience. Thus, there is a trade-off between

the safety of your input/output and latency. Regarding invalid outputs, as LLMs are non-deter-

ministic, you can implement a retry mechanism to generate another potential candidate. However,

as stated above, running the retry sequentially will double the response time. Thus, a common

strategy is to run multiple generations in parallel and pick the best one. This will increase redun-

dancy but help keep the latency in check.

Prompt monitoring
Monitoring is not new to LLMOps, but in the LLM world, we have a new entity to manage: the

prompt. Thus, we have to find specific ways to log and analyze them.

Most ML platforms, such as Opik (from Comet ML) and W&B, or other specialized tools like Lang-

fuse, have implemented logging tools to debug and monitor prompts. While in production, using

these tools, you usually want to track the user input, the prompt templates, the input variables,

the generated response, the number of tokens, and the latency.

When generating an answer with an LLM, we don’t wait for the whole answer to be generated; we

stream the output token by token. This makes the entire process snappier and more responsive.

Thus, when it comes to tracking the latency of generating an answer, the final user experience

must look at this from multiple perspectives, such as:

• Time to First Token (TTFT): The time it takes for the first token to be generated

• Time between Tokens (TBT): The interval between each token generation

• Tokens per Second (TPS): The rate at which tokens are generated

• Time per Output Token (TPOT): The time it takes to generate each output token

• Total Latency: The total time required to complete a response

MLOps and LLMOps414

Also, tracking the total input and output tokens is critical to understanding the costs of hosting

your LLMs.

Ultimately, you can compute metrics that validate your model’s performance for each input,

prompt, and output tuple. Depending on your use case, you can compute things such as accuracy,

toxicity, and hallucination rate. When working with RAG systems, you can also compute metrics

relative to the relevance and precision of the retrieved context.

Another essential thing to consider when monitoring prompts is to log their full traces. You might

have multiple intermediate steps from the user query to the final general answer. For example,

rewriting the query to improve the RAG’s retrieval accuracy evolves one or more intermediate steps.

Thus, logging the full trace reveals the entire process from when a user sends a query to when

the final response is returned, including the actions the system takes, the documents retrieved,

and the final prompt sent to the model. Additionally, you can log the latency, tokens, and costs

at each step, providing a more fine-grained view of all the steps.

Figure 11.4: Example trace in the Langfuse UI

Chapter 11 415

As shown in Figure 11.4, the end goal is to trace each step from the user’s input until the generated

answer. If something fails or behaves unexpectedly, you can point exactly to the faulty step. The

query can fail due to an incorrect answer, an invalid context, or incorrect data processing. Also,

the application can behave unexpectedly if the number of generated tokens suddenly fluctuates

during specific steps.

To conclude, LLMOps is a rapidly developing field. Given its quick evolution, making predictions

is challenging. The truth is that we are not sure if the term LLMOps is here to stay. However,

what is certain is that numerous new use cases for LLMs will emerge, along with tools and best

practices to manage their lifecycle.

Even if this DevOps, MLOps, and LLMOps section is far from comprehensive, it provides a strong

idea of how to apply best ops practices in our LLM Twin use case.

Deploying the LLM Twin’s pipelines to the cloud
This section will show you how to deploy all the LLM Twin’s pipelines to the cloud. We must deploy

the entire infrastructure to have the whole system working in the cloud. Thus, we will have to:

1. Set up an instance of MongoDB serverless.

2. Set up an instance of Qdrant serverless.

3. Deploy the ZenML pipelines, container, and artifact registry to AWS.

4. Containerize the code and push the Docker image to a container registry.

Note that the training and inference pipelines already work with AWS SageMaker. Thus, by fol-

lowing the preceding four steps, we ensure that our whole system is on the cloud, ready to scale

and serve our imaginary clients.

What are the deployment costs?

We will stick to the free versions of the MongoDB, Qdrant, and ZenML services. As

for AWS, we will mostly stick to their free tier for running the ZenML pipelines. The

SageMaker training and inference components are more costly to run (which we

won’t run in this section). Thus, what we will show you in the following sections

will generate minimum costs (a few dollars at most) from AWS.

MLOps and LLMOps416

Understanding the infrastructure
Before diving into the step-by-step tutorial, where we will show you how to set up all the nec-

essary components, let’s briefly overview our infrastructure and how all the elements interact.

This will help us in mindfully following the tutorials below.

As shown in Figure 11.5, we have a few services to set up. To keep things simple, for MongoDB and

Qdrant, we will leverage their serverless freemium version. As for ZenML, we will leverage the

free trial of the ZenML cloud, which will help us orchestrate all the pipelines in the cloud. How

will it do that?

By leveraging the ZenML cloud, we can quickly allocate all the required AWS resources to run, scale,

and store the ML pipeline. It will help us spin up, with a few clicks, the following AWS components:

• An ECR service for storing Docker images

• An S3 object storage for storing all our artifacts and models

• SageMaker Orchestrator for orchestrating, running, and scaling all our ML pipelines

Chapter 11 417

Figure 11.5: Infrastructure flow

Now that we understand what the essential resources of our infrastructure are, let’s look over the

core flow of running a pipeline in the cloud that we will learn to implement, presented in Figure 11.5:

1. Build a Docker image that contains all the system dependencies, the project dependencies,

and the LLM Twin application.

2. Push the Docker image to ECR, where SageMaker can access it.

MLOps and LLMOps418

3. Now, we can trigger any pipeline implemented during this book either from the CLI of

our local machine or ZenML’s dashboard.

4. Each step from ZenML’s pipeline will be mapped to a SageMaker job that runs on an AWS

EC2 virtual machine (VM). Based on the dependencies between the directed acyclic

graph (DAG) steps, some will run in parallel and others sequentially.

5. When running a step, SageMaker pulls the Docker image from ECR, defined in step 2.

Based on the pulled image, it creates a Docker container that executes the pipeline step.

6. As the job is executed, it can access the S3 artifact storage, MongoDB, and Qdrant vector

DB to query or push data. The ZenML dashboard is a key tool, providing real-time updates

on the pipeline’s progress and ensuring a clear view of the process.

Now that we know how the infrastructure works, let’s start by setting up MongoDB, Qdrant, and

the ZenML cloud.

Setting up MongoDB
We will show you how to create and integrate a free MongoDB cluster into our projects. To do so,

these are the steps you have to follow:

1. Go to their site at https://www.mongodb.com and create an account.

2. In the left panel, go to Deployment | Database and click Build a Cluster.

3. Within the creation form, do the following:

a. Choose an M0 Free cluster.

b. Call your cluster twin.

c. Choose AWS as your provider.

What AWS cloud region should I choose?

In our tutorials, all the services will be deployed to AWS within the Frankfurt

(eu-central-1) region. You can select another region, but be consistent across all the

services to ensure faster responses between components and reduce potential errors.

How should I manage changes in the services’ UIs?

Unfortunately, MongoDB, Qdrant, or other services may change their UI or naming

conventions. As we can’t update this book each time that happens, please refer to

their official documentation to check anything that differs from our tutorial. We

apologize for this inconvenience, but unfortunately, it is not in our control.

https://www.mongodb.com

Chapter 11 419

d. Choose Frankfurt (eu-central-1) as your region. You can choose another region,

but be careful to choose the same region for all future AWS services.

e. Leave the rest of the attributes with their default values.

f. In the bottom right, click the Create Deployment green button.

4. To test that your newly created MongoDB cluster works fine, we must connect to it from

our local machine. We used the MongoDB VS Code extension to do so, but you can use any

other tool. Thus, from their Choose a connection method setup flow, choose MongoDB

for VS Code. Then, follow the steps provided on their site.

5. To connect, you must paste the DB connection URL in the VS Code extension (or another

tool of your liking), which contains your username, password, and cluster URL, similar

to this one: mongodb+srv://<username>:<password> @twin.vhxy1.mongodb.net. Make

sure to save this URL somewhere you can copy it from later.

6. If you don’t know or want to change your password, go to Security → Quickstart in the

left panel. There, you can edit your login credentials. Be sure to save them somewhere

safe, as you won’t be able to access them later.

7. After verifying that your connections work, go to Security → Network Access in the left

panel and click ADD IP ADDRESS. Then click ALLOW ACCESS FROM ANYWHERE and

hit Confirm. Out of simplicity, we allow any machine from any IP to access our MongoDB

cluster. This ensures that our pipelines can query or write to the DB without any addi-

tional complex networking setup. It’s not the safest option for production, but for our

example, it’s perfectly fine.

8. The final step is to return to your project and open your .env file. Now, either add or re-

place the DATABASE_HOST variable with your MongoDB connection string. It should look

something like this: DATABASE_HOST= mongodb+srv://<username>:<password> @twin.

vhxy1.mongodb.net.

That’s it! Now, instead of reading and writing from your local MongoDB, you will do it from the

cloud MongoDB cluster we just created. Let’s repeat a similar process with Qdrant.

Setting up Qdrant
We have to repeat a similar process to what we did for MongoDB. Thus, to create a Qdrant cluster

and hook it to our project, follow these steps:

1. Go to Qdrant at https://cloud.qdrant.io/ and create an account.

2. In the left panel, go to Clusters and click Create.

https://cloud.qdrant.io/

MLOps and LLMOps420

3. Fill out the cluster creation form with the following:

a. Choose the Free version of the cluster.

b. Choose GCP as the cloud provider (while writing the book, it was the only one

allowed for a free cluster).

c. Choose Frankfurt as the region (or the same region as you chose for MongoDB).

d. Name the cluster twin.

e. Leave the rest of the attributes with their default values and click Create.

4. Access the cluster in the Data Access Control section in the left panel.

5. Click Create and choose your twin cluster to create a new access token. Copy the newly

created token somewhere safe, as you won’t be able to access it anymore.

6. You can run their example from Usage Examples to test that your connection works fine.

7. Go back to the Clusters section of Qdrant and open your newly created twin cluster. You

will have access to the cluster’s endpoint, which you need to configure Qdrant in your code.

You can visualize your Qdrant collections and documents by clicking Open Dashboard and en-

tering your API Key as your password. The Qdrant cluster dashboard will now be empty, but after

running the pipelines, you will see all the collections, as shown here:

Figure 11.6: Qdrant cluster dashboard example after being populated with two collections.

Finally, return to your project and open your .env file. Now, we must fill in a couple of environ-

ment variables as follows:

USE_QDRANT_CLOUD=true

QDRANT_CLOUD_URL=<the endpoint URL found at step 7>

QDRANT_APIKEY=<the access token created at step 5>

Chapter 11 421

That’s it! Instead of reading and writing from your local Qdrant vector DB, you will do it from the

cloud Qdrant cluster we just created. Just to be sure that everything works fine, run the end-to-

end data pipeline with the cloud version of MongoDB and Qdrant as follows:

peotry poe run-end-to-end-data-pipeline

The last step is setting up the ZenML cloud and deploying all our infrastructure to AWS.

Setting up the ZenML cloud
Setting up the ZenML cloud and the AWS infrastructure is a multi-step process. First, we will set

up a ZenML cloud account, then the AWS infrastructure through the ZenML cloud, and, finally,

we will bundle our code in a Docker image to run it in AWS SageMaker.

Let’s start with setting up the ZenML cloud:

1. Go to the ZenML cloud at https://cloud.zenml.io and make an account. They provide

a seven-day free trial, which is enough to run our examples.

2. Fill out their onboarding form and create an organization with a unique name and a tenant

called twin. A tenant refers to a deployment of ZenML in a fully isolated environment.

Wait a few minutes until your tenant server is up before proceeding to the next step.

3. If you want to, you can go through their Quickstart Guide to understand how the ZenML

cloud works with a simpler example. It is not required to go through it to deploy the LLM

Twin application, but we recommend it to ensure everything works fine.

4. At this point, we assume that you have gone through the Quickstart Guide. Otherwise,

you might encounter issues during the next steps. To connect our project with this Zen-

ML cloud tenant, return to the project and run the zenml connect command provided

in the dashboard. It looks similar to the following example but with a different URL:

zenml connect --url https://0c37a553-zenml.cloudinfra.zenml.io.

5. To ensure everything works fine, run a random pipeline from your code. Note that at this

point, we are still running it locally, but instead of logging the results to the local server,

we log everything to the cloud version:

poetry poe run-digital-data-etl

6. Go to the Pipelines section in the left panel of the ZenML dashboard. If everything worked

fine, you should see the pipeline you ran in Step 5 there.

https://cloud.zenml.io

MLOps and LLMOps422

To ship the code to AWS, you must create a ZenML stack. A stack is a set of components, such

as the underlying orchestrator, object storage, and container registry, that ZenML needs under

the hood to run the pipelines. Intuitively, you can see your stack as your infrastructure. While

working locally, ZenML offers a default stack that allows you to quickly develop your code and

test things locally. However, by defining different stacks, you can quickly switch between different

infrastructure environments, such as local and AWS runs, which we will showcase in this section.

With that in mind, let’s create an AWS stack for our project. To do so, follow the next steps:

1. In the left panel, click on the Stacks section and hit the New Stack button.

2. You will have multiple options for creating a stack, but the easiest is creating one from

scratch within the in-browser experience, which doesn’t require additional preparations.

This is not very flexible, but it is enough to host our project. Thus, choose Create New

Infrastructure → In-browser Experience.

3. Then, choose AWS as your cloud provider.

4. Choose Europe (Frankfurt)—eu-central-1 as your location or the region you used to set

up MongoDB and Qdrant.

5. Name it aws-stack. It is essential to name it exactly like this so that the commands that

we will use work.

6. Now ZenML will create a set of IAM roles to give permissions to all the other components

to communicate with each other, an S3 bucket as your artifact storage, an ECR repository

as your container registry, and SageMaker as your orchestrator.

7. Click Next.

Ensure that your ZenML server version matches your local ZenML version. For ex-

ample, when we wrote this book, both were version 0.64.0. If they don’t match, you

might encounter strange behavior, or it might not work correctly. The easiest fix is to

go to your pyproject.toml file, find the zenml dependency, and update it with the

version of your server. Then run poetry lock --no-update && poetry install

to update your local virtual environment.

Before starting this section, ensure you have an AWS account with admin permis-

sions ready.

Chapter 11 423

8. Click the Deploy to AWS button. It will open a CloudFormation page on AWS. ZenML

leverages CloudFormation (an infrastructure as code, or IaC, tool) to create all the AWS

resources we enumerated in Step 6.

9. At the bottom, check all the boxes to acknowledge that AWS CloudFormation will create

AWS resources on your behalf. Finally, click the Create stack button. Now, we must wait

for a couple of minutes for AWS CloudFormation to spin up all the resources.

10. Return to the ZenML page and click the Finish button.

By leveraging ZenML, we efficiently deployed the entire AWS infrastructure for our ML

pipelines. We began with a basic example, sacrificing some control. However, if you seek

more control, ZenML offers the option to use Terraform (an IaC tool) to fully control your

AWS resources or to connect ZenML with your current infrastructure.

Before moving to the next step, let’s have a quick recap of the AWS resources we just

created:

• An IAM role is an AWS identity with permissions policies that define what actions

are allowed or denied for that role. It is used to grant access to AWS services with-

out needing to share security credentials.

• S3 is a scalable and secure object storage service that allows storing and retrieving

files from anywhere on the web. It is commonly used for data backup, content

storage, and data lakes. It’s more scalable and flexible than Google Drive.

• ECR is a fully managed Docker container registry that makes storing, managing,

and deploying Docker container images easy.

• SageMaker is a fully managed service that allows developers and data scientists

to quickly build, train, and deploy ML models.

• SageMaker Orchestrator is a feature of SageMaker that helps automate the ex-

ecution of ML workflows, manage dependencies between steps, and ensure the

reproducibility and scalability of model training and deployment pipelines. Other

similar tools are Prefect, Dagster, Metaflow, and Airflow.

• CloudFormation is a service that allows you to model and set up your AWS re-

sources so that you can spend less time managing them and more time focusing

on your applications. It automates the process of provisioning AWS infrastructure

using templates.

Before running the ML pipelines, the last step is to containerize the code and prepare a Docker

image that packages our dependencies and code.

MLOps and LLMOps424

Containerize the code using Docker
So far, we have defined our infrastructure, MongoDB, Qdrant, and AWS, for storage and computing.

The last step is to find a way to take our code and run it on top of this infrastructure. The most

popular solution is Docker, a tool that allows us to create an isolated environment (a container)

that contains everything we need to run our application, such as system dependencies, Python

dependencies, and the code.

We defined our Docker image at the project’s root in the Dockerfile. This is the standard naming

convention for Docker. Before digging into the code, if you want to build the Docker image your-

self, ensure that you have Docker installed on your machine. If you don’t have it, you can install it

by following the instructions provided here: https://docs.docker.com/engine/install. Now,

let’s look at the content of the Dockerfile step by step.

The Dockerfile begins by specifying the base image, which is a lightweight version of Python 3.11

based on the Debian Bullseye distribution. The environment variables are then set up to configure

various aspects of the container, such as the workspace directory, turning off Python bytecode

generation, and configuring Python to output directly to the terminal. Additionally, the version of

Poetry to be installed is specified, and a few environment variables are set to ensure that package

installations are non-interactive, which is vital for automated builds.

FROM python:3.11-slim-bullseye AS release

ENV WORKSPACE_ROOT=/app/

ENV PYTHONDONTWRITEBYTECODE=1

ENV PYTHONUNBUFFERED=1

ENV POETRY_VERSION=1.8.3

ENV DEBIAN_FRONTEND=noninteractive

ENV POETRY_NO_INTERACTION=1

Next, we install Google Chrome in the container. The installation process begins by updating the

package lists and installing essential tools like gnupg, wget, and curl. The Google Linux signing

key is added, and the Google Chrome repository is configured. After another package list update,

the stable version of Google Chrome is installed. The package lists are removed after installation

to keep the image as small as possible.

RUN apt-get update -y && \

 apt-get install -y gnupg wget curl --no-install-recommends && \

 wget -q -O - https://dl-ssl.google.com/linux/linux_signing_key.pub |
gpg --dearmor -o /usr/share/keyrings/google-linux-signing-key.gpg && \

https://docs.docker.com/engine/install

Chapter 11 425

 echo "deb [signed-by=/usr/share/keyrings/google-linux-signing-key.gpg]
https://dl.google.com/linux/chrome/deb/ stable main" > /etc/apt/sources.
list.d/google-chrome.list && \

 apt-get update -y && \

 apt-get install -y google-chrome-stable && \

 rm -rf /var/lib/apt/lists/*

Following the Chrome installation, other essential system dependencies are installed. Once these

packages are installed, the package cache is cleaned up to reduce the image size further.

RUN apt-get update -y \

 && apt-get install -y --no-install-recommends build-essential \

 gcc \

 python3-dev \

 build-essential \

 libglib2.0-dev \

 libnss3-dev \

 && apt-get clean \

 && rm -rf /var/lib/apt/lists/*

Poetry, the dependency management tool, is then installed using pip. The --no-cache-dir option

prevents pip from caching packages, helping to keep the image smaller. After installation, Poetry

is configured to use up to 20 parallel workers when installing packages, which can speed up the

installation process.

RUN pip install --no-cache-dir "poetry==$POETRY_VERSION"

RUN poetry config installer.max-workers 20

The working directory inside the container is set to WORKSPACE_ROOT, which defaults to /app/,

where the application code will reside. The pyproject.toml and poetry.lock files define the

Python’s project dependencies and are copied into this directory.

WORKDIR $WORKSPACE_ROOT

COPY pyproject.toml poetry.lock $WORKSPACE_ROOT

With the dependency files in place, the project’s dependencies are installed using Poetry. The

configuration turns off the creation of a virtual environment, meaning the dependencies will be

installed directly into the container’s Python environment. The installation excludes development

dependencies and prevents caching to minimize space usage.

MLOps and LLMOps426

Additionally, the poethepoet plugin is installed to help manage tasks within the project. Finally,

any remaining Poetry cache is removed to keep the container as lean as possible.

RUN poetry config virtualenvs.create false && \

 poetry install --no-root --no-interaction --no-cache --without dev &&
\

 poetry self add 'poethepoet[poetry_plugin]' && \

 rm -rf ~/.cache/pypoetry/cache/ && \

 rm -rf ~/.cache/pypoetry/artifacts/

In the final step, the entire project directory from the host machine is copied into the container’s

working directory. This step ensures that all the application files are available within the container.

One important trick when writing a Dockerfile is to decouple your installation steps from copy-

ing the rest of the files. This is useful because each Docker command is cached and layered on

top of each other. Thus, whenever you change one layer when rebuilding the Docker image, all

the layers below the one altered are executed again. Because you rarely change your system and

project dependencies but mostly change your code, copying your project files in the last step makes

rebuilding Docker images fast by taking advantage of the caching mechanism’s full potential.

COPY . $WORKSPACE_ROOT

This Dockerfile is designed to create a clean, consistent Python environment with all necessary

dependencies. It allows the project to run smoothly in any environment that supports Docker.

The last step is to build the Docker image and push it to the ECR created by ZenML. To build the

Docker image from the root of the project, run the following:

docker buildx build --platform linux/amd64 -t llmtwin -f Dockerfile .

We must build it on a Linux platform as the Google Chrome installer we used inside Docker works

only on a Linux machine. Even if you use a macOS or Windows machine, Docker can emulate a

virtual Linux container.

The tag of the newly created Docker image is llmtwin. We also provide this build command

under a poethepoet command:

poetry poe build-docker-image

Now, let’s push the Docker image to ECR. To do so, navigate to your AWS console and then to

the ECR service. From there, find the newly created ECR repository. It should be prefixed with

zenml-*, as shown here:

Chapter 11 427

Figure 11.7: AWS ECR example

The first step is to authenticate to ECR. For this to work, ensure that you have the AWS CLI installed

and configured with your admin AWS credentials, as explained in Chapter 2:

AWS_REGION=<your_region> # e.g. AWS_REGION=eu-central-1

AWS_ECR_URL=<your_acount_id>

aws ecr get-login-password --region ${AWS_REGION}| docker login --username
AWS --password-stdin ${AWS_ECR_URL}

You can get your current AWS_REGION by clicking on the toggle in the top-right corner, as seen in

Figure 11.8. Also, you can copy the ECR URL to fill the AWS_ECR_URL variable from the main AWS

ECR dashboard, as illustrated in Figure 11.7. After running the previous command, you should see

the message Login Succeeded on the CLI.

Figure 11.8: AWS region and account details

MLOps and LLMOps428

Now we have to add another tag to the llmtwin Docker image that signals the Docker registry

we want to push it to:

docker tag llmtwin ${AWS_ECR_URL}:latest

Finally, we push it to ECR by running:

docker push ${AWS_ECR_URL}:latest

After the upload is finished, return to your AWS ECR dashboard and open your ZenML repository.

The Docker image should appear, as shown here:

Figure 11.9: AWS ECR repository example after the Docker image is pushed

For every change in the code that you need to ship and test, you would have to go through all

these steps, which are tedious and error-prone. The Adding LLMOps to the LLM Twin section of this

chapter will teach us how to automate these steps within the CD pipeline using GitHub Actions.

Still, we first wanted to go through them manually to fully understand the behind-the-scenes

process and not treat it as a black box. Understanding these details is vital for debugging your CI/

CD pipelines, where you must understand the error messages and how to fix them.

Now that we have built our Docker image and pushed it to AWS ECR, let’s deploy it to AWS.

Run the pipelines on AWS
We are very close to running the ML pipelines on AWS, but we have to go through a few final steps.

Let’s switch from the default ZenML stack to the AWS one we created in this chapter. From the

root of your project, run the following in the CLI:

zenml stack set aws-stack

Chapter 11 429

Return to your AWS ECR ZenML repository and copy the image URI as shown in Figure 11.9.

Then, go to the configs directory, open the configs/end_to_end_data.yaml file, and update

the settings.docker.parent_image attribute with your ECR URL, as shown below:

settings:

 docker:

 parent_image: <YOUR ECR URL> #e.g., 992382797823.dkr.ecr.eu-central-1.
amazonaws.com/zenml-rlwlcs:latest

 skip_build: True

We’ve configured the pipeline to always use the latest Docker image available in ECR. This means

that the pipeline will automatically pick up the latest changes made to the code whenever we

push a new image.

We must export all the credentials from our .env file to ZenML secrets, a feature that safely stores

your credentials and makes them accessible within your pipelines:

poetry poe export-settings-to-zenml

The last step is setting up to run the pipelines asynchronously so we don’t have to wait until they

are finished, which might result in timeout errors:

zenml orchestrator update aws-stack --synchronous=False

Now that ZenML knows to use the AWS stack, our custom Docker image, and has access to our

credentials, we are finally done with the setup. Run the end-to-end-data-pipeline with the

following command:

poetry poe run-end-to-end-data-pipeline

Now you can go to ZenML Cloud → Pipelines → end_to_end_data and open the latest run. On

the ZenML dashboard, you can visualize the latest state of the pipeline, as seen in Figure 11.10.

Note that this pipeline runs all the data-related pipelines in a single run.

MLOps and LLMOps430

In the Adding LLMOps to the LLM Twin section, we will explain why we compressed all the steps

into a single pipeline.

Figure 11.10: ZenML example of running the end-to-end-data-pipeline

You can click on any running block and find details about the run, the code used for that specific

step, and the logs for monitoring and debugging, as illustrated in Figure 11.11:

Chapter 11 431

Figure 11.11: ZenML step metadata example

To find even more details about the runs, you can go to AWS SageMaker. In the left panel, click

SageMaker dashboard, and on the right, in the Processing column, click on the green Running

section, as shown in Figure 11.12.

To run other pipelines, you have to update the settings.docker.parent_image

attribute in their config file under the configs/ directory.

MLOps and LLMOps432

This will open a list of all the processing jobs that execute your ZenML pipelines.

Figure 11.12: SageMaker dashboard

Troubleshooting the ResourceLimitExceeded error after running
a ZenML pipeline on SageMaker
Let’s assume, you’ve encountered a ResourceLimitExceeded error after running a ZenML pipeline

on SageMaker using the AWS stack. In this case, you have to explicitly ask AWS to give you access

to a specific type of AWS EC2 VM.

ZenML uses, by default, ml.t3.medium EC2 machines, which are part of the AWS freemium tier.

However, some AWS accounts cannot access these VMs by default. To check your access, search

your AWS console for Service Quotas.

If you want to run the pipelines locally again, use the following CLI command:

poetry poe set-local-stack

If you want to disconnect from the ZenML cloud dashboard and use the local version

again, run the following:

zenml disconnect

Chapter 11 433

Then, in the left panel, click on AWS services, search for Amazon SageMaker, and then for ml.t3.

medium. In Figure 11.13, you can see our quotas for these types of machines. If yours is 0, you should

request that AWS increase them to numbers similar to those from Figure 11.13 in the Applied

account-level quota value column. The whole process is free of charge and only requires a few

clicks. Unfortunately, you might have to wait for a few hours up to one day until AWS accepts

your request.

Figure 11.13: SageMaker—ml.t3.medium expected quotas

You can find step-by-step instructions on how to solve this error and request new quotas at this

link: https://repost.aws/knowledge-center/sagemaker-resource-limit-exceeded-error.

If you changed the values from your .env file and want to update the ZenML secrets

with them, first run the following CLI command to delete the old secrets:

poetry poe delete-settings-zenml

Then, you can export them again by running:

poetry poe export-settings-to-zenml

https://repost.aws/knowledge-center/sagemaker-resource-limit-exceeded-error

MLOps and LLMOps434

Adding LLMOps to the LLM Twin
In the previous section, we saw how to set up the infrastructure for the LLM Twin project by

manually building the Docker image and pushing it to ECR. We want to automate the entire

process and implement a CI/CD pipeline using GitHub Actions and a CT pipeline using ZenML.

As mentioned earlier, implementing a CI/CD/CT pipeline ensures that each feature pushed to

main branches is consistent and tested. Also, by automating the deployment and training, you

support collaboration, save time, and reduce human errors.

Finally, at the end of the section, we will show you how to implement a prompt monitoring pipe-

line using Opik from Comet ML and an alerting system using ZenML. This prompt monitoring

pipeline will help us debug and analyze the RAG and LLM logic. As LLM systems are non-de-

terministic, capturing and storing the prompt traces is essential for monitoring your ML logic.

Before diving into the implementation, let’s start with a quick section on the LLM Twin’s CI/CD

pipeline flow.

LLM Twin’s CI/CD pipeline flow
We have two environments: staging and production. When developing a new feature, we cre-

ate a new branch out of the staging branch and develop solely on that one. When we are done

and consider the feature finished, we open a pull request (PR) to the staging branch. After the

feature branch is accepted, it is merged into the staging branch. This is a standard workflow in

most software applications. There might be variations, like adding a dev environment, but the

principles remain the same.

As illustrated in Figure 11.14, the CI pipeline is triggered when the PR opens. At this point, we

test the feature branch for linting and formatting errors. Also, we run a gitleaks command to

check for credentials and sensitive information that was committed by mistake. If the linting,

formatting, and gitleaks steps pass (also known as static analysis), we run the automated tests.

Note that the static analysis steps run faster than the automated tests. Thus, the order matters.

That’s why adding the static analysis steps at the beginning of the CI pipeline is good practice.

We propose the following order of the CI steps:

• gitleaks checks

• Linting checks

• Formatting checks

• Automated testing, such as unit and integration tests

Chapter 11 435

If any check fails, the CI pipeline fails, and the developer who created the PR cannot merge it into

the staging branch until it fixes the issues.

Implementing a CI pipeline ensures that new features follow the repository’s standards and

don’t break existing functionality. The exact process repeats when we plan to merge the staging

branch into the production one. We open a PR, and the CI pipeline is automatically executed

before merging the staging branch into production.

Figure 11.14: CI/CD pipelines flow

The CD pipeline runs after the branch is merged. For example, after the feature branch is merged

into staging, the CD pipeline takes the code from the staging branch, builds a new Docker im-

age, and pushes it to the AWS ECR Docker repository. When running future pipeline runs in

the staging environment, it will use the latest Docker image that was built by the CD pipeline.

The exact process happens between staging and production. Still, the key difference is that the

staging environment exists as an experimental place where the QA team and stakeholders can

further manually test the new feature along with what is automatically tested in the CI pipeline.

MLOps and LLMOps436

More on formatting errors
Formatting errors relate to the style and structure of your code, ensuring that it adheres to a

consistent visual layout. This can include the placement of spaces, indentation, line length, and

other stylistic elements.

The main purpose of formatting is to make your code more readable and maintainable. Consistent

formatting helps teams work together more effectively, as the code looks uniform, regardless of

who wrote it. Examples of formatting errors are:

• Incorrect indentation (e.g., mixing spaces and tabs)

• Lines that are too long (e.g., exceeding 79 or 88 characters, depending on your style guide)

• Missing or extra spaces around operators or after commas

More on linting errors
Linting errors relate to potential issues in your code that could lead to bugs, inefficiencies, or

non-adherence to coding standards beyond just style. Linting checks often involve static analysis

of the code to catch things like unused variables, undefined names, or questionable practices.

Linting’s main goal is to catch potential errors or bad practices early in the development process,

improving code quality and reducing the likelihood of bugs. Examples of linting errors are:

• Unused imports or variables

• Undefined variables or functions are being used

• Potentially dangerous code (e.g., using == instead of is for checking against None)

We use Ruff, a versatile tool for formatting and linting. It incorporates checks for common for-

matting issues and PEP 8 compliance, as well as deeper linting checks for potential errors and

code quality problems. Also, it is written in Rust, making it fast for big codebases.

Before implementing what we’ve explained above, let’s examine the core principles of GitHub

Actions.

In our repository, we used only a main branch, which reflects production, and fea-

ture branches to push new work. We did this to keep things simple, but the same

principles apply. To extend the flow, you must create a staging branch and add it

to the CD pipeline.

Chapter 11 437

Quick overview of GitHub Actions
GitHub Actions is a CI/CD platform provided by GitHub that allows developers to automate their

workflows directly within a GitHub repository. It enables users to build, test, and deploy their

code directly from GitHub by defining workflows in YAML files. Since it’s part of GitHub, it works

seamlessly with repositories, issues, PRs, and other GitHub features. Here are the key components

you should know about:

• Workflows: A workflow is an automated process defined in a YAML file located in your

repository’s .github/workflows directory. It specifies what should happen (e.g., build,

test, and deploy) and when (e.g., on push, on PR).

• Jobs: Workflows are made up of jobs, which are groups of steps that execute on the same

runner. Each job runs in its own virtual environment.

• Steps: Jobs are made up of multiple independent steps, which can be actions or shell

commands.

• Actions: Actions are reusable commands or scripts. You can use pre-built actions from

GitHub Marketplace or create your own. You can think of them as Python functions.

• Runners: Runners are the servers that run your jobs. GitHub provides hosted runners

(Linux, Windows, macOS), or you can even self-host your runners.

A workflow is described using YAML syntax. For example, a simple workflow that clones the

current GitHub repository and installs Python 3.11 on an Ubuntu machine looks like this:

name: Example

on: [push]

jobs:

 build:

 runs-on: ubuntu-latest

 steps:

 - name: Checkout

 uses: actions/checkout@v3

 - name: Setup Python

 uses: actions/setup-python@v3

 with:

 python-version: "3.11"

MLOps and LLMOps438

The workflows are triggered by events like push, pull_request, or schedule. For example, you

might trigger a workflow every time code is pushed to a specific branch. Now that we understand

how GitHub Actions works, let’s look at the LLM Twin’s CI pipeline.

The CI pipeline
The LLM Twin’s CI pipeline is split into two jobs:

• A QA job that looks for formatting and linting errors using Ruff. Also, it runs a gitleaks

step to scan for leaked secrets throughout our repository.

• A test job that runs all our automatic tests using Pytest. In our use case, we implemented

just a dummy test to showcase the CI pipeline, but using the structure from this book,

you can easily extend it with real tests for your use case.

GitHub Actions CI YAML file
The YAML file sits under .github/workflows/ci.yaml. It begins by defining the workflow’s

name as CI, as you can see in the following snippet. This label will be used to identify the work-

flow within GitHub’s Actions interface. Next, the section specifies that the workflow should be

triggered whenever a pull_request event occurs. Hence, the CI workflow will automatically run

whenever a PR is opened, synchronized, or reopened.

name: CI

on:

 pull_request:

The concurrency section ensures that only one instance of this workflow runs for a given reference

(like a branch) at any given time. The group field is defined using GitHub’s expression syntax to

create a unique group name based on the workflow and the reference. The cancel-in-progress:

true line ensures that if a new workflow run is triggered before the previous one finishes, the

previous run is canceled. This is particularly useful to prevent redundant executions of the same

workflow.

concurrency:

 group: ${{ github.workflow }}-${{ github.ref }}

 cancel-in-progress: true

The workflow defines two separate jobs: qa and test. Each job runs on the latest version of Ubuntu,

specified by runs-on: ubuntu-latest.

Chapter 11 439

The first job, named QA, is responsible for quality assurance tasks like code checks and format-

ting verification. Within the qa job, the first step is to check out the repository’s code using the

actions/checkout@v3 action. This step is necessary to ensure that the job has access to the code

that needs to be analyzed.

jobs:

 qa:

 name: QA

 runs-on: ubuntu-latest

 steps:

 - name: Checkout

 uses: actions/checkout@v3

The next step is to set up the Python environment. This is done using the actions/setup-python@

v3 action, with the Python version specified as "3.11". This step ensures that the subsequent

steps in the job will run in the correct Python environment.

 - name: Setup Python

 uses: actions/setup-python@v3

 with:

 python-version: "3.11"

The workflow then installs Poetry using the abatilo/actions-poetry@v2 action, specifying the

version of Poetry as 1.8.3:

 - name: Install poetry

 uses: abatilo/actions-poetry@v2

 with:

 poetry-version: 1.8.3

Once Poetry is set up, the workflow installs the project’s development dependencies using the

poetry install --only dev command. Additionally, the workflow adds the poethepoet plugin

for Poetry, which will be used to run predefined tasks more conveniently within the project.

 - name: Install packages

 run: |

 poetry install --only dev

 poetry self add 'poethepoet[poetry_plugin]'

MLOps and LLMOps440

The qa job then runs several quality checks on the code. The first check uses a tool called gitleaks

to scan for secrets in the codebase, ensuring that no sensitive information is accidentally com-

mitted:

 - name: gitleaks check

 run: poetry poe gitleaks-check

Following the gitleaks check, the workflow runs a linting process to enforce coding standards

and best practices in the Python code. This is achieved through the poetry poe lint-check

command, which uses Ruff under the hood.

 - name: Lint check [Python]

 run: poetry poe lint-check

The last step in the qa job is a format check, which ensures that the Python code is properly for-

matted according to the project’s style guidelines. This is done using the poetry poe format-

check command, which uses Ruff under the hood.

 - name: Format check [Python]

 run: poetry poe format-check

The second job defined in the workflow is the test job, which also runs on the latest version

of Ubuntu. Like the qa job, it starts by checking out the code from the repository and installing

Python 3.11 and Poetry 1.8.3.

 test:

 name: Test

 runs-on: ubuntu-latest

 steps:

 - name: Checkout

 uses: actions/checkout@v3

 …

After setting up the system dependencies, the test job installs all the project’s dependencies with

the poetry install command. As we want to run the tests, this time, we need to install all the

dependencies that are required to run the application.

 - name: Install packages

 run: |

Chapter 11 441

 poetry install –-without aws

 poetry self add 'poethepoet[poetry_plugin]'

Finally, the test job runs the project’s tests using the poetry poe test command. This step

ensures that all tests are executed and provides feedback on whether the current code changes

break any functionality.

 - name: Run tests

 run: |

 echo "Running tests..."

 poetry poe test

If any of the steps from the QA or test jobs fail, the GitHub Actions workflow will fail, resulting

in the PR not being able to be merged until the issue is fixed. By taking this approach, we ensure

that all the new features added to the main branches respect the standard of the project and that

it doesn’t break existing functionality through automated tests.

Figure 11.15 shows the CI pipeline in the Actions tab of the GitHub repository. It was run after a

commit with the message feat: Add Docker image and CD pipeline and ran the two jobs de-

scribed above, QA and Test.

Figure 11.15: GitHub Actions CI pipeline run example

MLOps and LLMOps442

The CD pipeline
The CD pipeline will automate the Docker steps we manually performed in the Deploying the

LLM Twin’s pipelines to the cloud section, which are:

• Set up Docker.

• Log in to AWS.

• Build the Docker image.

• Push the Docker image to AWS ECR.

With that in mind, let’s look at the GitHub Actions YAML file, which sits under .github/workflows/

cd.yaml. It begins by naming the workflow CD and specifying the trigger for this workflow. The

trigger is any push to the repository’s main branch. This workflow will automatically run when

new code is pushed to the main branch, usually when a PR is merged into the main branch. The

on.push configuration sets up the trigger:

name: CD

on:

 push:

 branches:

 - main

The workflow then defines a single job named Build & Push Docker Image:

jobs:

 build:

 name: Build & Push Docker Image

 runs-on: ubuntu-latest

The first step within the job is to check out the repository’s code.

steps:

 - name: Checkout Code

 uses: actions/checkout@v3

After checking out the code, the workflow sets up docker buildx, a Docker CLI plugin that extends

Docker’s build capabilities with features like multi-platform builds and cache import/export:

- name: Set up Docker Buildx

 uses: docker/setup-buildx-action@v3

Chapter 11 443

The next step involves configuring the AWS credentials. This step is crucial for interacting with

AWS services, such as Amazon Elastic Container Registry (ECR), where the Docker images will

be pushed. The AWS access key, secret access key, and region are securely retrieved from the

repository’s secrets to authenticate the workflow with AWS. This ensures the workflow has the

necessary permissions to push Docker images to the ECR repository. We will show you how to

configure these secrets after wrapping up with the YAML file:

- name: Configure AWS credentials

 uses: aws-actions/configure-aws-credentials@v1

 with:

 aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}

 aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}

 aws-region: ${{ secrets.AWS_REGION }}

Once the AWS credentials are configured, the workflow logs in to Amazon ECR. This step is es-

sential for authenticating the Docker CLI with the ECR registry, allowing subsequent steps to

push images to the registry:

- name: Login to Amazon ECR

 id: login-ecr

 uses: aws-actions/amazon-ecr-login@v1

The final step in the workflow involves building the Docker image and pushing it to the Ama-

zon ECR repository. This is accomplished using the docker/build-push-action@v6 action. The

context specifies the build context, which is typically the repository’s root directory. The file

option points to the Dockerfile, which defines how the image should be built. The tags section

assigns tags to the image, including the specific commit SHA and the latest tag, which is a com-

mon practice for identifying the most recent version of the image. The push option is set to true,

meaning the image will be uploaded to ECR after it is built:

- name: Build images & push to ECR

 id: build-image

 uses: docker/build-push-action@v6

 with:

 context: .

 file: ./Dockerfile

 tags: |

 ${{ steps.login-ecr.outputs.registry }}/${{ secrets.AWS_ECR_NAME
}}:${{ github.sha }}

MLOps and LLMOps444

 ${{ steps.login-ecr.outputs.registry }}/${{ secrets.AWS_ECR_NAME
}}:latest

 push: true

To conclude, the CD pipeline authenticates to AWS, builds the Docker image, and pushes it to

AWS ECR. The Docker image is pushed with latest and the commit’s SHA tag. By doing so, we

can always use the latest image and point to the commit of the code from which the image was

generated.

Also, in our code, we have only a main branch, which reflects our production environment. But

you, as a developer, have the power to extend this functionality with a staging and dev environ-

ment. You just have to add the name of the branches in the on.push.branches configuration at

the beginning of the YAML file.

In Figure 11.16, you can observe how the CD pipeline looks after a PR is merged into the production

branch. As seen before, we only have the Build & Push Docker Image job here.

Figure 11.16: GitHub Actions CD pipeline run example

Chapter 11 445

The last step in setting up the CI/CD pipeline is to test it and see how it works.

Test out the CI/CD pipeline
To test the CI/CD pipelines yourself, you must fork the LLM-Engineering repository to have full

write access to the GitHub repository. Here is the official tutorial on how to fork a GitHub project:

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-

with-forks/fork-a-repo

The last step is to set up a few secrets that will allow the CD pipeline to log in to AWS and point

to the right ECR resource. To do so, go to the Settings tab at the top of the forked repository in

GitHub. In the left panel, in the Security section, click on the Secrets and Variables toggle and,

finally, on Actions. Then, on the Secrets tab, create four repository secrets, as shown in Figure

11.17. These secrets will be securely stored and accessible only by the GitHub Actions CD pipeline.

The AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY are the AWS credentials you used across

the book. In Chapter 2, you see how to create them. The AWS_REGION (e.g., eu-central-1) and

AWS_ECR_NAME are the same ones used in the Deploying the LLM Twin’s pipelines to the cloud

section.

To trigger the CI pipeline, create a feature branch, modify the code or documentation, and create

a PR to the main branch. To trigger the CD pipeline, merge the PR into the main branch.

For the AWS_ECR_NAME, you should configure only the name of the repository (e.g.,

zenml-vrsopg) and not the full URI (e.g., 992382797823.dkr.ecr.eu-central-1.

amazonaws.com/zenml-vrsopg), as seen in the image below:

Figure 11.17: Configuring only repository name

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/fork-a-repo
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/fork-a-repo
992382797823.dkr.ecr.eu-central-1.amazonaws.com/zenml-vrsopg
992382797823.dkr.ecr.eu-central-1.amazonaws.com/zenml-vrsopg

MLOps and LLMOps446

After the CD GitHub Actions are complete, check the ECR repository to see whether the Docker

image was pushed successfully.

Figure 11.18: GitHub Actions secrets

If you need more details on how to set up GitHub Actions secrets, we recommend checking out

their official documentation: https://docs.github.com/en/actions/security-for-github-

actions/security-guides/using-secrets-in-github-actions

The CT pipeline
To implement the CT pipeline, we will leverage ZenML. Once ZenML (or other orchestrators

such as Metaflow, Dagster, or Airflow) orchestrates all your pipelines and your infrastructure is

deployed, you are very close to reaching CT.

Remember the core difference between the CI/CD and CT pipelines. The CI/CD pipeline takes care

of testing, building, and deploying your code—a dimension that any software program has. The

CT pipeline leverages the code managed by the CI/CD pipeline to automate your data, training,

and model-serving process, where the data and model dimensions are present only in the AI world.

Before diving into the implementation, we want to highlight two design choices that made reach-

ing CT simple:

https://docs.github.com/en/actions/security-for-github-actions/security-guides/using-secrets-in-github-actions
https://docs.github.com/en/actions/security-for-github-actions/security-guides/using-secrets-in-github-actions

Chapter 11 447

• The FTI architecture: A modular system with clear interfaces and components made it

easy to capture the relationship between the pipelines and automate them.

• Starting with an orchestrator since day 0: We started with ZenML at the beginning of

the project’s development. Early on, we only used it locally. But it acted as an entry point

for our pipelines and a way to monitor their execution. Doing so forced us to decouple

each pipeline and transfer the communication between them solely through various types

of data storage, such as the data warehouse, feature store, or artifact store. As we have

leveraged ZenML since day 0, we got rid of implementing a tedious CLI to configure our

application. Instead, we did it directly through YAML configuration files out of the box.

In Figure 11.19, we can see all the pipelines that we have to chain together to fully automate our

training and deployment. The pipelines aren’t new; they aggregate everything we’ve covered

throughout this book. Thus, at this point, we will treat them as black boxes that interact with

each other.

Figure 11.19: CT pipeline

MLOps and LLMOps448

For the LLM Twin’s CT pipeline, we have to discuss the initial trigger that starts the pipelines

and how the pipelines are triggered by each other.

Initial triggers
As illustrated in Figure 11.18, we initially want to trigger the data collection pipeline. Usually, the

triggers can be of three types:

• Manual triggers: Done through the CLI or the orchestrator’s dashboard, in our case,

through the ZenML dashboard. Manual triggers are still extremely powerful tools, as

you need just one action to start the whole ML system, from data gathering to deploy-

ment, instead of fiddling with dozens of scripts that you might configure wrong or run

in an invalid order.

• REST API triggers: You can call a pipeline by an HTTP request. This is extremely useful

when integrating your ML pipelines with other components. For example, you can have

a watcher constantly looking for new articles. It triggers the ML logic using this REST API

trigger when it finds some. To find more details on this feature, check out this tutorial on

ZenML’s documentation: https://docs.zenml.io/v/docs/how-to/trigger-pipelines/

trigger-a-pipeline-from-rest-api.

• Scheduled triggers: Another common approach is to schedule your pipeline to run con-

stantly on a fixed interval. For example, depending on your use case, you can schedule your

pipeline to run daily, hourly, or every minute. Most of the orchestrators, ZenML included,

provide a cron expression interface where you can define your execution frequency. In the

following example from ZenML, the pipeline is scheduled every hour:

 Schedule(cron_expression="* * 1 * *")

We chose a manual trigger for our LLM Twin use case as we don’t have other components to lever-

age the REST API triggers. Also, as the datasets are generated from a list of static links defined in

the ZenML configs, running them on a schedule doesn’t make sense as they would always yield

the same results.

But a possible next step for the project is to implement a watcher that monitors for new articles.

When it finds any, it generates a new config and triggers the pipelines through the REST API. An-

other option is implementing the watcher as an additional pipeline and leveraging the schedule

triggers to look daily for new data. If it finds any, it executes the whole ML system; otherwise, it

stops.

https://docs.zenml.io/v/docs/how-to/trigger-pipelines/trigger-a-pipeline-from-rest-api
https://docs.zenml.io/v/docs/how-to/trigger-pipelines/trigger-a-pipeline-from-rest-api

Chapter 11 449

The conclusion is that once you can manually trigger all your ML pipelines through a single

command, you can quickly adapt it to more advanced and complex scenarios.

Trigger downstream pipelines
To keep things simple, we sequentially chained all the pipelines. More concretely, when the data

collection pipeline has finished, it will trigger the feature pipeline. When the feature pipeline has

been completed successfully, it triggers the dataset generation pipeline, and so on. You can make

the logic more complex, like scheduling the generate instruct dataset pipeline to run daily, check-

ing the amount of new data in the Qdrant vector DB, and starting only if it has enough new data.

From this point, you can further tweak the system’s parameters and optimize them to reduce costs.

To trigger all the pipelines in one go, we created one master pipeline that aggregates everything

in one entry point:

@pipeline

def end_to_end_data(

 author_links: list[dict[str, str | list[str]]], … # Other paramaters…

) -> None:

 wait_for_ids = []

 for author_data in author_links:

 last_step_invocation_id = digital_data_etl(

 user_full_name=author_data["user_full_name"], links=author_
data["links"]

)

 wait_for_ids.append(last_step_invocation_id)

 author_full_names = [author_data["user_full_name"] for author_data in
author_links]

 wait_for_ids = feature_engineering(author_full_names=author_full_
names, wait_for=wait_for_ids)

 generate_instruct_datasets(…)

 training(…)

 deploy(…)

MLOps and LLMOps450

To keep the function light, we added all the logic up to computing the features. But, as we sug-

gested in the code snippet above, you can easily add the instruction dataset generation, training,

and deploy logic to the parent pipeline to implement an end-to-end flow. By doing that, you can

automate everything from data collection to deploying the model.

To run the end-to-end pipeline, use the following poe command:

poetry poe run-end-to-end-data-pipeline

What we implemented is not the best approach, as it compresses all the steps into a single monolith

pipeline (which we want to avoid), as illustrated in Figure 11.20. Usually, you want to keep each

pipeline isolated and use triggers to start downstream pipelines. This makes the system easier

to understand, debug, and monitor.

Figure 11.20: End-to-end pipeline illustrated in ZenML’s dashboard

Chapter 11 451

Unfortunately, the ZenML cloud’s free trial has a limitation of a maximum of three pipelines. As

we have more, we avoided that limitation by compressing all the steps into a single pipeline. But

if you plan to host ZenML yourself or buy their license, they offer the possibility to independent-

ly trigger a pipeline from another pipeline, as you can see in the code snippet below where we

triggered the feature engineering pipeline after the data collection ETL:

from zenml import pipeline, step

@pipeline

def digital_data_etl(user_full_name: str, links: list[str]) -> str:

user = get_or_create_user(user_full_name)

crawl_links(user=user, links=links)

trigger_feature_engineering_pipeline(user)

@step

def trigger_feature_engineering_pipeline(user):

run_config = PipelineRunConfiguration(…)

Client().trigger_pipeline("feature_engineering", run_configuration=run_
config)

@pipeline

def feature_engineering(author_full_names: list[str]) -> list[str]:

… # ZenML steps

By taking this approach, each pipeline will have its independent run, where one pipeline sequen-

tially triggers the next one, as described at the beginning of this section. Note that this feature is

not unique to ZenML but is common in orchestrator tools. The principles we have learned so far

hold. Only how we interact with the tool changes.

Prompt monitoring
We will use Opik (from Comet ML) to monitor our prompts. But remember from the LLMOps

section earlier in this chapter that we are not interested only in the input prompt and generated

answer.

MLOps and LLMOps452

We want to log the entire trace from the user’s input until the final result is available. Before

diving into the LLM Twin use case, let’s look at a simpler example:

from opik import track

import openai

from opik.integrations.openai import track_openai

openai_client = track_openai(openai.OpenAI())

@track

def preprocess_input(text: str) -> str:

 return text.strip().lower()

@track

def generate_response(prompt: str) -> str:

 response = openai_client.chat.completions.create(

 model="gpt-3.5-turbo",

 messages=[{"role": "user", "content": prompt}]

)

 return response.choices[0].message.content

@track

def postprocess_output(response: str) -> str:

 return response.capitalize()

@track(name="llm_chain")

def llm_chain(input_text: str) -> str:

 preprocessed = preprocess_input(input_text)

 generated = generate_response(preprocessed)

 postprocessed = postprocess_output(generated)

 return postprocessed

result = llm_chain("Hello, do you enjoy reading the book?")

The preceding code snippet reflects in a simplistic way what most LLM applications will look

like. You have the llm_chain() main function, which takes the initial input as a parameter and

returns the final result.

Chapter 11 453

Then, you have preprocessing and postprocessing functions surrounding the actual LLM call.

Using the @track() decorator, we log the input and output of each function, which will ultimately

be aggregated into a single trace. By doing so, we will have access to the initial input text, the

generated answer, and all the intermediary steps required to debug any potential issues using

Opik’s dashboard.

The last step is to attach the necessary metadata for your use case to the current trace. As seen

in the following code snippet, you can easily do that by calling the update() method, where you

can tag your trace or add any other metadata, such as the number of input tokens, through a

Python dictionary:

from opik import track, opik_context

@track

def llm_chain(input_text):

 # LLM chain code

 # ...

 opik_context.update_current_trace(

tags=["inference_pipeline"],

metadata={

"num_tokens": compute_num_tokens(…)

},

feedback_scores=[

{

"name": "user_feedback",

"value": 1.0,

"reason": "The response was valuable and correct."

},

{

"name": "llm_judge_score",

"value": compute_llm_judge_score(…),

"reason": "Computing runtime metrics using an LLM Judge."

}

)

MLOps and LLMOps454

You can expand on this idea and log various feedback scores. The most common is asking the user

if the generated answer is valuable and correct. Another option is to compute various metrics

automatically through heuristics or LLM judges.

Finally, let’s see how to add prompt monitoring to our LLM Twin project. First, look at Figure

11.21 and remember our model-serving architecture. We have two microservices, the LLM and

business microservices. The LLM microservice has a narrow scope, as it only takes as input a

prompt that already contains the user’s input and context and returns an answer that is usually

post-processed. Thus, the business microservice is the right place to implement the monitoring

pipeline, as it coordinates the end-to-end flow. More concretely, Opik implementation will be in

the FastAPI server developed in Chapter 10.

Figure 11.21: Inference pipeline serving architecture

Chapter 11 455

As our implementation is already modular, using Opik makes it straightforward to log an end-

to-end trace of a user’s request:

from opik import track

@track

def call_llm_service(query: str, context: str | None) -> str:

 llm = LLMInferenceSagemakerEndpoint(…)

 answer = InferenceExecutor(llm, query, context).execute()

 return answer

@track

def rag(query: str) -> str:

 retriever = ContextRetriever()

 documents = retriever.search(query, k=3 * 3)

 context = EmbeddedChunk.to_context(documents)

 answer = call_llm_service(query, context)

 return answer

The rag() function represents your application’s entry point. All the other processing steps take

place in the ContextRetriever and InferenceExector classes. Also, by decorating the call_llm_

service() function, we can clearly capture the prompt sent to the LLM and its response.

To add more granularity to our trace, we can further decorate other functions containing pre- or

post-processing steps, such as the ContextRetriever search function:

class ContextRetriever:

 …

 @track

 def search(

 self,

 query: str,

 k: int = 3,

MLOps and LLMOps456

 expand_to_n_queries: int = 3,

) -> list:

 query_model = Query.from_str(query)

 query_model = self._metadata_extractor.generate(query_model)

 … # Rest of the implementation

Or even go further to the retrieval optimization methods, such as the self-query metadata ex-

tractor, to add more granularity:

class SelfQuery:

 @track

 def generate(self, query: str) -> str:

 …

 return enhanced_query

The developer is responsible for deciding how much granularity the application needs for proper

debugging and analysis. As having detailed monitoring is healthy, monitoring everything can be

dangerous as it adds too much noise and makes manually understanding the traces difficult. You

must find the right balance. A good rule of thumb is tracing the most critical functions, such as

rag() and call_llm_service(), and gradually adding more granularity when needed.

The last step is to attach valuable metadata and tags to our traces. To do so, we will further en-

hance the rag() function as follows:

@track

def rag(query: str) -> str:

 retriever = ContextRetriever()

 documents = retriever.search(query, k=3 * 3)

 context = EmbeddedChunk.to_context(documents)

 answer, prompt = call_llm_service(query, context)

 trace = get_current_trace()

 trace.update(

tags=["rag"],

metadata={

"model_id": settings.HF_MODEL_ID,

 "embedding_model_id": settings.TEXT_EMBEDDING_MODEL_ID,

Chapter 11 457

 "temperature": settings.TEMPERATURE_INFERENCE,

 "prompt_tokens": compute_num_tokens(prompt),

 "total_tokens": compute_num_tokens(answer),

}

)

 return answer

There are three main aspects that we should constantly monitor:

• Model configuration: Here, we should consider both the LLM and other models used

within the RAG layer. The most critical aspects of logging are the model IDs, but you can

also capture other important information that significantly impacts the generation, such

as the temperature.

• Total number of tokens: It’s critical to constantly analyze the statistics of the number of

tokens generated by your input prompts and total tokens, as this significantly impacts

your serving costs. For example, if the average of the total number of tokens generated

suddenly increases, it’s a strong signal that you have a bug in your system that you should

investigate.

• The duration of each step: Tracking the duration of each step within your trace is essential

to finding bottlenecks within your system. If the latency of a specific request is abnormally

large, you quickly have access to a report that helps you find the source of the problem.

Alerting
Using ZenML, you can quickly implement an alerting system on any platform of your liking, such

as email, Discord, or Slack. For example, you can add a callback in your training pipeline to trigger

a notification when the pipeline fails or the training has finished successfully:

from zenml import get_pipeline_context, pipeline

@pipeline(on_failure=notify_on_failure)

def training_pipeline(…):

…

notify_on_success()

MLOps and LLMOps458

Implementing the notification functions is straightforward. As seen in the code snippets below,

you have to get the alerter instance from your current stack, build the message as you see fit,

and send it to your notification channel of choice:

from zenml.client import Client

alerter = Client().active_stack.alerter

def notify_on_failure() -> None:

 alerter.post(message=build_message(status="failed"))

@step(enable_cache=False)

def notify_on_success() -> None:

 alerter.post(message=build_message(status="succeeded"))

ZenML and most orchestrators simplify implementing an alerter, as it’s a critical component

in your MLOps/LLMOps infrastructure.

Summary
In this chapter, we laid down the foundations with a theoretical section on DevOps. Then, we

moved on to MLOps and its core components and principles. Finally, we presented how LLMOps

differs from MLOps by introducing strategies such as prompt monitoring, guardrails, and hu-

man-in-the-loop feedback. Also, we briefly discussed why most companies would avoid training

LLMs from scratch but choose to optimize them for their use case through prompt engineering

or fine-tuning. At the end of the theoretical portion of the chapter, we learned what a CI/CD/CT

pipeline is, the three core dimensions of an ML application (code, data, model), and that, after

deployment, it is more critical than ever to implement a monitoring and alerting layer due to

model degradation.

Next, we learned how to deploy the LLM Twin’s pipeline to the cloud. We understood the infra-

structure and went step by step through deploying MongoDB, Qdrant, the ZenML cloud, and all

the necessary AWS resources to sustain the application. Finally, we learned how to Dockerize our

application and push our Docker image to AWS ECR, which will be used to execute the application

on top of AWS SageMaker.

The final step was to add LLMOps to our LLM Twin project. We began by implementing a CI/CD

pipeline with GitHub Actions. Then, we looked at our CT strategy by leveraging ZenML.

Chapter 11 459

Finally, we saw how to implement a monitoring pipeline using Opik from Comet ML and an

alerting system using ZenML. These are the fundamental pillars in adding MLOps and LLMOps

to any LLM-based application.

The framework we learned about throughout the book can quickly be extrapolated to other LLM

applications. Even if we used the LLM Twin use case as an example, most of the strategies applied

can be adapted to other projects. Thus, we can get an entirely new application by changing the

data and making minor tweaks to the code. Data is the new oil, remember?

By finalizing this chapter, we’ve learned to build an end-to-end LLM application, starting with

data collection and fine-tuning until deploying the LLM microservice and RAG service. Through-

out this book, we aimed to provide a thought framework to help you build and solve real-world

problems in the GenAI landscape. Now that you have it, we wish you good luck in your journey

and happy building!

References
• GitLab. (2023, January 25). What is DevOps? | GitLab. GitLab. https://about.gitlab.

com/topics/devops/

• Huyen, C. (2024, July 25). Building a generative AI platform. Chip Huyen. https://

huyenchip.com/2024/07/25/genai-platform.html

• Lightricks customer story: Building a recommendation engine from scratch. (n.d.). https://
www.qwak.com/academy/lightricks-customer-story-building-a-recommendation-

engine-from-scratch

• What LLMOps. (n.d.). Google Cloud. https://cloud.google.com/discover/what-is-

llmops?hl=en

• MLOps: Continuous delivery and automation pipelines in machine learning. (2024, August

28). Google Cloud. https://cloud.google.com/architecture/mlops-continuous-

delivery-and-automation-pipelines-in-machine-learning#top_of_page

• Ml-ops.org. (2024a, July 5). https://ml-ops.org/content/mlops-principles

• Ml-ops.org. (2024b, July 5). https://ml-ops.org/content/mlops-principles

• Ml-ops.org. (2024c, July 5). https://ml-ops.org/content/motivation

• Mohandas, G. M. (2022a). Monitoring machine learning systems. Made With ML. https://

madewithml.com/courses/mlops/monitoring/

• Mohandas, G. M. (2022b). Testing Machine Learning Systems: Code, Data and Models.

Made With ML. https://madewithml.com/courses/mlops/testing/

https://about.gitlab.com/topics/devops/
https://about.gitlab.com/topics/devops/
https://huyenchip.com/2024/07/25/genai-platform.html
https://huyenchip.com/2024/07/25/genai-platform.html
https://www.qwak.com/academy/lightricks-customer-story-building-a-recommendation-engine-from-scratch
https://www.qwak.com/academy/lightricks-customer-story-building-a-recommendation-engine-from-scratch
https://www.qwak.com/academy/lightricks-customer-story-building-a-recommendation-engine-from-scratch
https://cloud.google.com/discover/what-is-llmops?hl=en
https://cloud.google.com/discover/what-is-llmops?hl=en
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning#top_of_page
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning#top_of_page
https://ml-ops.org/content/mlops-principles
https://ml-ops.org/content/mlops-principles
https://ml-ops.org/content/motivation
https://madewithml.com/courses/mlops/monitoring/
https://madewithml.com/courses/mlops/monitoring/
https://madewithml.com/courses/mlops/testing/

MLOps and LLMOps460

• Preston-Werner, T. (n.d.). Semantic Versioning 2.0.0. Semantic Versioning. https://semver.

org/

• Ribeiro, M. T., Wu, T., Guestrin, C., & Singh, S. (2020, May 8). Beyond Accuracy: Behavioral

Testing of NLP models with CheckList. arXiv.org. https://arxiv.org/abs/2005.04118

• Wandb. (2023, November 30). Understanding LLMOps: Large Language Model Operations.

Weights & Biases. https://wandb.ai/site/articles/understanding-llmops-large-

language-model-operations/

• Zenml-Io. (n.d.). GitHub—zenml-io/zenml-huggingface-sagemaker: An example MLOps over-

view of ZenML pipelines from a Hugging Face model repository to a deployed AWS SageMaker

endpoint. GitHub. https://github.com/zenml-io/zenml-huggingface-sagemaker/tree/
main

Join our book’s Discord space
Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/llmeng

https://semver.org/
https://semver.org/
https://arxiv.org/abs/2005.04118

https://wandb.ai/site/articles/understanding-llmops-large-language-model-operations/
https://wandb.ai/site/articles/understanding-llmops-large-language-model-operations/
https://github.com/zenml-io/zenml-huggingface-sagemaker/tree/main

https://github.com/zenml-io/zenml-huggingface-sagemaker/tree/main

https://github.com/zenml-io/zenml-huggingface-sagemaker/tree/main

https://packt.link/llmeng

Appendix
MLOps Principles

Building robust and scalable ML systems requires more than creating powerful models. It demands

an all-encompassing approach to operationalizing the entire ML lifecycle. Let’s explore the six

core principles that guide the MLOps field. These principles are independent of any tool and are

at the core of building robust and scalable ML systems. They provide a guideline for designing

production-ready applications, ensuring consistency, reliability, and scalability at every stage.

With that in mind, let’s begin with the foundation: automation or operationalization.

1. Automation or operationalization
To adopt MLOps, there are three core tiers that most applications build up gradually, from manual

processing to full automation:

• Manual process: The process is experimental and iterative in the early stages of developing

an ML application. The data scientist manually performs each pipeline step, such as data

preparation and validation, model training, and testing. At this point, they commonly use

Jupyter notebooks to train their models. This stage’s output is the code used to prepare

the data and train the models.

• Continuous training (CT): The next level involves automating model training. This is

known as continuous training, which triggers model retraining whenever required. At this

point, you often automate your data and model validation steps. This step is usually done

by an orchestration tool, such as ZenML, that glues all your code together and runs it on

specific triggers. The most common triggers are on a schedule, for example, every day or

when a specific event comes in, such as when new data is uploaded or the monitoring sys-

tem detects a drop in performance, offering you the flexibility to adapt to various triggers.

MLOps Principles462

• CI/CD: In the final stage, you implement your CI/CD pipelines to enable fast and reliable

deployment of your ML code into production. The key advancement at this stage is the

automatic building, testing, and deployment of data, ML models, and training pipeline

components. CI/CD is used to quickly push new code into various environments, such as

staging or production, ensuring efficient and reliable deployment.

As we build our LLM system using the FTI (feature, training, inference) architecture, we can

quickly move from a manual process to CI/CD/CT. In Figure A.1, we can observe that the CT process

can be triggered by various events, such as a drop in performance detected by the monitoring

pipeline or a batch of fresh data arriving. Also, Figure A.1 is split into two main sections; the first

one highlights the automated processes, while at the bottom, we can observe the manual pro-

cesses performed by the data science team while experimenting with various data processing

methods and models. Once they improve the model by tinkering with how the data is processed

or the model architecture, they push the code to the code repository, which triggers the CI/CD

pipeline to build, test, package, and deploy the new changes to the FTI pipelines.

Figure A.1: CI/CD/CT on top of the FTI architecture

Appendix 463

To conclude, CT automates the FTI pipelines, while CI/CD builds, tests, and pushes new versions

of the FTI pipeline code to production.

2. Versioning
By now, we understand that the whole ML system changes if the code, model, or data changes.

Thus, it is critical to track and version these three elements individually. But what strategies can

we adopt to track the code, model, and data separately?

• The code is tracked by Git, which helps us create a new commit (a snapshot of the code)

on every change added to the codebase. Also, Git-based tools usually allow us to make

releases, which typically pack multiple features and bug fixes. While the commits contain

unique identifiers that are not human-interpretable, a release follows more common con-

ventions based on their major, minor, and patch versions. For example, in a release with

version “v1.2.3,” 1 is the major version, 2 is the minor version, and 3 is the patch version.

Popular tools are GitHub and GitLab.

• To version the model, you leverage the model registry to store, share, and version all the

models used within your system. It usually follows the same versioning conventions used

in code releases, defined as Semantic Versioning, which, along with the major, minor,

and patch versions, also supports alpha and beta releases that signal applications. At this

point, you can also leverage the ML metadata store to attach information to the stored

model, such as what data it was trained on, its architecture, performance, latency, and

whatever else makes sense to your specific use case. Doing so creates a clear catalog of

models that can easily be navigated across your team and company.

• Versioning the data isn’t as straightforward as versioning the code and model because it

depends on the type of data you have (structured or unstructured) and the scale of data you

have (big or small). For example, for structured data, you can leverage a SQL database with

a version column that helps you track the changes in the dataset. However, other popular

solutions are based on Git-like systems, such as Data Version Control (DVC), that track

every change made to the dataset. Other trendy solutions are based on artifacts similar

to a model registry that allows you to add a virtual layer to your dataset, tracking and

creating a new version for every change made to your data. Comet.ml, W&B (Weights &

Biases), and ZenML offer powerful artifact features. For all solutions, you must store the

data on-premises or use cloud object storage solutions such as AWS S3. These tools provide

features that allow you to structure your datasets and versions, track, and access them.

MLOps Principles464

3. Experiment tracking
Training ML models is an entirely iterative and experimental process. Unlike traditional software

development, it involves running multiple parallel experiments, comparing them based on a set

of predefined metrics, and deciding which one should advance to production. An experiment

tracking tool allows you to log all the necessary information, such as metrics and visual repre-

sentations of your model predictions, to compare all your experiments and easily select the best

model. Popular tools are Comet ML, W&B, MLflow, and Neptune.

4. Testing
The same trend is followed when testing ML systems. Hence, we must test our application across

all three dimensions: the data, the model, and the code. We must also ensure that the feature,

training, and inference pipeline are well integrated with external services, such as the feature store,

and work together as a system. When working with Python, the most common tool to write your

tests is pytest, which we also recommend.

Test types
In the development cycle, six primary types of tests are commonly employed at various stages:

• Unit tests: These tests focus on individual components with a single responsibility, such

as a function that adds two tensors or one that finds an element in a list.

• Integration tests: These tests evaluate the interaction between integrated components

or units within a system, such as the data evaluation pipeline or the feature engineering

pipeline, and how they are integrated with the data warehouse and feature store.

• System tests: System tests play a crucial role in the development cycle as they examine the

entire system, including the complete and integrated application. These tests rigorously

evaluate the end-to-end functionality of the system, including performance, security, and

overall user experience—for example, testing an entire ML pipeline, from data ingestion

to model training and inference, ensuring the system produces the correct outputs for

given inputs.

• Acceptance tests: These tests, often called user acceptance testing (UAT), are designed to

confirm that the system meets specified requirements, ensuring it is ready for deployment.

• Regression tests: These tests check for previously identified errors to ensure that new

changes do not reintroduce them.

Appendix 465

• Stress tests: These tests evaluate the system’s performance and stability under extreme

conditions, such as high load or limited resources. They aim to identify breaking points

and ensure the system can handle unexpected spikes in demand or adverse situations

without failing.

Figure A.2: Test types

We’ve intentionally left regression tests out of the preceding figure because they aren’t a distinct

testing phase. Instead, regression testing is applied across all levels—unit, integration, system,

acceptance, and stress tests—to ensure that changes don’t reintroduce previous errors. It’s an

ongoing process within these phases, not a separate type of test, which is why it’s not shown as

a separate category.

What do we test?
When writing most tests, you take a component and treat it as a black box. Thus, what you have

control over is the input and output. You want to test that you get an expected output for a given

input. With that in mind, here are a few things you should usually test:

• Inputs: Data types, format, length, and edge cases (min/max, small/large, etc.)

• Outputs: Data types, formats, exceptions, and intermediary and final outputs

Test examples
When testing your code, you can leverage the standards from classic software engineering. Here

are a few examples of code tests you can include when writing unit tests to get a better idea of

what we want to test at this point—for instance, you want to check that a sentence is cleaned

as expected.

MLOps Principles466

Also, you can look at your chunking algorithm and assert that it works properly by using various

sentences and chunk sizes.

When we talk about data tests, we mainly refer to data validity. Your data validity code usually

runs when raw data is ingested from the data warehouse or after computing the features. It is

part of the feature pipeline. Thus, by writing integration or system tests for your feature pipeline,

you can check that your system responds properly to valid and invalid data.

Testing data validity depends a lot on your application and data type. For example, when working

with tabular data, you can check for non-null values, that a categorical variable contains only

the expected values, or that a float value is always positive. You can check for length, character

encoding, language, special characters, and grammar errors when working with unstructured

data such as text.

Model tests are the trickiest, as model training is the most non-deterministic process of an ML

system. However, unlike traditional software, ML systems can successfully complete without

throwing any errors. However, the real issue is that they produce incorrect results that can only

be observed during evaluations or tests. Some standard model test techniques involve checking:

• The shapes of the input and model output tensors

• That the loss decreases after one batch (or more) of training

• Overfit on a small batch, and the loss approaches 0

• That your training pipeline works on all the supported devices, such as the CPU and GPU

• That your early stopping and checkpoint logic works

All the tests are triggered inside the CI pipeline. If some tests are more costly, for example, the mod-

el ones, you can execute them only on special terms, such as only when modifying the model code.

At the other end of the spectrum, you can also perform behavioral testing on your model, which

tries to adopt the strategy from code testing and treats the model as a black box while looking

solely at the input data and expected outputs. This makes the behavioral testing methods model

agnostic. A fundamental paper in this area is Beyond Accuracy: Behavioral Testing of NLP Models

with CheckList, which we recommend if you want to dig more into the subject. However, as a

quick overview, the paper proposes that you test your model against three types of tests. We use

a model that extracts the main subject from a sentence as an example:

Appendix 467

• Invariance: Changes in your input should not affect the output—for example, below is

an example based on synonym injection:

model(text="The advancements in AI are changing the world rapidly.")

output: ai

model(text="The progress in AI is changing the world rapidly.")

output: ai

• Directional: Changes in your input should affect the outputs—for example, below is an

example where we know the outputs should change based on the provided inputs:

model(text="Deep learning used for sentiment analysis.")

output: deep-learning

model(text="Deep learning used for object detection.")

output: deep-learning

model(text="RNNs for sentiment analysis.")

output: rnn

• Minimum functionality: The most simple combination of inputs and expected outputs—

for example, below is a set of simple examples that we expect the model should always

get right:

model(text="NLP is the next big wave in machine learning.")

output: nlp

model(text="MLOps is the next big wave in machine learning.")

output: mlops

model(text="This is about graph neural networks.")

output: gnn

For more on testing, we recommend reading Testing Machine Learning Systems: Code,

Data, and Models by Goku Mohandas: https://madewithml.com/courses/mlops/

testing/.

https://madewithml.com/courses/mlops/testing/
https://madewithml.com/courses/mlops/testing/

MLOps Principles468

5. Monitoring
Monitoring is vital for any ML system that reaches production. Traditional software systems are

rule-based and deterministic. Thus, once it is built, it will always work as defined. Unfortunate-

ly, that is not the case with ML systems. When implementing ML models, we haven’t explicitly

described how they should work. We have used data to compile a probabilistic solution, which

means that our ML model will constantly be exposed to a level of degradation. This happens

because the data from production might differ from the data the model was trained on. Thus, it

is natural that the shipped model doesn’t know how to handle these scenarios.

We shouldn’t try to avoid these situations but create a strategy to catch and fix these errors in time.

Intuitively, monitoring detects the model’s performance degradation, which triggers an alarm that

signals that the model should be retrained manually, automatically, or with a combination of both.

Why retrain the model? As the model performance degrades due to a drift in the training dataset

and what it inputs from production, the only solution is to adapt or retrain the model on a new

dataset that captures all the new scenarios from production.

As training is a costly operation, there are some tricks that you can perform to avoid retraining,

but before describing them, let’s quickly understand what we can monitor to understand our

ML system’s health.

Logs
The approach to logging is straightforward, which is to capture everything, such as:

• Document the system configurations.

• Record the query, the results, and any intermediate outputs.

• Log when a component begins, ends, crashes, and so on.

• Ensure that each log entry is tagged and identified in a way that clarifies its origin within

the system.

While capturing all activities can rapidly increase the volume of logs, you can take advantage of

numerous tools for automated log analysis and anomaly detection that leverage AI to efficiently

scan all the logs, providing you with the confidence to manage the logs effectively.

Metrics
To quantify your application’s healthiness, you must define a set of metrics. Each metric measures

different aspects of your application, such as the infrastructure, data, and model.

Appendix 469

System metrics
The system metrics are based on monitoring service-level metrics (latency, throughput, error

rates) and infrastructure health (CPU/GPU, memory). These metrics are used both in traditional

software and ML as they are crucial to understanding whether the infrastructure works well and

the system works as expected to provide a good user experience to the end users.

Model metrics
Merely monitoring the system’s health won’t suffice to identify the deeper issues within our

model. Therefore, moving on to the next layer of metrics that focus on the model’s performance

is crucial. This includes quantitative evaluation metrics like accuracy, precision, and F1 score, as

well as essential business metrics influenced by the model, such as ROI and click rate.

Analyzing cumulative performance metrics over the entire deployment period is often ineffective.

Instead, evaluating performance over time intervals relevant to our application, such as hourly,

is essential. Thus, in practice, you window your inputs and compute and aggregate the metrics

at the window level. These sliding metrics can provide a clearer picture of the system’s health,

allowing us to detect issues more promptly without them being obscured by historical data.

We may not always have access to ground-truth outcomes to evaluate the model’s performance

on production data. This is particularly challenging when there is a significant delay or when

real-life data requires annotation. To address this issue, we can develop an approximate signal

to estimate the model’s performance or label a small portion of our live dataset to assess perfor-

mance. When talking about ML monitoring, an approximate signal is also known as a proxy metric,

usually implemented by drift detection methods, which are discussed in the following section.

Drifts
Drifts are proxy metrics that help us detect potential issues with the production model in time

without requiring any ground truths/labels. Table A.1 shows three kinds of drifts.

What drifts Description Drift formulationX Inputs (features) data drift → P(X) ≠ Pref(X) y Outputs (ground truths/

labels)

target drift → P(y) ≠ Pref(y)

P(y|X) relationship between X and y concept drift → P(y|X) ≠ Pref(y|X)

Table A.1: Relationship between data, model, and code changes

MLOps Principles470

Data drift
Data drift, also called feature drift or covariate shift, occurs when the distribution of the produc-

tion data deviates from that of the training data, as shown in Figure A.3. This difference means the

model cannot handle the changes in feature space, leading to potentially unreliable predictions.

Drift can result from natural real-life changes or systemic problems like missing data, pipeline

errors, and schema modifications.

Figure A.3: Data drift examples

When data begins to drift, the degradation in our model’s performance might not be immediately

noticeable, particularly if the model interpolates effectively. Nevertheless, this presents an ideal

chance to consider retraining before the drift affects the model’s performance.

Target drift
In addition to changes in input data (data drift), we might also encounter shifts in output dis-

tribution. The shift could involve changes in the shape of the distribution or the addition and

removal of classes in categorical tasks. While retraining the model can help reduce performance

degradation due to target drift, you can often prevent it by adapting the head processing steps

and model head to support the new schema of the output class.

For example, if you have a classifier that predicts if an image contains animals or people, and you

get a picture with buildings, you can either adapt your model to support an unknown class or

adjust the head of the model to add the new class for future predictions.

Appendix 471

Concept drift
In addition to changes in input and output data, their relationship can also shift. This phenom-

enon, known as concept drift, makes our model ineffective because the patterns it previously

learned to associate inputs with outputs become outdated. As illustrated in the following figure,

concept drifts can manifest in various ways:

• Gradually over time

• Suddenly, due to an external event

• Periodically, due to recurring events

Figure A.4: Concept drift examples

For example, this happens when using the model in a different geographic area. Let’s assume you

want to build a model that predicts whether a person will buy a specific car. You initially built it

for the American market. Now, you want to use it in the European market, where people tend to

buy smaller cars, creating a drift between the size feature of the car and the output probability of

purchasing the vehicle. Of course, concept drifts can be more subtle than this example.

All these types of drift can happen simultaneously, complicating pinpointing the

exact sources of drift.

MLOps Principles472

How to detect and measure drifts
Now that we’ve recognized the various types of drift, it’s crucial to understand how to detect and

measure it. To do so, you need two types of windows:

• A reference window: This is the collection of data points used as a baseline to compare

against the production data distributions for drift identification. It is usually gathered

from the training dataset.

• A test window: This collects data points gathered while the ML system is in production.

It is compared with the reference window to ascertain if drift has occurred.

To measure the drifts, you leverage hypothesis tests that verify the change in distribution between

the two windows. For example, you can use the Kolmogorov-Smirnov (KS) test to monitor a

single continuous feature. This is known as a univariate (1D) test. Thus, you must run it for every

feature you want to monitor. You can leverage a chi-squared univariate test to monitor categorical

variables and determine if the frequency of events in production is consistent with the reference

window distribution.

from alibi_detect.cd import KSDrift

cd = KSDrift(X_ref, p_val=.05, preprocess_fn=preprocess_fn, input_
shape=(max_len,))

When working with text data in an embedding representation, we have to model a multivariate

distribution, which is how LLMs work with text. A popular approach is to take the embeddings of

the test and reference windows, apply a dimensionality reduction algorithm, and apply an algo-

rithm such as maximum mean discrepancy (MMD). This algorithm is a kernel-based approach

that measures the distance between two distributions by computing the distance between the

mean of the embeddings of the two windows.

from alibi_detect.cd import MMDDrift

cd = MMDDrift(x_ref, backend='pytorch', p_val=.05)

preds = cd.predict(x)

Monitoring vs. observability
Monitoring involves the collection and visualization of data, whereas observability provides in-

sights into system health by examining its inputs and outputs. For instance, monitoring allows

us to track a specific metric to detect potential issues.

Appendix 473

On the other hand, a system is considered observable if it generates meaningful data about its

internal state, which is essential for diagnosing root causes.

Alerts
Once we define our monitoring metrics, we need a way to get notified. The most common ap-

proaches are to send an alarm in the following scenarios:

• A metric passes the values of a static threshold—for example, when the accuracy of the

classifier is lower than 0.8, send an alarm.

• Tweaking the p-value of the statistical tests that check for drifts. A lower p-value means

a higher confidence that the production distribution differs from the reference one.

These thresholds and p-values depend on your application. However, it is essential to find the

correct values, as you don’t want to overcrowd your alarming system with false positives. In that

case, your alarm system won’t be trustworthy, and you will either overreact or not react at all

to issues in your system. Some common channels for sending alarms to your stakeholders are

Slack, Discord, your email, and PagerDuty. The system’s stakeholders can be the core engineers,

managers, or anyone interested in the system.

Depending on the nature of the alarm, you have to react differently. But before taking any action,

you should be able to inspect it and understand what caused it. You should inspect what metric

triggered the alarm, with what value, the time it happened, and anything else that makes sense

to your application.

When the model’s performance degrades, the first impulse is to retrain it. But that is a costly op-

eration. Thus, you first have to check that the data is valid, the schema hasn’t changed, and the

data point was not an isolated outlier. If neither is true, you should trigger the training pipeline

and train the model on the newly shifted dataset to solve the drift.

6. Reproducibility
Reproducibility means that every process within your ML systems should produce identical

results given the same input. This has two main aspects.

The first one is that you should always know what the inputs are—for example, when training

a model, you can use a plethora of hyperparameters. Thus, you need a way to always track what

assets were used to generate the new assets, such as what dataset version and config were used

to train the model.

MLOps Principles474

The second aspect is based on the non-deterministic nature of ML processes. For example, when

training a model from scratch, all the weights are initially randomly initialized. Thus, even if

you use the same dataset and hyperparameters, you might end up with a model with a differ-

ent performance. This aspect can be solved by always using a seed before generating random

numbers, as in reality, we cannot digitally create randomness, only pseudo-random numbers.

Thus, by providing a seed, we ensure that we always produce the same trace of pseudo-random

numbers. This can also happen at the feature engineering step, in case we impute values with

random values or randomly remove data or labels. But as a general rule of thumb, always try to

make your processes as deterministic as possible, and in case you have to introduce randomness,

always provide a seed that you have control over.

Join our book’s Discord space
Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/llmeng

https://packt.link/llmeng
￼
https://packt.link/llmeng
￼

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of

free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

packt.com

www.packt.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

RAG-Driven Generative AI

Denis Rothman

ISBN: 9781836200918

• Scale RAG pipelines to handle large datasets efficiently

• Employ techniques that minimize hallucinations and ensure accurate responses

https://www.packtpub.com/en-in/product/rag-driven-generative-ai-9781836200918

Other Books You May Enjoy478

• Implement indexing techniques to improve AI accuracy with traceable and transparent

outputs

• Customize and scale RAG-driven generative AI systems across domains

• Find out how to use Deep Lake and Pinecone for efficient and fast data retrieval

• Control and build robust generative AI systems grounded in real-world data

• Combine text and image data for richer, more informative AI responses

Other Books You May Enjoy 479

Building LLM Powered Applications

Valentina Alto

ISBN: 9781835462317

• Explore the core components of LLM architecture, including encoder-decoder blocks

and embeddings

• Understand the unique features of LLMs like GPT-3.5/4, Llama 2, and Falcon LLM

• Use AI orchestrators like LangChain, with Streamlit for the frontend

• Get familiar with LLM components such as memory, prompts, and tools

• Learn how to use non-parametric knowledge and vector databases

• Understand the implications of LFMs for AI research and industry applications

• Customize your LLMs with fine tuning

• Learn about the ethical implications of LLM-powered applications

https://www.packtpub.com/en-in/product/building-llm-powered-applications-9781835462317

Other Books You May Enjoy480

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and

apply today. We have worked with thousands of developers and tech professionals, just like you,

to help them share their insight with the global tech community. You can make a general appli-

cation, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished LLM Engineer’s Handbook, First Edition, we’d love to hear your thoughts! If you

purchased the book from Amazon, please click here to go straight to the Amazon review

page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

authors.packtpub.com
https://packt.link/r/1836200072
https://packt.link/r/1836200072

Index

Symbols
4-bit NormalFloat (NF4) 215
32-bit floating point (fp32) 211, 212

A
acceptance tests 464
actions 437
Activate-aware Weight

Quantization (AWQ) 313
advanced RAG

overview 117, 118
post-retrieval step 124-126
pre-retrieval steps 119-122
retrieval step 122-124

advanced RAG post-retrieval optimization
reranking 334-338

advanced RAG pre-retrieval
optimizations 324

query expansion 324-328
self-querying 328-332

advanced RAG retrieval optimization
filtered vector search 332-334

advanced RAG techniques
exploring 321-324

post-retrieval optimization 334-338
pre-retrieval optimizations 324-332
retrieval optimization 332-334

alerting system 457, 458
alerts 473
AlpacaEval 264
Amazon Resource Name (ARN) 375
Application Auto Scaling 396, 397
Application Load Balancer (ALB) 395
asynchronous inference 361, 362
autoscaling 393, 399

scalable policy, creating 397
scalable target, registering 396
use cases 394

AWS
access key, setting up 48-50
account, setting up 48-50
CLI, setting up 48-50
preparing 48
SageMaker 50

AWS Elastic Container Service (ECS) 393
AWS Elastic Kubernetes Service (EKS) 393
AWS SageMaker 50

LLM Twin model, deploying to 375-385
need for 51, 52

Index482

AWS SageMaker Inference endpoint
calling 386-389

automated evaluation framework for RAG
systems (ARES) 274, 275

B
backed-up data

importing 95
BaseCrawler interface 69-72
behavioral testing 466
bias types

family bias 237
length bias 237
position bias 237

BigCodeBench Leaderboard 266
business microservice

building, with FastAPI 390-393

C
CDC patterns

log-based 137
timestamp-based 137
trigger-based 137

central access point 128
Change data capture (CDC) 136
Chatbot Arena 264
Chatbots 231
ChatGPT 5

limitations 5
chat templates 208-210
chunking handlers 165-169
CI/CD pipeline 462
CI pipeline, LLM Twin

QA job 438
test job 438

CircleCI 405
classifiers models 189
cleaning handlers 163-165
CloudFormation 423
code generation 231
Comet ML 45, 46
concept drift 471
content moderation 231
continuous batching 294
continuous integration and continuous

deployment (CI/CD) pipeline 31, 402
continuous training (CT) 138, 402, 461
cooldown period 398
co-pilot

versus LLM Twin 4
covariate drift 470
CrawlerDispatcher class 66-68
crawlers

BaseCrawler interface 69-72
CustomArticleCrawler class 75-77
GithubCrawler class 73-75
implementing 69
MediumCrawler class 77-79

CustomArticleCrawler class 75-77

D
data augmentation 193-196
database (DB) 317, 410
database, for unstructured and vector data

MongoDB 47
Qdrant 47, 48
storing 47

data collection pipeline 19
data curation 182

Index 483

data decontamination 185
data deduplication 184, 185
data drift 470
data evaluation 233
data exploration 189-191
data generation 191-233

preference data, evaluating 235-237
preference data, generating 233, 234
tips 234

data indexing techniques 119
data parallelism (DP) 299
data quality evaluation 186-189
data quantity 180, 181
Data Scientist (DS) 409
dataset formats 208
data tests 466
decoder-only model

architecture 290
computing 291
generating 291
tokenizing 291

Deep Learning Containers (DLCs) 373
deployment costs 415
deployment types, criteria for selection

data 357
infrastructure 357, 358
latency 356
throughput 356, 357

DevOps 401-403
benefits 403
continuous delivery (CD) 405
continuous integration (CI) 405
deployment environments 404
version control 405

DevOps lifecycle
build 404
code 403
deploy 404
monitor 404
operate 404
plan 403
release 404
test 404

directional 467
Direct Preference Optimization

(DPO) 229, 245, 248-250, 411
implementing 250-257

dispatcher layer 160-162
DLC image

features 373
Docker 424
Dockerfile 424
domain-driven design (DDD) 150
domain-specific LLM evaluations 265-267
downstream pipelines

triggering 449-451
DPO datasets

human-generated, human-evaluated
datasets 233

human-generated, LLM-evaluated
datasets 233

LLM-generated, human-evaluated
datasets 234

LLM-generated, LLM-evaluated datasets 234
drifts 469

concept drift 471
data drift 470
detecting 472
measuring 472
target drift 470

Index484

E
Elastic Container Registry (ECR) 423, 443
embedding handlers 169-173
encoder-only models 189
end of sentence (EOS) token 222, 252

end-to-end RAG inference pipeline
examining 346-351

Enterprise Scenarios Leaderboard 266
ETL pipeline

fundamental steps 56
ETL process

connecting, to feature pipeline 60
exact deduplication 184
extract, load, transform (ETL) pattern 19
Extract, Transform, Load (ETL) pipeline 55

F
family bias 237
FastAPI

business microservice, building 390-393
feature drift 470
feature pipeline 14, 19, 20
feature/training/inference (FTI)

architecture 8, 13, 22, 370
benefits 15
feature pipeline 14
inference pipeline 14
training pipeline 14

filtered vector search 123
fine-tune

usage, considerations 206, 207
fine-tune models

specialized tools 220

fine-tuning
best practices 219-226

format filtering 183
formatting errors 436

examples 436
FTI architecture

used, for building LLM system 462, 463
FTI pipeline design

LLM Twin architecture, designing 17
FTI pipelines architecture

inference pipeline 14
full fine-tuning 211, 212
fuzzy deduplication 184

G
GAIA 264
Galileo Protect 413
general-purpose LLM evaluations 263-265
GitHub 405
GitHub Actions 405, 437
GitHub Actions CI YAML file 438-441
GitHubCrawler class 73-75
GitHub ecosystem 405
GitLab 405
GitLab CI/CD 405
Global Interpreter Lock (GIL) 144
GPT 411
guardrails 411, 412

input guardrails 412
output guardrails 413

H
Hallucinations Leaderboard 266

Index 485

handlers 162, 163
chunking handlers 165-169
cleaning handlers 163-165
embedding handlers 169-173

high throughput 357
Hugging Face 31, 32

fine-tuned LLMs 31
reference link 251

Hugging Face Hub
reference link 245

human-generated, human-evaluated
datasets 233

human-generated, LLM-evaluated
datasets 233

hybrid search 123
Hypothetical document

embeddings (HyDE) 121

I
IAM role 423
IDE's MongoDB plugin 94
IFEval 264
in-breadth evolving 194
in-depth evolving 194
inference deployment types 359

asynchronous inference 361, 362
offline batch transform 362
online real-time inference 360, 361

inference pipeline 22
versus training pipeline 371, 372

infrastructure 357, 358
infrastructure-as-code (IaC) 393
input guardrails 412
input test 465

instruction dataset
creating 178, 196-206
data augmentation 193-196
data curation 182
data decontamination 185
data deduplication 184, 185
data exploration 189-191
data generation 191, 193
data quality evaluation 186-189
data quantity 180, 181
general framework 178-180
high-quality data 179
rule-based filtering 182, 183

integration tests 464
invariance 467
iterative improvement 246

J
Jenkins 405
jobs 437

K
key-value (KV) cache 291-294
keywords filtering 183
Kolmogorov-Smirnov (KS) 472
Kullback-Leibler (KL) 247

L
Langfuse 413
Langfuse UI

example trace 414, 415
large language model (LLM) 1, 99, 355, 401
latency 356
length bias 237

Index486

length filtering 183
linting errors 436

examples 436
LLM-as-a-judge strategy 186
LLM evaluation 235

versus, ML evaluation 262, 263
LLM-generated, human-evaluated

datasets 234
LLM-generated, LLM-evaluated datasets 234
LLMOps 401, 402, 410, 411, 415

adding, to LLM Twin 434
guardrails 411, 412
human feedback 411
prompt monitoring 413

LLMs, training from scratch
concerns 410, 411

LLM system
building, with FTI architecture 462, 463

LLM Twin 2, 5, 6
CD pipeline 442-444
CI/CD pipeline flow 434, 435
CI/CD pipeline, testing 445
CI pipeline 438
CT pipeline 446, 448
inference pipeline deployment

strategy 368-370
MVP, defining 7
RAG feature pipeline architecture 127, 139
significance 3, 4
system architecture 16
versus co-pilot 4

LLM Twin architecture 23
data collection pipeline 19
designing, with FTI pipeline design 17

feature pipeline 19, 20
inference pipeline 22
technical details 16, 17
training pipeline 21, 22

LLM Twin model
deploying, to AWS SageMaker 375-385

LLM Twin RAG feature pipeline
dispatcher layer 160
handlers 162
implementing 139
pydantic domain entities 150
setting 139
ZenML pipeline and steps 140, 141

LLM Twin's data collection pipeline
crawlers 59, 69
designing 56-60
dispatcher 66-68
implementing 61
NoSQL data warehouse documents 79, 80
ZenML pipeline and steps 61-65

LLM Twin service
deploying 372

LLM Twin's pipelines, cloud deployment 415
code, containerizing with Docker 424-428
infrastructure 416-418
MongoDB, setting up 418, 419
pipelines, running on AWS 428-431
Qdrant, setting up 419, 420
ResourceLimitExceeded error,

troubleshooting after running ZenML
pipeline on SageMaker 432, 433

ZenML, setting up 421-423
logs 468
low latency 358
Low-Rank Adaptation (LoRA) 213-215

Index 487

M
machine learning (ML) 1, 355

engineering 409
manual dataset exploration 189, 190
manual process 461

manual triggers 448
Massive Multi-Task Language

Understanding (MMLU) 261
Maximum Mean Discrepancy (MMD) 472
MediumCrawler class 77-79
metrics 468

drifts 469
model metrics 469
system metrics 469

metrics-driven development (MDD) 272
microservices architecture 365-367

versus monolithic architecture 367, 368
minimum functionality 467
minimum viable product (MVP) 6

features 6
ML engineer 410
ML evaluation

vesus, LLM evaluation 262, 263
ML models

training 464
MLOps 401-407, 411, 461

CI/CD pipeline 462
continuous training (CT) 461
engineering 409
manual process 461

MLOps and LLMOps tools 30, 31
Comet ML 45, 46
Hugging Face 31, 32

Opik 46, 47
ZenML 32, 33

MLOps, core components
feature store 407
ML metadata store 407
ML pipeline orchestrator 407
model registry 407

MLOps engineer 410
MLOps, principles

automation 408
experiment tracking 408
monitoring 408
operationalization 408
reproducibility 408
testing 408
versioning 408

ML pipeline automation
for CT 12

ML pipelines
for ML systems 13

ML systems
elements 9
issues, with building 8, 9
testing 464

model evaluation 261
domain-specific LLM evaluations 265-267
general-purpose LLM evaluations 263-265
ML, versus LLM evaluation 262, 263
task-specific LLM evaluations 267-271

model metrics 469
model optimization strategies 290

continuous batching 294
key-value (KV) cache 291, 293
optimized attention mechanisms 297, 298
speculative decoding 295, 296

Index488

model parallelism 298
data parallelism (DP) 299
pipeline parallelism (PP) 300, 301
techniques, combining 303
tensor parallelism (TP) 301, 302

model quantization 303, 304
model tests 466
Moderation API 413
MongoDB 47

setting up 418, 419
reference link 418

MongoDB, as data warehouse
usage, considerations 60

monitoring 468
logs 468
metrics 468
versus observability 472

monolithic architecture 365
monolithic batch pipeline architecture 10
MT-Bench 264

N
NoSQL data warehouse documents 79, 80

data categories and user document
classes 87-89

ODM class, implementing 82-87
ORM and ODM software patterns 80, 82

O
object-relational mapping (ORM) 154
object-vector mapping (OVM) 139

implementation 139
observability

versus monitoring 472

ODM class
implementing 82-87

ODM software patterns 80, 82
offline batch transform 362
online real-time inference 360, 361
Open Arabic LLM Leaderboard 267
OpenKo-LLM Leaderboard 267
Open Medical-LLM Leaderboard 265
Open Portuguese LLM Leaderboard 267
Opik 46, 47, 413
Optimal Brain Quantization (OBQ)

approach 312
optimized attention mechanisms 297, 298
ORM software patterns 80, 82
output guardrails 413
output test 465

P
parameter-efficient fine-tuning techniques

full fine-tuning 211, 212
LoRA 213-215
QLoRA 215, 216

Parameter-efficient fine-tuning
techniques 211

pipeline parallelism (PP) 300
PiPPy (Pipeline Parallelism for PyTorch)

library 301
policy optimization 246
position bias 237
post-retrieval step, performing

prompt compression 124
re-ranking 124

Post-Training Quantization (PTQ) 304
preference alignment 245

Index 489

preference-based reinforcement
learning (PbRL) 246

preference dataset 230, 232
Chatbots 231
code generation 231
content moderation 231
creating 230, 237-245
creative writing 232
data evaluation 233
data generation 233
data quantity 232
summarization 231
translation 232

pre-retrieval steps, performing
data indexing 119
query optimizing 119

production environment 434
prompt monitoring 413, 451-457
pull method 136
push method 136
Pydantic domain entities 150-154

data category 151
OVM 154-159
state of data category 151

Pydantic Settings
reference link 139

Python ecosystem
dependency and virtual environment

management 27-29
project installation 26, 27
task execution tool 29, 30

Q
QA job 438
Qdrant 47, 48

reference link 419

setting up 419, 420
quantization 303-308

techniques 313, 314
with GGUF and llama.cpp 309-311
with GPTQ and EXL2 311, 312

Quantization-aware Low-Rank Adaptation
(QLoRA) 215, 216, 221

Quantization-Aware Training (QAT) 304
query optimization 120
query rewriting 121
query routing 120

R
RAG evaluation 271, 272

ARES 274, 275
Ragas 272-274

RAG feature pipeline
chunking 135
cleaning 135
data extraction 134
data loading 135
data storage, in snapshots 138
data warehouse and feature store,

syncing 136, 137
embedding 135
orchestration 138

RAG feature pipeline architecture
batch pipelines 130
batch pipelines, versus streaming

pipelines 130-134
core steps 134
designing 129
feature store 128
inference pipeline 127
ingestion pipeline 127
problem, solution 127, 128
raw data 128

Index490

RAG inference pipeline
architecture flow 320, 321
implementing 318-320, 338
retrieval module, implementing 339-346

raw data, into data warehouse
obtaining 89-94
troubleshooting 94, 95

Recall-Oriented Understudy for Gisting
Evaluation (ROUGE) metric 267

reference window 472
regression tests 464
Reinforcement Learning from Human

Feedback (RLHF) 245-247, 411
iterative improvement 246
policy optimization 246
reward model learning 246

reinforcement learning (RL) 246
reproducibility 473
requests per second (RPS) 356
REST API triggers 448
Retrieval-Augmented Generation

Assessment (Ragas) 272-274
retrieval-augmented generation

(RAG) 2, 99, 100, 317
embeddings 107, 108
embeddings, applications 114
embeddings, creating 111-114
embeddings, significance 109, 110
hallucinations 101
issues, solving 101
vanilla RAG framework 101
vector DBs 115

retrieval-augmented generation (RAG)
pipeline 206, 261

reward model learning 246
reward models 188

rule-based filtering 182, 183
runners 437

S
SageMaker 423
SageMaker Inference deployment 371

configuration 371
endpoint 371
Inference component 371
model 371

SageMaker Orchestrator 423
SageMaker roles

configuring 374, 375
scalable and secure object storage

service (S3) 423
scalable policy

creating 397
scalable target

registering 396
scaling limits

maximum 398
minimum 398

scheduled triggers 448
Selenium tool 69

issues 95
semantic similarity 184
Server-Sent Events (SSE) 374
SFT, techniques

chat templates 208-210
fine-tune, usage, considerations 206, 207
hyperparameters, training 216
instruction dataset formats 208
parameter-efficient fine-tuning

techniques 211

Index 491

SFT techniques, parameters
batch size 216, 217
gradient checkpointing 219
learning rate and scheduler 216
maximum length and packing 217, 218
number of epochs 218
optimizers 218
weight decay 219

speculative decoding 295, 296
stack 422
staging environment 434
stateless real-time architecture 11
statistical analysis 190
stress tests 465
style transfer 2
summarization 231
Supervised Fine-Tuning (SFT) 177, 229, 264

techniques, exploring 206
system metrics 469
system tests 464

T
target drift 470
TargetTrackingScaling policy 397
task-specific LLM evaluations 267-271
tensor parallelism (TP) 301, 302
Terraform 393
test example 465
test job 438
test types 465

acceptance tests 464
integration tests 464
regression tests 464
stress tests 465

system tests 464
unit tests 464

test window 472
Text Generation Inference (TGI) 294, 373
throughput 356, 357
Time between Tokens (TBT) 413
Time per Output Token (TPOT) 413
Time to First Token (TTFT) 413
Tokens per Second (TPS) 413
topic clustering 190, 191
Total Latency 413
training pipeline 14, 21, 22

versus inference pipeline 371, 372
triggers

manual triggers 448
REST API triggers 448
scheduled triggers 448

TwinLlama-3.1-8B
answers, evaluating 278-283
answers, generating 276-278
evaluating 275, 276
results, analyzing 283-286

TwinLlama-3.1-8B model 250

U
UltraFeedback method 195
unit tests 464
User Acceptance Testing (UAT) 464

V
vector DBs 115

algorithms, for creating vector index 116
DB operations 116
working 115

Index492

versioning 463
code 463
data 463
model 463

Video Random-Access Memory (VRAM) 291

W
window types

reference window 472
test window 472

workflow 437

Z
ZenML 32, 33

artifacts and metadata 39-43
orchestrator 33-37
reference link 421
setting up 421-423

ZenML pipeline 140-142
cleaned documents, chunking 147-150
cleaned documents, embedding 147-150
configuring 43, 45
data warehouse, querying 143-145
documents, cleaning 146, 147
documents, loading to vector DB 150
implementing 61-65
running 43, 45

zero-point quantization 307

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily.

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781836200079

2. Submit your proof of purchase.

3. That’s it! We’ll send your free PDF and other benefits to your email directly.

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Chapter 1: Understanding the LLM Twin Concept and Its Architecture
	Understanding the LLM twin concept
	What is an LLM twin?
	Why building an LLM twin matters
	Why not use ChatGPT (or another similar chatbot)?

	Planning the MVP of the LLM twin product
	What is an MVP?
	Defining the LLM twin MVP

	Building ML systems with feature/training/inference pipelines
	The problem with building ML systems
	The issue with previous solutions
	The solution – ML pipelines for ML systems
	The feature pipeline
	The training pipeline
	The inference pipeline

	Benefits of the FTI architecture

	Designing the system architecture of the LLM twin
	Listing the technical details of the LLM twin architecture
	How to design the LLM twin architecture using the FTI pipeline design
	Data collection pipeline
	Feature pipeline
	Training pipeline
	Inference pipeline

	Final thoughts on the FTI design and the LLM twin architecture

	Summary
	References

	Chapter 2: Tooling and Installation
	Python ecosystem and project installation
	Poetry: dependency and virtual environment management
	Poe the Poet: task execution tool

	MLOps and LLMOps tooling
	Hugging Face: model registry
	ZenML: orchestrator, artifacts, and metadata
	Orchestrator
	Artifacts and metadata
	How to run and configure a ZenML pipeline

	Comet ML: experiment tracker
	Opik: prompt monitoring

	Databases for storing unstructured and vector data
	MongoDB: NoSQL database
	Qdrant: vector database

	Preparing for AWS
	Setting up an AWS account, an access key, and the CLI
	SageMaker: training and inference compute
	Why AWS SageMaker?

	Summary
	References

	Chapter 3: Data Engineering
	Designing the LLM Twin’s data collection pipeline
	Implementing the LLM Twin’s data collection pipeline
	ZenML pipeline and steps
	The dispatcher: How do you instantiate the right crawler?
	The crawlers
	Base classes
	GitHubCrawler class
	CustomArticleCrawler class
	MediumCrawler class

	The NoSQL data warehouse documents
	The ORM and ODM software patterns
	Implementing the ODM class
	Data categories and user document classes

	Gathering raw data into the data warehouse
	Troubleshooting
	Selenium issues
	Import our backed-up data

	Summary
	References

	Chapter 4: RAG Feature Pipeline
	Understanding RAG
	Why use RAG?
	Hallucinations
	Old information

	The vanilla RAG framework
	Ingestion pipeline
	Retrieval pipeline
	Generation pipeline

	What are embeddings?
	Why embeddings are so powerful
	How are embeddings created?
	Applications of embeddings

	More on vector DBs
	How does a vector DB work?
	Algorithms for creating the vector index
	DB operations

	An overview of advanced RAG
	Pre-retrieval
	Retrieval
	Post-retrieval

	Exploring the LLM Twin’s RAG feature pipeline architecture
	The problem we are solving
	The feature store
	Where does the raw data come from?
	Designing the architecture of the RAG feature pipeline
	Batch pipelines
	Batch versus streaming pipelines
	Core steps
	Change data capture: syncing the data warehouse and feature store
	Why is the data stored in two snapshots?
	Orchestration

	Implementing the LLM Twin’s RAG feature pipeline
	Settings
	ZenML pipeline and steps
	Querying the data warehouse
	Cleaning the documents
	Chunk and embed the cleaned documents
	Loading the documents to the vector DB

	Pydantic domain entities
	OVM

	The dispatcher layer
	The handlers
	The cleaning handlers
	The chunking handlers
	The embedding handlers

	Summary
	References

	Chapter 5: Supervised Fine-Tuning
	Creating an instruction dataset
	General framework
	Data quantity

	Data curation
	Rule-based filtering
	Data deduplication
	Data decontamination
	Data quality evaluation
	Data exploration
	Data generation
	Data augmentation

	Creating our own instruction dataset
	Exploring SFT and its techniques
	When to fine-tune
	Instruction dataset formats
	Chat templates
	Parameter-efficient fine-tuning techniques
	Full fine-tuning
	LoRA
	QLoRA

	Training parameters
	Learning rate and scheduler
	Batch size
	Maximum length and packing
	Number of epochs
	Optimizers
	Weight decay
	Gradient checkpointing

	Fine-tuning in practice
	Summary
	References

	Chapter 6: Fine-Tuning with Preference Alignment
	Understanding preference datasets
	Preference data
	Data quantity

	Data generation and evaluation
	Generating preferences
	Tips for data generation
	Evaluating preferences

	Creating our own preference dataset
	Preference alignment
	Reinforcement Learning from Human Feedback
	Direct Preference Optimization

	Implementing DPO
	Summary
	References

	Chapter 7: Evaluating LLMs
	Model evaluation
	Comparing ML and LLM evaluation
	General-purpose LLM evaluations
	Domain-specific LLM evaluations
	Task-specific LLM evaluations

	RAG evaluation
	Ragas
	ARES

	Evaluating TwinLlama-3.1-8B
	Generating answers
	Evaluating answers
	Analyzing results

	Summary
	References

	Chapter 8: Inference Optimization
	Model optimization strategies
	KV cache
	Continuous batching
	Speculative decoding
	Optimized attention mechanisms

	Model parallelism
	Data parallelism
	Pipeline parallelism
	Tensor parallelism
	Combining approaches

	Model quantization
	Introduction to quantization
	Quantization with GGUF and llama.cpp
	Quantization with GPTQ and EXL2
	Other quantization techniques

	Summary
	References

	Chapter 9: RAG Inference Pipeline
	Understanding the LLM twin’s RAG inference pipeline
	Exploring the LLM twin’s advanced RAG techniques
	Advanced RAG pre-retrieval optimizations: query expansion and self-querying
	Query expansion
	Self-querying

	Advanced RAG retrieval optimization: filtered vector search
	Advanced RAG post-retrieval optimization: reranking

	Implementing the LLM twin’s RAG inference pipeline
	Implementing the retrieval module
	Bringing everything together into the RAG inference pipeline

	Summary
	References

	Chapter 10: Inference Pipeline Deployment
	Criteria for choosing deployment types
	Throughput and latency
	Data

	Understanding inference deployment types
	Online real-time inference
	Asynchronous inference
	Offline batch transform

	Monolithic versus microservices architecture in model serving
	Monolithic architecture
	Microservices architecture
	Choosing between monolithic and microservices architectures

	Exploring the LLM Twin’s inference pipeline deployment strategy
	The training versus the inference pipeline

	Deploying the LLM Twin service
	Implementing the LLM microservice using AWS SageMaker
	What are Hugging Face’s DLCs?
	Configuring SageMaker roles
	Deploying the LLM Twin model to AWS SageMaker
	Calling the AWS SageMaker Inference endpoint

	Building the business microservice using FastAPI

	Autoscaling capabilities to handle spikes in usage
	Registering a scalable target
	Creating a scalable policy
	Minimum and maximum scaling limits
	Cooldown period

	Summary
	References

	Chapter 11: MLOps and LLMOps
	The path to LLMOps: Understanding its roots in DevOps and MLOps
	DevOps
	The DevOps lifecycle
	The core DevOps concepts

	MLOps
	MLOps core components
	MLOps principles
	ML vs. MLOps engineering

	LLMOps
	Human feedback
	Guardrails
	Prompt monitoring

	Deploying the LLM Twin’s pipelines to the cloud
	Understanding the infrastructure
	Setting up MongoDB
	Setting up Qdrant
	Setting up the ZenML cloud
	Containerize the code using Docker
	Run the pipelines on AWS
	Troubleshooting the ResourceLimitExceeded error after running a ZenML pipeline on SageMaker

	Adding LLMOps to the LLM Twin
	LLM Twin’s CI/CD pipeline flow
	More on formatting errors
	More on linting errors

	Quick overview of GitHub Actions
	The CI pipeline
	GitHub Actions CI YAML file

	The CD pipeline
	Test out the CI/CD pipeline
	The CT pipeline
	Initial triggers
	Trigger downstream pipelines

	Prompt monitoring
	Alerting

	Summary
	References

	Appendix: MLOps Principles
	1. Automation or operationalization
	2. Versioning
	3. Experiment tracking
	4. Testing
	Test types
	What do we test?
	Test examples

	5. Monitoring
	Logs
	Metrics
	System metrics
	Model metrics
	Drifts
	Monitoring vs. observability
	Alerts

	6. Reproducibility

	Packt Page
	Other Books You May Enjoy
	Index

